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Abstract—Video sensor networks operate on stringent require-
ments of latency. Packets have a deadline within which they have
to be delivered. Violation of the deadline causes a packet to be
treated as lost and the loss of packets ultimately affects the quality
of the application. Network latency is typically a function of many
interacting components. In this paper, we propose ways of reducing
the forwarding latency of a packet at intermediate nodes. The
forwarding latency is caused by a combination of processing delay
and queueing delay. The former is incurred in order to determine the
next hop in dynamic routing. We show that unless link failures in a
very specific and unlikely pattern, a vast majority of these lookups
are redundant. To counter this we propose source routing as the
routing strategy. However, source routing suffers from issues related
to scalability and being impervious to network dynamics. We propose
solutions to counter these and show that source routing is definitely
a viable option in practical sized video networks. We also propose a
fast and fair packet scheduling algorithm that reduces queueing delay
at the nodes. We support our claims through extensive simulation on
realistic topologies with practical traffic loads and failure patterns.

Keywords—Sensor networks, Packet latency, Network design, Net-
work performance.

I. INTRODUCTION

SENSOR networks are becoming increasingly popular as
non-intrusive surveillance systems. Resource-rich wired

sensor networks, or example Ethernet and ATM-based video
surveillance network (VSN) using intelligent cameras, are a
prime example. The Dallas-Fort Worth International Airport
has deployed a VSN [1] that produces high-resolution, full-
motion, broadcast-quality color images and audio in place of
the current systems that provide grainy black and white, or
poor quality color video images. The city of New Orleans uses
a similar system at high-traffic spots and high-crime neigh-
borhoods [2]. In early 2004, the Technology Office worked
with the New Orleans Police Department. Using detailed crime
maps drawn with the city’s COMSTAT crime analysis and
management tools, they selected areas with a large number of
murders, robberies, vehicle thefts and drug trafficking. As a
result of this, the First District recorded 57% fewer murders
and 30% fewer car thefts within a year of their deployment.

To be useful, VSN applications must incur minimum delay
from when the event occurred to when the incident was re-
ported. Consider a terrorist attack in a shopping mall equipped
with a VSN. In order for the security team to react effectively,
the VSN should be able to quickly detect the event, identify the
suspects, and provide real-time tracking of their movement. All
aspects of the system - application, operating system, network
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and hardware - affect the application latency. In this paper,
we focus on network latency which we define as the one-
way delay incurred by a packet from the time when it is
transmitted by the source to the time when it is received by the
destination. The packet latency is the sum of the propagation
and the transmission delays at each link along its route and
the forwarding delay at each intermediate node. We consider
the forwarding delay from after the reception of the packet
to just before its transmission. Thus, the forwarding delay is
a combination of the queueing delay and processing delay.
The latter is made up of such activities as routing lookup,
header modification, buffer copying and so on. In this paper,
we propose ways of reducing the forwarding delay and hence
reduce the packet latency.

Queueing delay occurs when a physical link has to be shared
among multiple packets. One way to reduce this delay is to
reduce the number of packets in the network. This approach
is known as traffic shaping and typically occurs before the
packet enters the network. The other approach, which is more
relevant to this paper, is to reduce the processing time of packet
scheduling algorithms. Packet schedulers need to be fast and
fair. There are usually two categories of packet schedulers that
can be found commonly in literature: those that emphasize
speed, for example round-robin schedulers, and those that
emphasize fairness, for example timestamp schedulers. In this
paper we propose a scheduling algorithm that attempts to
bridge the gap between the two. It has very good fairness
characteristics, is extremely simple making it amenable to a
hardware implementation and provides the latency bound on
a single packet.

The processing delay associated at intermediate nodes is
incurred mainly in determining the next hop (in case of
dynamic routing). If source routing is used instead, this delay
can be potentially eliminated which could have a big impact
on packet latencies. Source routing is inherently not scalable.
This is because each node has to maintain the complete path
to all nodes in the network. Further, inclusion of the path
increases the size of the header which reduces the goodput of
the system. In this paper, we analyze a typical VSN and show
that source routing IS feasible in practical deployments. The
number of hops in a random topology grow at a much slower
rate of O(log N). If the topology be built to reflect a scale-
free network, then the above can be reduced to O(log log N).
We propose a topology encoding scheme that places modest
memory requirements at the nodes and reduces the packet
header overhead. A source route usually does not change
once specified. We break this assumption and propose a lazy
correction scheme.
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It is interesting to note that making source routing practical
can have other positive impacts. A known way of reducing
congestion, and consequently queueing delay, is to use QoS
routing. In this method, packets are routed along the fastest
and not necessarily the shortest path. Although attractive, QoS
routing is computationally expensive to be implemented as a
dynamic protocol but becomes much more feasible with source
routing.

When source routing is used, then all an intermediate node
has to do is to forward the packet from the input to the output
interface and completely bypass all other kinds of processing.
Recognizing this, we propose a short-circuiting scheme that
operates at the link layer. We propose a simple hardware
implementation which should make the forwarding operate at
wire speeds.

To summarize, in this paper, we look at specific techniques
to reduce the forwarding delay at each intermediate node. In
particular, we make the following contributions.

• We show that source routing is an attractive alternative
that can be made practical in VSNs (Section 4). We
propose a topology encoding for the same. We combine
source routing with lazy correction to react to network
dynamics (Section 5).

• We propose a a link-layer short circuiting technique to
improve packet switching (Section 6).

