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Abstract—Meshless Finite Element Methods, namely element-
free Galerkin and point-interpolation method were implemented and 
tested concerning their applicability to typical engineering problems 
like electrical fields and structural mechanics.  A class-structure was 
developed which allows a consistent implementation of these 
methods together with classical FEM in a common framework. 
Strengths and weaknesses of the methods under investigation are 
discussed. As a result of this work joint usage of meshless methods 
together with classical Finite Elements are recommended.  
 

Keywords—Finite Elements, meshless, element-free Galerkin, 
point-interpolation.  

I. INTRODUCTION 
HE Finite Element Method (FEM) is well established as 
the primary method for solution of partial differential 

equations in engineering science. One of its shortcomings still 
is the difficulty of automatic mesh-generation.  Boundary 
Element Methods (BEM) completely overcome this difficulty; 
however exhibit serious problems in dealing with 
inhomogenities. In addition BEM lead to an equation system 
with a full matrix thus giving up the advantages in treating 
sparse and positive matrices, as in using FEM. Meshless Finite 
Element Methods can potentially fill this gap, since they 
reduce the problem of mesh-generation to a mere point-set-
generation but nonetheless maintain full ability to treat 
inhomogeneous and/or nonlinear problems. The resulting 
linear equation system to be solved also has a sparse structure 
like in the case of classical Finite Elements. In this work 
element-free Galerkin (Belytschko [1]) and point-interpolation 
method (Liu [2]) were implemented and tested concerning 
their applicability to typical engineering problems like 
electrical fields and structural mechanics.  
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II. DESCRIPTION OF IMPLEMENTED METHODS 

A. Equations 
In this work electrical field problems and elasticity 

problems have been treated. As an example for a typical 
elliptic problem we introduce the Poison Equation in two 
dimensions. This equation reads in its strong form: 
 

fuk =∇∇ )(                                  (1) 
  
where k and f are given functions of x,y. The solution to be 
computed u(x,y) denotes the electrostatic potential. 
Correspondingly the displacement would be computed in case 
of an elasticity problem. For all FEM addressed in this paper 
the solution will be based on the weak of Eq. (1): 
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The EFG Method (Belytschko) [1] and PIM (Liu) [2] have 
been implemented together with classical Finite Elements 
within a fully consistent scheme. The concept of 
approximating the solution by a weighted set of shape-
functions is common to these methods: 
 

 uxxu Th )()( Φ=                      (2) 
 

The component ΦI of the Vector Φ is called the shape-
function attributed to node I. Usually these shape-functions 
take non-zero values in the influence domain of the respective 
node only. In classical FEM the shape-function ΦΙ(x) is 
confined to the element that contains the node I. In meshless 
methods such rules apply in a more general way introducing 
the concept of  “domain of influence” [2]. 
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B. Element-Free Galerkin 
EFG-shape-functions are constructed by interpolating the 

solution by polynomial functions with moving least squares. 
EFG uses a weight function attributed to node I wI :=wI (x) 
which is non-zero in the environment of node I. If a point x is 
close enough to node I such that wI(x)≠0 then the node will be 
used to construct shape-function-values at point x, otherwise 
not The following summarizes characteristic properties of 
EFG: 
 
• a weight-function must be attributed to any meshpoint 

defining its domain of influence and thereby the 
neighbourhood relationship. 

• shape-function construction using moving least squares 
• the number or neighbours of a point where the shape-

function is being evaluated (typically a Gauss-point) must 
be greater than the number of coefficients of the basis 
polynomial. 

• leads to fully conforming shape-functions. 
 

For details of the derivation, implementation, especially the 
computation of partial derivatives of the shape-functions the 
reader is referred to [1,10]. Please note that the computational 
effort for evaluation of the shape-functions is considerably 
high. 
 

