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Abstract—In this paper, mesh-free element free Galerkin (EFG) 
method is extended to solve two-dimensional potential flow 
problems. Two ideal fluid flow problems (i.e. flow over a rigid 
cylinder and flow over a sphere) have been formulated using 
variational approach. Penalty and Lagrange multiplier techniques 
have been utilized for the enforcement of essential boundary 
conditions. Four point Gauss quadrature have been used for the 
integration on two-dimensional domain ( ) and nodal integration 
scheme has been used to enforce the essential boundary conditions 
on the edges ( ). The results obtained by EFG method are 
compared with those obtained by finite element method. The effects 
of scaling and penalty parameters on EFG results have also been 
discussed in detail. 

Keywords—Meshless, EFG method; potential flow, Lagrange 
multiplier method; penalty method; penalty parameter and scaling 
parameter.

I. INTRODUCTION

OW a day, a number of numerical tools are available to 
solve fluid flow problems including finite difference 

method (FDM), finite volume method (FVM) and finite 
element method (FEM). But the numerical simulation of fluid 
flow problems in complex geometries still remains a 
challenging task for the researchers and scientists. Even with 
availability of powerful mesh generators, the time required in 
mesh generation process for complex geometries is quite large 
in comparison to the solution and often leads to numerical 
errors. Therefore, to overcome these problems, a number of 
numerical methods were proposed in past few years. In these 
methods, the requirement of meshes is totally unnecessary. 
The essential feature of these methods is that they only require 
a set of nodes to construct the approximation function. These 
methods are named as mesh-free or meshless methods.  For 
more than ten years, the meshless methods were successfully 
applied in different areas of engineering and science including 
fluid flow problems. Lin and Atluri [1], [2] used meshless 
local Petrov Galerkin method (MLPG) to solve Navier-
Strokes equation for incompressible fluids and convection-
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diffusion equation for flow problems. Mesh-free finite point 
method is utilized to solve advective–diffusive transport and 
fluid mechanics problem by O ate and his co-workers [3], [4]. 
The further use of finite point method has been done by 
Löhner et al. [5] to solve compressible flow problem. Sophy 
and Sadat [6] have solved three dimensional laminar natural 
convection problems by diffuse approximation method. Liu et
al. [7] used reproducing kernel particle method to solve fluid 
dynamics problem in which they introduced the multiple scale 
adaptive refinement technique. A radial basis function based 
meshless method has been used by Han and Huang [8] to 
model the shear flow of Johnson-Segalman fluid. Tsukanov et
al. [9] used R-function method for the solution of 
incompressible fluid dynamics problems. Some of these 
meshless methods have also been extended to solve potential 
flow problems. Chen and Raju [10] used coupled finite 
element and MLPG method to solve two-dimensional 
potential flow problems. Novel finite point method has been 
used by Cheng and Liu [11] to analyze the flow around a 
cylinder.

In recent years, the meshless element free Galerkin (EFG) 
method has been extensively used to solve a variety of 
problems in different areas of engineering and science 
including fluid flow. Singh [12] used the EFG method to solve 
viscous incompressible fluid flow problems. Du [13] used this 
method for the simulation of stationary two-dimensional 
shallow flows in rivers, and Verardi et al. [14] applied this 
method for the study of fully developed 
magnetohydrodynamic duct flows.  

In the present work, the EFG method has been extended to 
solve two-dimensional potential flow problems. Two ideal 
fluid flow problems i.e. flow over a rigid cylinder kept 
between two parallel plates and flow over a sphere kept inside 
a cylinder have been chosen and solved using penalty as well 
as Lagrange multiplier techniques. Nodal integration approach 
has been utilized to enforce the essential boundary conditions 
along the edges of the 2-D computational domain and 
Gaussian quadrature approach has been used to integrate over 
computational domain. The EFG results have been obtained 
for two model fluid flow problems, and are compared with 
those obtained by finite element method. The effect of scaling 
as well as penalty parameter has also been discussed in detail.  
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II. OVERVIEW OF EFG METHOD

A. MLS Approximation 
The of the governing equations by element free Galerkin 

(EFG) method requires moving least square (MLS) 
interpolation functions which are made up of three 
components: a weight function associated with each node, a 
basis function and a set of non-constant coefficients. The 
weight function is non-zero over a small neighborhood at a 
particular node, called support of the node. Using MLS 
approximation, the unknown stream function )(x, y  is 

approximated by )(x, yh over the two-dimensional domain 
[15]. 