• We present an approximation of the WFQ algorithm that
is amenable to hardware implementation to improve the
packet scheduling latency (Section 7).

• We present thorough evaluation of our system by simu-
lating realistic network topologies using practical traffic
types and failure models (Section Section 8).

II. PREVIOUS WORK

Techniques to improve packet latency have long been a
subject of intensive research in the networking community.
Many approaches targeting different parts of the networking
subsystem have been proposed. The speed of physical links
have improved dramatically by the deployment of fiber optic
networks and Wavelength Division multiplexing (WDM). Pro-
cessing speed at intermediate nodes have been improved by
using smart network processors that use different techniques
for fast route lookup. Several smart packet scheduling algo-
rithms [3], [4], [5], [6], [7], [8] provide efficient queueing
algorithms that aims to reduce the waiting of a packet in a
queue.

There are many service models and mechanisms to reduce
packet latency. The Integrated Services [9] model is char-
acterized by resource reservation. For real-time applications,
before data are transmitted, the applications must first set up
paths and reserve resources. RSVP is a signaling protocol
for setting up paths and reserving resources and is based on
traffic characteristics. In Differentiated Services [10], packets
are marked differently to create several packet classes. Packets
in different classes receive different services. MPLS [11] is a
forwarding scheme. Packets are assigned labels at the ingress
of a MPLS-capable domain. Subsequent classification, for-
warding, and services for the packets are based on the labels.

Traffic Engineering is the process of arranging how traffic
flows through the network. The idea is to reduce congestion
in the network by routing packets along alternate routes.
Constraint Based Routing is to find routes that are subject
to some constraints such as bandwidth or delay requirement.
A thorough discussion of all the relevant approaches can be
found in [12]. An approach to provide guaranteed delay is to
use a network with Weighted Fair Queueing (WFQ) switches
and a data flow that is leaky bucket constrained [13]. However,
this requires that traffic be shaped at the source to conform to
a specific characteristic.

There is a significant amount of prior work in finding
scheduling disciplines that provide delay and fairness guar-
antees. Generalized Processor Sharing [13] (also called Fluid
Fair Queuing) is considered the ideal scheduling discipline
and acts as a benchmark for other scheduling disciplines.
Practical scheduling disciplines can be broadly classified as
either timestamp schedulers or round-robin schedulers.

Timestamp schedulers [3], [4], [6], [7] try to emulate the
operation of GPS by computing a timestamp for each packet.
Packets are then transmitted in increasing order of their
timestamps. Although timestamp schedulers have good delay
properties, they suffer from a sorting bottleneck that results in
a time complexity of O(log F) per packet. Any scheduler that
has a complexity of below O(log F) must incur a GPS-relative
delay proportional to F, the number of flows [14].

Round-robin schedulers [5], [8], [15], [16] are the other
broad class of work-conserving schedulers. These schedulers
typically assign time slots to flows in some sort of round-
robin fashion. By eliminating the sorting bottleneck associated
with timestamp schedulers, they achieve an O(1) time packet
processing complexity. As a result, they tend to have poor
delay bounds and output burstiness.

Stratified round robin [17] is an attempt to bridge the gap
between the simplicity of round robin schedulers and the
fairness of timestamp schedulers. SRR groups flows of roughly
similar bandwidth requirements into a single flow class. Within
a flow class, a weighted round robin scheme is employed.
However, deadline based scheduling is employed over flow
classes. Although the number of slows to be sorted is reduced
by this method, it still is partially dependent on the efficiency
of the sorting algorithm.

In contrast to the above approaches, we present a scheduling
algorithm that has low complexity, exhibits good fairness
and provided a bounded delay for a single packet that is
independent of the number of flows.

Source routing (SR) is a very old technique that has been
used extensively in both wired and wireless networks including
sensor networks [18]. Although simple, SR has not really
been popular in wide area networks because it doesn’t scale
well with the network size. In SR, the entire path that the
packet travels is included in it. This implies that a node has
to maintain a route to every other node. This imposes an
O(N) routing table overhead. The typical approach to solving
this problem is by introduction of hierarchies [19]. In this
paper, we also propose a topological solution but is different
from existing hierarchical solutions. The second problem of
scalability comes from the increased size of packet headers due
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TABLE II
PROPERTIES OF TOPOLOGIES

Topology Nodes Links Max. Hops Max. out degree
G0 4000 50000 15 1250
G1 16 24 4 4
G2 19 30 5 5
G3 14 21 4 4

to the inclusion of the path. A solution to this was proposed
in [20]. In this, the direction of the neighbors are encoded in
the source path. We expand on this idea and make it more
general so that it can be applied to topologies with arbitrary
number of neighbors.

III. SIMULATOR

We use a two level event-driven simulation. At the session
level, the simulator generates flows at each source node. Flows
arrive according to a Poisson distribution. We consider flows
sending either audio or video data. The flow specifications are
shown in Table 1.

At the packet level, it manages the lifetime of a packet.
Specifically, it has routing, queueing, failure and delay mod-
ules. The routing module simulates a link-state based shortest
path algorithm, much like Open Shortest Path First (OSPF).
The queueing strategy used is Approximate Fair Queueing
which will be discusses in Section 7. We use two failure
models. Γ0 represents a model where links are chosen at
random. Γ1 represents a failure model described in [23]. To
decide when the failure happens, we picked a random number
for the Weibull distribution with parameters α = 0.046 and β
= 0.414. We use the power law with slope = -1.35 to decide
where the failure occurs according to the following. Let nl be
the number of failures occurring in link l over a period of
time T. Then the failure probability pl is proportional to nl/T.
If the links n1,n2. . .,nL are independent, then the probability
that failure happens on link l with probability pl/(p1 + p2

. . . + pL) = nl/(n1 + n2 . . . + nL). Link states are flooded
only when a link fails. We employ a simple flooding strategy
as follows. Upon receiving an LSU message, a node updates
its database and forwards the information to all its neighbors,
except the one from which the update was received. Duplicate
messages are discarded. LSU messages are kept in a separate
queue and are treated with highest priority by each node.