C. Point-Interpolation Methods 
A detailed description or the method is given in [2]. Notes 

on our implementation can be found in [10]. The main 
difference to EFG is the fact that the number of neighbor-
nodes is equal to the number of basis functions. Therefore a 
weighting of nodes is not necessary. Instead of a regression 
polynomial we obtain an interpolation polynomial which leads 
us to a strongly simplified procedure. PIM is based on 
polynomial interpolation like classical FEM, however the 
choice of neighbor nodes of a point in the plane to be used for 
interpolation is not defined by any element. As a consequence 
neighbor-nodes and the degree of interpolation polynomial 
can be chosen freely without any changes in the mesh. The 
cost of this advantage is the loss of conformity or the 
additional measures (i.e. Penalty Methods [2]) to maintain 
conformity. We summarize PIM: 
• no weighting of nodes  
• no least squares but direct interpolation 
• number of neighbour points used for interpolation must 

correspond to number of coefficients in the basis-
polynomial 

• conformity requires additional measures 
 

D. Implementation of Classical FEM 
Due to the parallels between PIM and classical FEM the 

latter was implemented as a special case of PIM. The 
difference consists only in a different definition of the 
neighbourhood relationship. 
 

E. Combination-Elements 
The full potential of meshless FEM can only be exploited 

by combination of multiple methods. As an alternative to a 
coupling of multiple domains divided by internal boundaries, 
the introduction of transition elements allows a flexible 
coupling of different methods within one domain. In a domain 
where mixed approaches have to be used, every meshpoint is 
attributed a shape-function type. If different type-indices are 
found within one element, shape-functions of all types in 
question have to be evaluated within the element.  
Consequently inside the element the shape-functions 
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have to be computed where i denotes the local node-number 
and j the shape-function type index. For superposition of the 
shape-function components weight-functions are used which 
constitute a partition of unity: 
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 here denotes the weight-function attributed to shape-

function-type of node with local number j. The resulting 
combined shape-function can then be computed by: 
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All of the above described shape-function types can be 

combined using this concept thus allowing flexible 
combination of all different methods including classical FEM. 
In contrast to coupling over domain boundaries the weight-
function strategy realizes a smooth transition between regions 
where different shape-functions are used. 

III. CLASS-STRUCTURE 
The class structure proposed in this paper is shown in Fig. 2 

as UML-class diagram. The diagram includes only the base 
classes. Classes derived from these classes, for example 
special element classes for different kinds of elements or 
special analysis classes to perform nonlinear static 
calculations are not included. Also utililty classes that handle 
vectors, matrices etc. are not shown. Heart of the class 
structure is the CModel class. This is a container class for all 
parts/objects/classes a FEM model consists of. The base 
classes for the FEM model parts are CNode, CElement, 
CMaterial and CLoads/CLoadHistory. FE model and FE 
analysis are decoupled from each other. The CModel class 
"communicates" with the the CAnalysis class over a defined 
interface. The CAnalysis class represents the FEM processor 
by which the FEM model state is transformed from one model 
state to another. CAnalysis manages the whole algorithmic 
interactions of the CModel parts. The base classes for the 
FEM analysis are CSolutionAlgorithm, CSolutionIntegrator, 
CSolver. Here the design is simillar to [12],[13]. A special 
class CGlobal_Data was designed to manage fast and simple 
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access to global FE model data for all classes that participates 
in the FEM calculation. CGloabl_Data is member of CModel. 
Every class in the whole class design can ask for a pointer to 
CGlobal_Data. For the pre- and post-processing of the FE 
model a graphical users interface (GUI) is developed that use 
the same base classes as the CModel class (CNode, CElement 
.. s. Fig. 3). The whole design is similar to a Model-View-
Controll pattern which is a well know pattern in modern 
object orientated design. 
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Fig. 2 UML-diagram of FEM and meshless FEM class design 

 