)()()()()()(
1

xaxpTm

j
jj

h x,yax,ypx, yx, y         (1) 

Where, m  = number of terms in the basis, )( y,xp j =
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Where, )( Iw x-x is a weight function which is non zero over a 
small domain, called domain of influence, n  is the number of 
nodes in the domain of influence. The minimization of )(xJ
w.r.to )(xa  leads to the following set of equations 
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By substituting Eq. (3) in Eq. (1), the MLS approximants can 
be defined as 
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Where, the shape function )(xI  is defined by 
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B. The Weight Function 
The weight function is non-zero over a small neighborhood 

of Ix , called the domain of influence of node I . The choice 
of weight function )( Iw xx  affects the resulting 

approximation )( I
h x . In the present work, cubicspline 

weight function [15] has been used due to its accuracy, which 
can be written as a function of normalized radius r  as 
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With mIII d||||r /x-x , mxIIxI dx-xr /|||| , myIIyI dy-yr /|||| ,

xImxI cdd max , yImyI cdd max  and maxd is a scaling 

parameter and  yIxI cc &  at node I , are the distances to the 

nearest neighbors. The weight function at any given point can 
be calculated as 

yxyxI wwrwrww )()()( xx            (10) 

Where, )( xrw or )( yrw  can be calculated by replacing r

by xr or yr  in the expression of )(rw .

III. THE FLOW OVER A RIGID CYLINDER 

A. Variational Formulation 
Consider two-dimensional potential flow of an ideal 

(inviscid incompressible) fluid over a rigid cylinder, which is 
kept between two parallel plates, is given by Laplace equation 
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The weighted integral form of Eq. (11a) is obtained as 
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The weak form of Eq. (12) is given by 
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Using natural boundary conditions, the functional )(I is
obtained as 
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B. Enforcement of Essential Boundary Conditions 
In this work, Lagrange multiplier and penalty methods 

have been used for the enforcement of essential boundary 
conditions. Lagrange multiplier method (LMM) is chosen due 
to its accuracy and penalty method is used due to its 
simplicity. 

Lagrange multiplier method (LMM)
Using Lagrange multiplier method (LMM) to enforce essential 
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boundary conditions, the functional )(*I  is obtained as 
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Taking variation i.e. )(*I  of Eq. (15), it reduces to 
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Since 0)(*I  and , 1 , 2 , 3  & 4 are
arbitrary in Eq. (16), a following set of equations is obtained 
using Eq. (7) 
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Penalty method (PM)
Using penalty method (PM) to enforce essential boundary 
conditions, the functional )(*I  is obtained as 
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Taking variation i.e. )(*I  of Eq. (19), it reduces to 
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Since 0)(*I  and  are arbitrary in Eq. (20), a 
following set of equations is obtained using Eq. (7) 
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IV. AXISYMMETRIC FLOW

A. Variational Formulation 
Consider the flow of an ideal fluid over a sphere, which is 

kept inside a cylinder. This problem is modeled as an 
axisymmetric two-dimensional potential flow problem and the 
governing Laplacian equation in cylindrical coordinate system 
reduces to Stokesian equation given by 
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The weighted integral form of Eq. (23a) is obtained as 
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The weak form of Eq. (24) is given by 
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Where, rn  and zn are the direction cosines of the outward 
normal to the respective edges. 