For our simulations, we use four different topologies, G0,
G1, G2 and G3 (Figure 14). G0 is a random graph, G1 is
representative of a network within a building while G2 and G3

represents a wider area network. Their characteristics are given
in Table 2. All links are bidirectional. To reduce the number
of variables, we use a constant propagation delay of 10ms for
all links. All links are assumed to be 1 Gbps. Transmission
speeds for different sized packets are calculated accordingly.

IV. REDUNDANCY

In modern packet switched networks, dynamic routing is the
most widely deployed protocol. At each hop, a packet finds
the next hop by executing the shortest path algorithm from the
current hop to the destination. In practical implementations,

each router pre-computes the shortest path to all nodes in
the network so that when a packet arrives, determining the
next hop amounts to a table lookup. Traversing the different
layers of the network stack as well as table lookup at each hop
takes up a non-trivial amount of time. An idle Click modular
router, for example, takes 30 μs to forward a 64 byte packet
[ref:click]. In a completely stable network, all route lookups
will be redundant and a considerable amount of time can be
saved by using source routing. However, in reality, links fail
regularly. To gain an insight on the degree of redundancy
in the presence of link failures, we performed the following
experiments. We routed 25,000, 50,000 and 100,000 packets
between 680,000 randomly chosen pairs of nodes in G0. Using
fault model Γ0, we injected up to 500 failed links in a manner
that 30% of the chosen routes have at least one failed link
along them. An incredible 93% of the route lookups turned
out to be redundant.

To understand the reason behind this, let us consider the
case where a single link fails. Let there be a source node
A and a destination node B. Let the link between nodes C
and D fail. Let Pold and Pnew be the paths between A and
B before and after the link fails. If CD /∈ Pold, then Pold =
Pnew and all intermediate lookups will be redundant. Let us
now consider the case where CD is in Pold. Then obviously,
Pold �= Pnew. As the link state information propagates from
C and D to the rest of the network, all nodes (at any given
time) can essentially be divided into two regions: nodes that
have received the update and have the newest routes belong
to the fresh region; all others belong to the stale region. If
A is already in the fresh region, then A will generate Pnew

making all intermediate lookups redundant. Now consider the
case when A is in the stale region. A will generate Pold as
the route of the packet. All intermediate nodes in the stale
region will produce the same result as A and hence will cause
redundant lookups. As soon as the packet reaches a node in
the fresh region, Pnew will be generated. Lookup in this case
is not redundant. But from now on until B, again all lookups
will be redundant.

To summarize, a route lookup will be different between two
nodes belonging to the two different regions but will be the
same at all nodes in a given region. This means unless the path
of a packet traverses the boundary between the two regions,
all intermediate route lookups will be redundant.

Let A be n hops away from B and generate r packets/second.
Let t and p be the propagation time (between consecutive
nodes) and the packet processing time respectively. Let P be
the number of packets generated by A before it gets into the
fresh region. Thus p is the number of packets that will have
exactly one non-redundant route lookup.

P = n × (t + p) × r

Figure 1 shows that P increases linearly with the distance
of A from B.

Imagine a packet traversing a n-hop path from P to U as
shown in Figure 2. For a route lookup at each hop to be non-
redundant, all of the following three conditions must hold.

• The Mean Time To Failure (MTTF) between links must
exceed the sum of the average packet processing time
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TABLE I
FLOW SPECIFICATIONS

Name Description Rate
HDTV A single channel of High Definition resolution MPEG2 encoded video 20 Mbps [21]
SDTV A PAL or NTSC-equivalent Standard Definition video 3 Mbps
Stereo A multichannel DolbyDigital ‘AC-3’ audio with a maximum 13.1 channels 6 Mbps [22]

Standard Audio An audio channel encoded with Advanced Audio Coding format 128 Kbps
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Fig. 1. The number of packets that will incur a redundant lookup before 1
packet has a non-redundant lookup is linearly proportional to the number of
hops between the source and the destination.

P Q R S T U

Case 0:

At t0: Packet p at P Link Q-R fails

At t1: p reaches Q Q has link state information Route lookup in Q 

is NOT redundant

Case 1:

At t0: Packet p at P Link R-S fails

At t1: p reaches Q Link state information Route lookup in Q

reaches Q is NOT redundant

Case 2:

At t0: Packet p at P Link S-T fails

At t1: p reaches Q Link state information Route lookup in Q

reaches R IS redundant

Fig. 2. Redundancy: example topology

and propagation time between two consecutive hops of
the packet.

• All failures should occur along the path of the packet.
• The currently failed link can be no farther than two hops

away from the current hop. Let the link between S and
T fail when the packet is at P. Let the processing and
propagation time of both the data and link update packets
be the same. Then, when the packet reaches Q, the link
update will only have reached R. Thus, the lookup at Q
will be redundant.

It shows that for routing lookup to be non-redundant at every

hop, the failure pattern has to be very specific. Clearly, while
possible, there is a low probability for this to happen in real
life. Based on this analysis, we infer that source routing is
definitely a viable option to be used in VSN.