Model

Analysis SolutionAlgorithm

SolutionIntegrator

Solver

CADModel

Element/Cell
Load

Node

Material

Solution

ShapeFunction

FEM/Mfree-Application GUI-Application

 
Fig. 3 Class-Coupling: FEM/Mfree-Application (processing) with 

GUI-Application (Pre-,Post-processing) 

 

In classical FEM elements consist of a fixed number of 
nodes with a fixed integration area. In meshless methods the 
node number associated with a certain integration area is 
variable and the integration can vary. The design handles this 
by treating meshless methods as FE with variable nodes, 
variable integration point number and variable integration 
area. By this classical and meshless FEM can be handled 
consistently. Mixing classical and meshless methods within on 
FE model is easily possible. The major differences between 

the two approaches are reflected in the classes to build the 
shape functions and to assemble the integration points for an 
integration area. 

Special attention was paid to constructing the linear solver 
such that full modularity of the software is maintained. The 
current algorithms and data-structures for indexed storage of 
sparse linear equation systems require the sparsity-pattern to 
be known before the equation-system is set up. This is also 
true in the case of band- profile- and other sparse storage 
modes. But as soon as the linear solver needs mesh-related 
information to set up the sparse matrix structure full 
modularity is no longer maintained. This problem was solved 
by supplying a fully dynamic sparse matrix structure as an 
interface between Analysis- and Solver-class. Only after all 
coefficients of the linear system have been collected the solver 
creates the data structures specific for its particular solution 
method. This process is "hidden" within the solver-class and 
does not affect the interface. This implies that also a node-
ordering e.g. by a Cuthill Mc Kee Algorithm is no longer 
executed on basis of the geometric mesh-structure but solely 
on basis on the connectivity of the DOF within the equation 
system. To represent this connectivity a graph-class was 
developed and set up completely independent on the 
geometric mesh. This algebraically motivated node-ordering 
has clearly greater flexibility since in many applications 
geometric connectivity (allocation of nodes to elements) does 
not correctly reflect the connectivity of the equations. For 
example in magnetostatics different components of the vector 
potential belonging to the same node or same element are not 
coupled within the equation system. The additional graph 
which is needed to carry out the node ordering such as Cuthill 
McKee is kept in memory only temporarily and does not 
affect the limits on problem-size to be treated. 

IV. COMPUTATIONAL RESULTS 

A. Test-Problems 
In this section tests performed on electrical field problems 

are described. Different variants of point-interpolation 
methods (PIM), element-free galerkin (EFG) and classical 
Finite Elements were implemented a tested on different mesh-
structures. As far as irregularly shaped structures were 
concerned a quadtree strategy was implemented for point-set 
generation. Point-sets were generated alternatively on basis of 
the center-points and on basis of the corners of the quadtree-
boxes. In order to allow better classification a set of test-
meshes was derived from a rectangular basis-structure. This 
was done to test the sensitivity of the respective method 
against the quality of the node-set used. The original 
equidistant rectangular structure was modified by applying 
linear-anisotropic, quadratic and random-distorsion.  
 

B. Test of Implemented Methods  
The mesh was varied between a completely regular mesh 

and a strongly degenerate one. The degree of degeneracy 
could be varied using a degeneracy-parameter between 0 
(regular) and 1.2 (degenerated). For test purposes a Dirichlet 
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Problem was solved with a known solution: EFG was tested 
against classical FEM in order to investigate the sensitivity 
against degenerate node-sets. The errors on the nodes were 
evaluated; their arithmetic mean and maximum norm were 
computed. The results for the mean error norm are shown in 
Fig. 3. It can be seen that EFG method exhibits stable 
behaviour for degenerate meshes. Fig. 3 shows errors 
depending on the mesh-size. Fig. 4 shows errors depending on 
the above-mentioned mesh degeneracy-parameter. 
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Fig. 3 Mean error of the test-problem versus mesh size for classical 
FEM (cFEM) and EFG. EFG-2 refers to shape-functions obtained 