Using natural boundary conditions, the functional )(I is
obtained as 

dzdrr
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B. Enforcement of Essential Boundary Conditions 
Both Lagrange multiplier and penalty methods have been 

used for the enforcement of essential boundary conditions. 

Lagrange multiplier method (LMM)

Using Lagrange multiplier method (LMM) to enforce essential 
boundary conditions, the functional )(*I  is obtained as 
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Taking variation i.e. )(*I  of Eq. (27), it reduces to 
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Since 0)(*I  and , 1 , 2 , 3  & 4 are
arbitrary in Eq. (28), a following set of equations is obtained 
using Eq. (7) 
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Penalty method (PM)

Using penalty method (PM) to enforce essential boundary 
conditions, the functional )(*I  is obtained as 
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Taking variation i.e. )(*I  of Eq. (31), it reduces to 
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Since 0)(*I  and  are arbitrary in Eq. (32), a 
following set of equations is obtained using Eq. (7) 
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V. NUMERICAL RESULTS AND DISCUSSION

Two problems i.e. (an ideal flow over a rigid cylinder kept 
between two parallel plates and an ideal flow over a sphere 
kept inside the cylinder) have been chosen for the solution of 
potential flow problems. The governing equation for the first 
problem is Laplacian equation and for the second one is 
Stokesian equation. Four point Gauss quadrature have been 
used to evaluate the integrals over two-dimensional domain 
and nodal integration technique is utilized to enforce the 
essential boundary conditions on the edges. The EFG results 
have obtained using linear basis & cubicspline weight 
function for two sets of nodes whereas FEM results (Chung 
1978) have been obtained for the same sets of nodes. 

A. Potential Flow over a Cylinder 
The model, data and its boundary conditions used for the 

potential flow over a cylinder kept between two parallel plates 
are shown in Fig. 1. The EFG results have been obtained 
using Lagrange multiplier and penalty methods for two sets of 
nodes i.e. 55 and 128 nodes. Table 1 shows a comparison of 
stream function values ( ) obtained by EFG method with 
those obtained by FEM for 55 nodes at few typical locations. 
A similar comparison of EFG results with FEM results is 
presented in Table 2 at the same locations for 128 nodes. The 

maximum percentage difference in stream function values 
obtained by LMM is found to be 2.23% for 55 nodes and 
0.26% for 128 nodes, whereas the maximum percentage 
difference in stream function values obtained by PM is found 
to be 2.23% for 55 nodes and 0.26% for 128 nodes. A 
comparison of velocity values ( u ) obtained by EFG method 
with FEM is presented in Table 3 and Table 4 for 55 and 128 
nodes respectively at the few typical locations. The maximum 
percentage difference in velocity values obtained by LMM is 
found to be 7.67% for 55 nodes and 2.60% for 128 nodes, 
whereas the maximum percentage difference in velocity 
values obtained by PM has been found to be 7.24% for 55 
nodes and 2.60% for 128 nodes. From the results presented in 
Tables 1 4, it can be concluded that the results obtained by 
LMM are almost similar to PM. Moreover, with the increase 
in number of nodes, the EFG results start conversing for both 
LMM and PM. 

The effect of scaling parameter ( maxd ) on EFG results has 
been presented in Fig. 2 at the location ( 1,2 yx ) for 55 
and 128 nodes. A similar comparison of EFG results has been 
presented in Figs. 3, 4 and 5 at the locations ( 5.1,4 yx ),
( 75.0,2 yx ) and ( 375.1,4 yx ) respectively for the 
same set of sets. From the results presented in Figs. 2 5, it is 
observed that the scaling parameter gives acceptable results in 
the range 1.1 2 for both LMM and PM.

The effect of penalty parameter ( ) on EFG results has 
been presented in Fig. 6 at the location ( 1,2 yx ) for 55 
and 128 nodes. A similar comparison of EFG results has been 
presented in Figs. 7, 8 and 9 at the locations ( 5.1,4 yx ),
( 75.0,2 yx ) and ( 375.1,4 yx ) respectively for 55 
and 128 nodes. From Figs. 7 9, it has been noticed that the 
acceptable range of penalty parameter varies from 103 to 1015.