V. SOURCE ROUTING WITH LAZY CORRECTION

Source routing is a simple approach where the sender
specifies the complete route of the packet along the network.
Although simple and attractive, source routing has a few
disadvantages. First, source routing is not scalable. Each node
has to maintain the path to all nodes in the network which
incurs a space complexity of O(N), Further, the entire route is
included in the packet header. This reduces the goodput of the
system. Second, once a route is specified, it is not changed.
By not taking cognizance of changing network conditions,
source routing could cause a packet to traverse a longer path.
In the worst case, it might even fail to deliver a packet.
Third, source routing presents a security hazard since it allows
address spoofing. In this paper we address the issues related
to scalability and network dynamics and leave security as part
of our future work.

A. Scalability

We address the scalability issues by proposing two tech-
niques. The first is a scheme to encode the topology. The
second is to build the sensor network according to a particular
topology. Neither of the approaches reduce the storage com-
plexity. But our analysis shows that in practical scenarios, the
actual number of bytes used will be significantly reduced.

1) Topology Encoding: Let us consider a random topology.
Classical random graphs, also known as Erdös-Rényi graphs,
are defined by their degree distribution P(k) = exp(-λ)λk/k!.
To uniquely identify N nodes in a ER topology, we need log2N
bits. To reduce the number of bits, we propose an encoding
scheme based on logical labels assigned to neighbors. Let M
be the average number of neighbors of a node in a random
graph. In our simple encoding scheme, a node assigns a logical
label to each of its neighbor, from 0 to M-1. The logical label
is independently assigned by each node. When a node joins
the network and shares its neighbor information, it includes
the logical label corresponding to the neighbor identifier. The
source node can now compute the route in terms of the labels.
Consider the example graph in Figure 3. Let node A be the
sender of a packet to node D. Each node assigns a logical label
to its neighbor which is indicated next to the edge connecting
the node to the respective neighbor. For example, B assigns
the logical labels 0, 1, 2, 3 and 4 to neighbors E, G, C, A and
F respectively. Under our encoding scheme, the path from A
to B is indicated by 2-2-3. In a random graph M � N [24].
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This path encoding scheme saves a considerable amount of
space. Consider for example an IP network where M = 1000.
Then our scheme will represent a savings of over 66%. To put
things in perspective, the maximum value of M in the current
Internet is around 2000 [25].

It is well known that the average path length (APL) of ER
networks scale in proportion to ln N [26]. In [27] it has been
analytically shown that the APL is given by

APL =
lnN − γ

ln(pN)
+

1
2

where γ � 0.5772 is the Euler’s constant and pN = 〈k〉
The APL for ER graphs with 〈k〉 = 4, 10 and 20 is equal
to 6, 4 and 3 respectively for a network with N = 10,000.
Correspondingly, the diameter d of a graph, defined by the
maximal distance between any pair of vertices is given by
ln N/ln(pN). From a ER graph of infinite nodes, it has also
been shown that 90% of the nodes have an average degree
of 5 while less than 0.00001% of the nodes have an average
degree of 200 [28].

From the above statistics, we can assume that
• a route computed by the source to any node will be

bounded by a few hops in a reasonably large network
(≤ 6 for a 10000 node network), and

• the majority of the logical labels in the path will be small
numbers.

Our objective is to encode this path with a bit pattern that
is quite efficient, is extremely fast to decode and leverages the
statistical insights in making the common case fast (Amdahl’s
law). We use the following technique. All labels are classified
into two groups Δ0 and Δ1. Labels that are less than 32 bits
belong to the former group while all others belong to the latter.
Accordingly, items in Δ0 and Δ1 are encoded by 5 and 8 bits
respectively. To distinguish between the labels belonging to
the two groups in the path, we prefix a signature of 10 bits in
which a 0/1 indicates if the current label belongs to Δ0/Δ1.
The choice of a fixed length encoding and a signature bit
pattern was to facilitate the use of a simple hardware circuit
that will allow extremely fast packet forwarding. In order to
obtain empirical proof of our approach, we generated different
ER networks with up to 10000 nodes. For each topology, we
set the average degree to be 4, 10 and 20. We then computed
the shortest path between all pairs of nodes and used our
encoding technique to compute the number of bits. As can
seen in Figure 4, the increase in the number of bits is definitely
O(ln N).

Although extremely unlikely, it is still possible that a label
has a value of more than 255. In this case, we use a hop-
by-hop mechanism to negotiate part of the path for which the
labels are large. Let a path from node n1 to nk be denoted
by n1,n2, . . ., ni, X, n(i + 1), . . . nj , Y, Z, n(j + 1), . . ., nk,
where X, Y and Z are labels grater than 255. In this case, the
n1 computes the partial route to the intermediate node ni. At
ni, the packet falls back to the default hop-by-hop forwarding
mechanism to reach X. X now computes the partial path to
nj . From here, again the packet gets forwarded one hop at a
time up to Z. Finally, Z computes the rest of the path to nk.
Clearly, falling back to the hop-by-hop forwarding mechanism
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Fig. 3. Path encoding: example graph

compromises the speed, However, this is a tradeoff we chose
to allow scalability of source routing. Considering that the
likelihood of this happening is 1 hop for 10000 nodes, we
believe that this will not adversely affect the performance of
the system.