with a  2nd degree basis function 
 

The test of PIM was done in a similar way. Fig. 5 
summarizes the test-results. Results obtained with classical 
FEM on different node-sets have been computed and are 
shown for comparison.  Nonconforming PIM was found to 
exhibit poor solution quality and convergence. Only on 
rectangular meshes the accuracy could be obtained as to be 
expected for the high order shape-functions used. Our 
experiments have shown that in this case PIM becomes 
conforming for symmetry reasons, even if no measures are 
taken to enforce conformity. For meshes lacking these 
symmetry properties a penalty function strategy has been 
proposed by Liu [2] (CPIM). Consequently, results obtained 
using CPIM also are superior to those obtained with classical 
FEM. However, the penalty strategy requires the usage of an 
additional parameter, the proper choice of which also turned 
out to be difficult. A variation of PIM will therefore be shown 
in section V. 
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Fig. 4 Mean error of the test-problem versus mesh-degeneracy for 

classical FEM (cFEM) and EFG 
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Fig. 5 Test of different variants of PIM depending on the mesh in 

comparison with cFEM 

V. CONSTRUCTION OF QUADTREE-ELEMENTS 
The meshless shape-function generation algorithm can be 

used to flexibly construct additional element-types for the 
classical method. This section describes a new element-type as 
is immediately created automatically arising from our 
implementation of the point-interpolation method. If a 
Quadtree approach is used for point-set generation it is 
convenient to immediately use the boxes as elements. As 
shown in Fig. 7 additional mid-side nodes appear in areas of 
mesh-refinement. As a result we have to deal with an irregular 
pattern of 4-, 5, 6-node elements. In this work the default 
elements were attributed a bilinear basis-polynomial with the 
option to add one or two quadratic terms depending on mid-
side-nodes.  The PIM shape-function generator (see section II. 
C.) constructs the shape-functions arising from the basis-
polynomials in a straight-forward manner. Along the 
boundary between fine and coarse discretization linear and 
quadratic terms appear in directly adjacent elements. Since 
this approach leads to non-conforming elements tests were 
necessary to verify convergence. A near-singular problem 
with a known logarithmic function as the exact solution was 
used as test-case. The quadtree-boxes were divided depending 
on a  
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Fig. 6 Dependence of disc retization error from mesh-parameter 
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Fig. 7 Mesh directly generated from Quadtree. The singularity of the 

solution-function is near the upper-right corner 
 
criterion which  contains the gradient of the exact solution 
together with a mesh-parameter. Coarser and finer meshes 
could be constructed in dependence of the parameter. A 
division of the mesh-parameter by two means a four-fold 
increase of the number of boxes. Or in other words: At a given 
position the element-size will be approximately proportional 
to the mesh-parameter. Fig. 7 clearly shows extreme 
refinement close to the singularity. The deviation of the 
solution at the mesh-points (mean-value over all mesh-points) 
was evaluated as a measure for the achieved accuracy. Results 
are summarized in Fig. 6. Quadratic convergence is clearly 
shown.  

VI. CONCLUSION 
Meshless methods have been implemented in combination 

with classical FEM. By empirical tests EFG methods have 
been shown to be particularly resistant against the effects of 
odd geometries and the effects of extreme local mesh-
refinement such as the appearance of single degenerate 
elements. However EFG that have been tested to be the most 
robust are considerably less efficient than classical Finite 
Elements. Point-Interpolation methods exhibit good 
efficiency, but are sensitive against variation of the point-set. 
They show excellent performance as long as the choice of the 
basis polynomial and the neighbourhood relationship can be 
adapted in an optimal way to the local node-pattern. Here the 
authors see much potential for possible future developments 
which was tried to demonstrate by the experimental 4,5,6-
node quadtree-element setup. At the present state of the art a 
combination of meshless and classical FEM (e.g. with local 
use of EFG) is proposed as a result of this work. An object 
oriented flexible class structure to meet this requirement has 
been presented in this paper. 
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