Fig. 1 Potential flow over a cylinder kept between two parallel 
plates
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TABLE I COMPARISON OF STREAM FUNCTION ( ) WITH FEM FOR 55 NODES 
AT THE FEW TYPICAL LOCATIONS

55 nodes Location EFG
x y LMM % diff PM % diff FEM

1.0
1.5
2.0
3.0
3.0
4.0
4.0
4.0

1.5
1.5
1.5
1.5
1.0

1.75
1.5

1.25

1.4907
1.4782
1.4504
1.2906
0.6266
1.5529
1.0969
0.5921

0.25
0.43
0.57
0.62
1.97
0.01
0.98
2.23

1.4908
1.4782
1.4505
1.2907
0.6268
1.5528
1.0969
0.5921

0.26
0.43
0.58
0.63
2.00
0.01
0.98
2.23

1.4870
1.4719
1.4422
1.2826
0.6145
1.5527
1.0863
0.5792

TABLE II COMPARISON OF STREAM FUNCTION ( ) WITH FEM FOR 128
NODES AT THE FEW TYPICAL LOCATIONS

128 nodes Location EFG
x y LMM % diff PM % diff FEM

1.0
1.5
2.0
3.0
3.0
4.0
4.0
4.0

1.5
1.5
1.5
1.5
1.0

1.75
1.5

1.25

1.4897
1.4756
1.4459
1.2839
0.6092
1.5524
1.0889
0.5869

0.17
0.22
0.23
0.03
0.08
0.01
0.13
0.26

1.4897
1.4756
1.4459
1.2839
0.6092
1.5524
1.0889
0.5869

0.17
0.22
0.23
0.03
0.08
0.01
0.13
0.26

1.4872
1.4723
1.4426
1.2835
0.6087
1.5523
1.0875
0.5854

TABLE III COMPARISON OF VELOCITY )(u WITH FEM FOR 55 NODES AT THE 

FEW TYPICAL LOCATIONS

55 nodes Location EFG
x y LMM % diff PM % diff FEM

1.5
1.5
3.0
3.0
4.0
4.0
4.0
4.0

1.75
0.75
1.25
0.75

1.875
1.625
1.375
1.125

1.0436
0.9824
1.3280
0.8694
1.7884
1.8240
2.0192
2.3684

1.18
0.39
0.61
7.67
0.05
2.22
0.46
2.23

1.0436
0.9822
1.3278
0.8734
1.7884
1.8236
2.0192
2.3684

1.18
0.37
0.63
7.24
0.05
2.24
0.46
2.23

1.5
1.5
3.0
3.0
4.0
4.0
4.0
4.0

TABLEIV COMPARISON OF VELOCITY )(u WITH FEM FOR 128 NODES AT THE 

FEW TYPICAL LOCATIONS

128 nodes Location EFG
x y LMM % diff PM % diff FEM

1.5
1.5
3.0
3.0
4.0
4.0
4.0
4.0

1.75
0.75
1.25
0.75

1.875
1.625
1.375
1.125

1.0488
0.9834
1.3494
1.0144
1.7904
1.8540
2.0080
2.3476

0.62
0.33
0.13
2.60
0.02
0.27
0.01
0.25

1.0488
0.9834
1.3494
1.0144
1.7904
1.8540
2.0080
2.3476

0.62
0.33
0.13
2.60
0.02
0.27
0.01
0.25

1.0553
0.9802
1.3477
0.9887
1.7908
1.8591
2.0082
2.3418
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Fig. 2 Effect of scaling parameter on stream function ( ) at 
( )1,2 mymx for two sets of nodes 
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Fig. 3 Effect of scaling parameter on stream function ( ) at 
( )5.1,4 mymx for two sets of nodes 
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Fig. 5 Effect of scaling parameter on velocity ( u ) at 
( )375.1,4 mymx for two sets of nodes 
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Fig. 7 Effect of penalty parameter on stream function ( ) at 
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Fig. 8 Effect of penalty parameter on velocity ( u ) at 
( )75.0,2 mymx for two sets of nodes 
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Fig. 9 Effect of penalty parameter on velocity ( u ) at 
( )375.1,4 mymx for two sets of nodes 