Algorithm 1 Encoder
bit vector final path[]
bit vector signature[10] = “0000000000”
array path in label[] = find route(src,dest)
for each position i in path in label[] do

if path[i] > 255 then
clear remaining path
break;

end if
if path[i] < 32 then

decimal to binary 5 bits(path[i])
concatenate with final path
signature[i] = 0

else
decimal to binary 8 bits(path[i])
concatenate with final path,bin path)
signature[i] = 1

end if
end for
concatenate(signature,final path)

From the above, we can see that the maximum number
of bytes to encode the route in a 10000 node network is
about 5. A VSN is essentially a hierarchical resource-rich
sensor network. It is hard to imagine it to scale geographically
(like the Internet) or in node density (like wireless mote-like
sensornets). The space overhead for a 10000 node network is
about 50 KB which is modest by current technology standards.
Let us consider a TCP/IP packet with a MTU of 1500 bytes.
Let the TCP and IP headers each be 20 bytes. For simplicity,
let us consider the rest of the packet to contain data. Then
an overhead of 5B represents a reduction of less than 1% in
the goodput of the system. This shows that source routing is
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Algorithm 2 Decoder
bit vector[] recvd signature = split(path, 1st 10 bits)
bit vector[] remaining path = split(path, remaining bits)
if remaining path.empty() then

if I am destination then
return

else
bit vector final path[]
bit vector signature[10] = “0000000000”
current = my ip;
i = 0;
while true do

next hop = get next hop(current, dest)
if next hop > 255 then

if current == my ip then
send pkt(next hop);
return;

else
break from while loop

end if
else

encode(rest of the path);
end if
current = next hop;
increment i
if current = dest then

break from while loop
end if

end while
concatenate(signature,final path)

end if
else

if recvd signature[pkt hop count] == 0 then
first hop = binary to decimal 5 bit(remaining path);
delete first 5 bits(remaining path);

else
first hop = binary to decimal 8 bits(remaining path);
delete first 8 bits(remaining path);

end if
end if
send pkt(first hop);

definitely practical in relatively large sized VSN networks.
2) Engineered topology: The above section demonstrates

the feasibility of using source routing in ER graphs. However,
a VSN will be very likely be a well-engineered system. In
this section, we argue that if a VSN is built to exhibit the
properties of a scale-free network, then it makes using source
routing more practical by making the APL almost constant.

In mathematics and physics, a small-world network is a type
of mathematical graph in which most nodes are not neighbors
of one another, but most nodes can be reached from every
other by a small number of hops or steps. Many empirical
graphs are well modeled by small-world networks. Social
networks, the connectivity of the Internet, and gene networks
all exhibit small-world network characteristics. Small-world
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networks have high representation of cliques, and subgraphs
that are a few edges shy of being cliques. The highest-degree
nodes are often called “hubs”. If a network has a degree-
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distribution which can be fit with a power law distribution,
it is taken as a sign that the network is small-world. These
networks are known as scale-free networks. The probability
P(k) that a node in the network connects with k other nodes is
proportional to k−γ . The coefficient γ may vary approximately
from 2 to 3 for most real networks [29]. It was proved that
an uncorrelated power-law graph having 2 < γ < 3 will also
have a network diameter d that is proportional to O(lnlnN)
[30].

So from the practical point of view, the diameter of a
growing scale-free network might be considered almost con-
stant while the diameter of a 1 million node network is
approximately 3 hops.

The power law distribution of a scale-free network produces
a hierarchical topology with a fault tolerant behavior. Since
failures occur at random and the vast majority of nodes are
those with small degree, the likelihood that a hub would be
affected is almost negligible. Even if such event occurs, the
network will not lose its connectedness, which is guaranteed
by the remaining hubs. This characteristic was exploited in
generating highly tolerant sensor node placement [31]. As
has been mentioned before, the network diameter of growing
scale-free networks is almost constant and is usually in the
order of 3 to 5 hops for networks with millions of nodes. The
bounded hop count significantly reduces packet transmission
time thereby improving system latency. In addition, it also
solves the scalability problem of source routing.

B. Network dynamics - Lazy Correction

A second problem of source routing is that it is oblivious to
network dynamics. In a dynamic routing protocol, when the
forwarding decision is made at each hop that has been updated
with link state information, the routing protocol proactively
avoids traversing a link that has failed. A packet that is source
routed obviously cannot take advantage of this fact. Thus, a
packet might end up in a “dead end” where the next hop
mentioned in the source route is no longer reachable.

To remedy this situation, we propose a lazy correction
scheme. In this strategy, a packet is allowed to move on along
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the source specified route until it reaches a node ni which
can not reach the next hop n(i+1). In this case, ni simply
discards the rest of the route and recomputes the remainder of
the path from itself to the destination. The packet is forwarded
along the new route. This is visually similar to geographic
routing around holes in wireless sensor networks. Since ni is
closer to the destination than the source, it will have a more
recent update on the state of the links between itself and the
destination as compared to the source. If ni is unable to find
a path, the packet is dropped.

Our approach does not affect the convergence and loop-free
characteristics of the underlying routing protocol. Our strategy
affects where the rerouting decision will be made and not
the route itself. However, it definitely could affect the path
stretch. Let psource and pdynamic be the paths using source
and dynamic routing respectively. We define the path stretch
λiof a packet i as:

λi =
psource

pdynamic

The average path stretch Λis the average over all packets.

Λ =
1
m

m∑

i=1

λi

To check this we ran two sets of experiments on our G0

topology. We induced up to 500 link failures using model
Γ0 and routed 1000 packets between all nodes that had at
least one failed path on their source route. Figures 8,9 shows
the cumulative distribution frequency. In the second set of
experiments, we kept the number of failures fixed at 500 while
1000, 10000 and 50000 packets were similarly routed between
all nodes that had at least one failed link. As can be seen, about
90% of the paths had a hop stretch of 1.5 or less. Tables 3 and
4 show the average increase in path length. As exepected, we
see that it is likely that a packet will go through a few extra
hops. But as will be shown in Section 8, the minimization of
the processing and queueing delays at each node, more than
offsets this extra cost.
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TABLE III
AVERAGE PATH STRETCH - 4000 NODES, 1000 PACKETS BETWEEN ALL

PAIRS OF NODES

Failures Average path stretch
100 1.13381
200 1.13414
300 1.1338
400 1.129
500 1.13

VI. SHORT CIRCUITING

Using source routing provides an opportunity to reduce
processing delays at intermediate nodes. However, the benefit
can only be had if the packet can be forced to bypass the
network layer by being “short circuited” through a lower layer.
The idea is to provide an alternate datapath for packets in the
node to leverage source routing.

Recall that the source path is specified in terms of labels
which is then encoded using fixed length encoding. Every node
maintains a label lookup table which stores the association
between a label (and thereby a neighbor) and a physical
interface. When a node receives a packet, it does the following.

• Shift the next bit from the signature string.
• If the string is empty, forward the packet to higher layers.
• If the bit is 0, shift out the next 5 bits from the path

string. Decode it to generate the label number.
• Otherwise, shift out the next 8 bits from the path string.

Decode it to generate the label number.
• Use the label number as an index to the label lookup

table. Enqueue the packet in the queue corresponding to
the chosen physical interface.

A simple hardware circuit using standard components is

TABLE IV
AVERAGE PATH STRETCH - 4000 NODES, 500 FAILED LINKS

Number of packets Average path stretch
1000 1.13

25000 1.0981
50000 1.09884
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Fig. 10. Short circuiting hardware

shown in Figure 10.

VII. APPROXIMATE FAIR QUEUEING

An important component that affects the packet latency
is the packet scheduling algorithm used by routers in the
network. The packet scheduler determines the order in which
packets of various independent flows are forwarded on a
shared output link. Packet scheduling affects the queueing
delay. A poorly designed scheduling algorithm could add as
much as two seconds of delay to a packet [32] In general, a
packet scheduler should have the following properties.

Fairness: The packet scheduler must provide some mea-
sure by which multiple flows receive a fair share of system
resources, for example, the shared output link. In particular,
each flow should get its fair share of the available bandwidth,
and this share should not be affected by the presence and
(mis)behavior of other flows.

Bounded delay: Multimedia applications require the total
delay experienced by a packet in the network to be bounded on
an end-to-end basis. The packet scheduler decides the order
in which packets are sent on the output link, and therefore
determines the queuing delay experienced by a packet at each
intermediate router in the network.

Low complexity: While often overlooked, it is critical that
all packet processing tasks performed by routers, including
output scheduling, be able to operate in nanosecond time
frames. The time complexity of choosing the next packet to
schedule should be small, and in particular, it is desirable that
this complexity be a small constant, independent of the number
of flows N.

Designing a packet scheduler with all of these constraints
is a big challenge that warrants attention. Generally speaking,
packet scheduling algorithms can be divided into two cate-
gories. Timestamp schedulers, where packets are transmitted
in increasing order of their timestamps, have good delay
properties, they suffer from a sorting bottleneck that results
in a time complexity of O(log F) per packet. Round-robin
schedulers assign time slots to flows in some sort of round-



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

911

robin fashion and achieve a complexity of O(1). They tend to
have poor delay bounds and output burstiness.

We present a queueing strategy that aims to bridge the
gap between the two. Specifically, our algorithm has low
complexity, good fairness and predictable single packet latency
bound that is independent of the number of flows.

A. Uniqueness of Embedded Networks

A GPS-based scheduling algorithm, for example Weighted
Fair queueing (and its many variants) is a good choice for wide
area public networks, for example the Internet. However, using
the same strategy in an VSN might not work for many reasons.

At the heart of WFQ algorithm is the assignment of weights
to flows. This is a very difficult problem and all the results
thus far are based on the specification of traffic characteristics
by the sender [33]. Characterizing traffic in sensornets can
be a bit impractical as these networks react to unpredictable
phenomena in the physical world, for example terrorist attacks,
which cannot be accurately modeled.

The GPS-like algorithms use the notion of a flow to make
scheduling decisions. The definition of flow is very fuzzy.
It is commonly used to refer to a series of packets from a
source to a destination. But a source/destination can be defined
in terms of its network address, the particular application in
question and the port. Correspondingly, a flow can be define
in terms of one or many combinations of the aforesaid. The
concept gets murkier in sensornets because many different
kinds of processing can take place inside the network. To
allow better utilization of resources, the system might decide
to opportunistically merge, process or split data streams [34].
Without a strict definition of a flow, it is hard to understand
how a GPS algorithm might be implemented.

Finally, a wide area network typically have two broad
classes of traffic. The elastic class refers to those that can
tolerate delays, for example file transfers. The priority traffic
refers to delay sensitive applications that have soft real time
constraints, for example multimedia data. In a VSN, all traffic
belongs to the latter class. Thus, there is no scope of giving
preference to any particular class making it hard to implement
class-based fairness.

B. Approximate Fair Queueing

We now present Approximate Fair Queueing (AFQ), a sim-
ple scheduling algorithm that addresses the above mentioned
issues. The GPS scheduling algorithm is a generalization of
the bit-by-bit round robin (BR) algorithm. In the BR scheme,
each flow sends one bit at a time in round robin fashion. In
Approximate Fair Queueing, packets are classified according
to their weights into different queues and each queue is
scheduled in a round robin fashion. Specifically, each router
maintains M queues where M is a constant. Let the maximum
transmission unit (MTU) of the underlying physical layer be
B bytes. A queue Qi is assigned an integral weight φi, where
0 < φi ≤ B An incoming packet p is assigned to Qj if the
size of p is greater than φj−1 but less than or equal to φj+1.
Scheduling proceeds in a round robin manner among the M
queues. Let φmax be the maximum weight assigned to any
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Fig. 11. (a) R is a router with 2 input links and 3 queues with weights =
100,200,300 (b) Packets are assigned to the different queues based on their
sizes. (c) The exact schedule of packets assuming that the round starts with
Q0

queue. Then while servicing Qj , the scheduler will send a
burst of 	 φj

φmax

 packets.

For example, let a router R maintain 3 flows where φ0 =
50, φ1 = 500 and φ2 = 1000. A packet of size 50 bytes will
be placed in Q0, one of 250 bytes will be placed in Q1 while
one of 1000 bytes will be placed in Q2. The scheduler will
then schedule 30, 3 and 1 packets from queues Q0, Q1 and Q2

respectively. If a queue does not have any packet, the scheduler
moves on to the next one. An example with a schedule is
shown in Figure 11.

The classification of weights can be done at a very fine
scale. A fine grain classification maintains B queues with
φ0 = 1, φ1 = 2 and so on. This provides the most
fairness according to our scheme and we refer to this as the
ideal scenario. However, as has been shown in many studies,
multimedia traffic typically peaks around 40 bytes or 500 bytes
or 1500 bytes [37]. Using that insight, we instead suggest a
much coarser classification. The system maintains 5 queues:
φ0 = 100, φ1 = 500. φ2 = 600, φ3 = 1000 and φ4 = 1500.
This is for an Ethernet based system which typically has an
MTU of 1500 bytes. Notice that the coarse-grained approach
approximates the ideal scheme, hence the word “Approximate”
in the name AFQ.

AFQ is amenable to a very simple hardware implementa-
tion. A modulo-log2M binary counter is required for a round
robin selection of the queues. For each queue, another modulo-
log2(	 φj

φmax

) counter is needed to keep a track of the number

of packets sent in the current round. This implementation
satisfies two of our requirement - the scheduling algorithm
should be fast and be easy to implement.

In order to verify the fairness of our algorithm, we routed up
to F (= 100) flows through a single node with one output link.
The flow characteristics were randomly chosen from Table 2.
We compare Wf2q (a variant of WFQ with better worst case
bounds), a fine-grained AFQ, a coarse-grained AFQ and a two-
level AFQ (2L-AFQ). 2L-AFQ is a variation of AFQ in the
presence of a notion of flows. The router now maintains two
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Fig. 12. Two level AFQ scheduling

sets of queues. The first level (L1) queue is based on packet
size. In the second level, we maintain additionally a queue
(L2) for each flow. The scheduler first chooses an (L1) queue
that has packets to send. Based on its weight, let n be the
number of packets that can be sent. These n packets are now
chosen in a round robin manner from the (L2) queues that
are inside the chosen (L1) queue. Figure 12 demonstrates this
algorithm. As is shown in the diagram, the node maintains
three L1 queues and each l1 queue in turn maintains three L2
queues. When Q1 is chosen, the scheduler selects 3 packets to
send. It selects one packet each from L2 queues q10, q11 and
q12 respectively.

The metric that we use for comparison is widely known
Jain’s fairness [35]. If ti is the throughput of flow Fi, then
Jain’s fairness is defined as:

Fairness =
(
∑

ti)2

(F × ∑
x2
i )

with 1 being the most fair and 0 being the least. As can
be seen from Figure 13, all variations of AFQ are fairer than
Wf2q. In addition, the latter suffers a greater reduction in its
fairness index as the number of flows increase.

VIII. EVALUATION

In this section, we put together all the concepts discussed
in the previous sections and compare it with a traditional
packet forwarding system. We implement three packet delivery
systems. The first one uses source routing with lazy correction,
a link level hardware forwarding and 2L-AFQ scheduling
strategy. We refer to this as “Two level”. The second is
essentially the same as the first with the difference that it
uses a coarse grained AFQ strategy instead. We refer to this
as “Coarse”. The third simulates a regular packet switched
network using dynamic routing and the worst-case weighted
fair queueing scheduling algorithm [4] We refer to this as the
the Wf2q.

A. Simulation parameters
We use the topologies G1, G2 and G3 as shown in Figure

14 with their properties being discussed in Table 1. The
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grayed out links are the ones that fail according the failure
model Γ1. Each topology has a single destination node. All
other nodes send data packets to this chosen node. The
chosen destination node for G1, G2 and G3 are 15, 0 and
1 respectively. Each source node generats one flow. A flow
is randomly chosen from one of the four types shown in
Table 2. Each flow generates 20,000 packets. The size of
a packet is randomly chosen from the intervals [40B,200B],
[400B,600B] and [1000B,1500B]. Packets are generated at a
fixed rate calculated from the type of flow.

The delay of a packet is modeled as follows. When a packet
reaches a node, it can either go through the lower layers and
then be handled by the IP layer, or it can be short circuited
through the link layer using the hardware circuit described in
Section 6. In both cases, the fundamental task is a table lookup
to select the next hop or the physical interface respectively. IP
lookup can be implemented in many different ways. To make
a fair comparison with our short circuit switch, we assume
that it is implemented in hardware. So for both strategies, we
assign a constant time of 100 ns for table lookup. The penalty
of the former comes from the traversal of the network layers.
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Fig. 15. Average throughput

Fig. 16. Jain’s fairness

For this, we assign a fixed value of 1 ms. The packet then
waits in a queue, the duration of which is decided by the
dynamic traffic conditions. To each packet, we then add a
delay proportional to the efficiency of the queueing algorithm.
Recall that a Weighted Fair Queueing algorithm has a running
time complexity of O(F), where F is the number of flows.
To simulate realistic scenarios, we inject 10000 dummy flows
at each node. Based on that, we assign a delay of 3ms to
the execution of the Wf2q algorithm. By contrast, AFQ has a
constant time complexity in O(1). We assign a delay of 1ms
in executing the AFQ algorithm. Finally, the transmission and
propagation delays are set as described in Section 3.

B. Metrics

We evaluate our approaches based on the following metrics.
• Throughput: We provide a raw measure of the efficiency

of the system in terms of its throughput. We provide two
measures of throughput. The per-flow throughput is the
number of bits successfully transmitted per second The
average throughput takes the weighted harmonic mean of

the average per-flow throughput [35], using the message
length as the weight:

average throughput =
∑

i∈F bi∑
i∈F ti

where F is the total number of flows in the network, bi

represents the number of bytes sent over connection i and
ti its duration.

• Latency: We provide a holistic measure of application
latency that we refer to as the playback latency. A
multimedia stream has a strict deadline within which
successive packets must be received. Packets arriving
after the deadline are considered useless and are treated
as lost; and the loss of a certain number of packets will
seriously affect the quality of the application. Playback
latency is a measure of how long the destination has to
wait before it can start playing the stream without losing
a single packet due to jitter violations. More specifically,
for every flow, let p packets be generated at a the rate of
r packets/second starting at time ts. Let tf be the time
that the final packet is received. Then,

playback latency = tf − (p ∗ r) − ts

In addition, we also present the cumulative distribution
frequencies of all packets of all flows.

• Fairness: We compute Jain’s fairness index as described
in Section 7.2 using the average throughput as of each
flow as described above.

C. Results

Figure 15 shows the average throughput of the three sys-
tems normalized with respect to the coarse-grained approach.
Across all topologies, our system have a much better through-
put than Wf2q system. At the same time, the fairness index is
also better, as shown in Figure 16. A more interesting insight
can be had when comparing the throughputs of the individual
flows. Even the per-flow throughput is better in our system.
The variation of the throughputs is lower in case of Wf2q
suggesting that it might provide tighter, but not necessarily
better, on the throughput variance. The trend, however, is
very similar in all systems across all topologies. The playback
latency data, on the other hand, is quite surprising. In G1,
the performance of Wf2q varies by almost 10 times. Our
approach, on the other hand, remains practically constant. The
same trend for Wf2q is observed in G3 where our approach
has a variation of a factor of 4. In G3, the expected behavior
changes for certain flows where Wf2q performs better. If we
look at the CDF of latencies of all packets across all flows
in G1, our system shows that more than 90% of packets have
a latency of 200s. The corresponding number is 1800s for
Wf2q. In G2, Wf2q performs sightly better. 90% of packets
have a latency of 130s while in our system the corresponding
number is 150s. Finally, in the G3, topology, the cumulative
latency in our system is almost half that of the Wf2q system. In
all experiments, we observe that there is not much difference
between the 2L-AFQ and the coarse-grained AFQ approaches.
This suggests that an approximate approach is comparable to
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the more accurate algorithm. This perfectly suits a VSN where
the nodes get sudden bursts of packets with the route and the
packet size as the only information to exploit.

From the above experiments we draw the following conclu-
sions.

• Source routing with AFQ and link level short-circuiting
provides improves packet latencies over IP-based net-
works using dynamic routing. This also improves the
throughput of the system.

• It is fair to all flows as the number of flows in the system
increases.

• It’s behavior is fairly agnostic to network topologies.

IX. CONCLUSION

In this paper, we have shown that inspite of its perceived
shortcomings, source routing is actually usable in practical
sized networks. If VSNs are built as scale-free networks and
if a topology is encoded in terms of labels, then source routing
imposes only a modest overhead on storage requirements and
goodput performance. Source routing allows routing layer
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Fig. 20. CDF - Packet latencies: G1

Fig. 21. CDF - Packet latencies: G2

functionality to be bypassed at intermediate nodes. We pre-
sented a hardware architecture that will allow short-circuiting
of a packet through the link layer. We further reduce the
packet latency at nodes by employing a fair but extremely fast
packet scheduling algorithm. All the above strategies working
in concert provide a significant improvement of packet latency
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Fig. 22. CDF - Packet latencies: G3

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  2  4  6  8  10  12  14

P
la

yb
ac

k 
de

la
y(

s)

Flow id

Two level
Coarse

Wf2q

Fig. 23. Playback latency: G1

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  2  4  6  8  10  12  14  16  18

P
la

yb
ac

k 
de

la
y(

s)

Flow id

Two level
Coarse

Wf2q

Fig. 24. Playback latency: G2

over a similar IP-based network.
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