B. Potential Flow over a Sphere 
The model, data and its boundary conditions used for the 

potential flow over a sphere kept in cylinder are shown in Fig. 
10. Lagrange multiplier and penalty methods have used to 
obtain the EFG results for two sets of nodes. Table 5 shows a 
comparison of stream function values ( ) obtained by EFG 
method with those obtained by FEM for 55 nodes at few 
typical locations. A similar comparison of EFG results with 
FEM is presented in Table 6 at the same locations for 128 
nodes. The maximum percentage difference in stream function 
values obtained by LMM is found to be 0.81% for 55 nodes 
and 0.65% for 128 nodes, whereas the maximum percentage 
difference in stream function values obtained by PM is found 
to be 0.83% for 55 nodes and 0.65% for 128 nodes. A 
comparison of velocity values ( u ) obtained by EFG method 
with FEM is presented in Table 7 and Table 8 for 55 and 128 
nodes respectively at the few typical locations. The maximum 
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percentage difference in velocity obtained by LMM is found 
to be 2.34% for 55 nodes and 0.66% for 128 nodes, whereas 
the maximum percentage difference in velocity values 
obtained by PM has been found to be 2.27% for 55 nodes and 
0.66% for 128 nodes. From the results presented in Tables 5, 
6, 7 & 8, it can be concluded that the results obtained by 
LMM are almost same as those obtained by PM. Moreover, 
with the increase in number of nodes, the EFG results start 
conversing for both LMM and PM. 

The effect of scaling parameter ( maxd ) on EFG results has 
been presented in Fig. 11 at the location ( 1,2 yx ) for 55 
and 128 nodes. A similar comparison of EFG results has been 
presented in Fig. 12 at ( 5.1,4 yx ), in Fig. 13 at 
( 75.0,2 yx ) and in Fig. 14 at ( 5.1,4 yx ) for the 
same set of sets. From the results presented in Figs. 11 14, it 
has been observed that the scaling parameter gives acceptable 
results in the range 1.2 1.8 for both LMM and PM. 

The effect of penalty parameter ( ) on EFG results has 
been presented in Fig. 15 at the location ( 1,2 yx ) for 55 
and 128 nodes. A similar comparison of EFG results has been 
presented in Figs. 16, 17 and 18 at the locations 
( 5.1,4 yx ), ( 75.0,2 yx ) and ( 5.1,4 yx )
respectively for 55 and 128 nodes. From Figs. 15 18, it 
has been noticed that the acceptable range of penalty 
parameter varies from 103 to 1016.

Fig. 10 Potential flow over a sphere kept inside the cylinder 

TABLE V COMPARISON OF STREAM FUNCTION ( ) WITH FEM FOR 55 NODES 
AT THE FEW TYPICAL LOCATIONS

55 nodes Location EFG
x y LMM % diff PM % diff FEM

1.0
1.5
2.0
3.0
3.0
4.0
4.0
4.0

1.5
1.5
1.5
1.5
1.0

1.75
1.5

1.25

1.1938
1.1465
1.1169
1.0178
0.3443
1.4152
0.8989
0.4299

0.16
0.16
0.13
0.20
0.55
0.13
0.19
0.81

1.1936
1.1463
1.1167
1.0178
0.3443
1.4150
0.8988
0.4298

0.14
0.14
0.12
0.20
0.55
0.14
0.18
0.83

1.1919
1.1447
1.1154
1.0158
0.3462
1.4170
0.8972
0.4334

TABLE VI COMPARISON OF STREAM FUNCTION ( ) WITH FEM FOR 128
NODES AT THE FEW TYPICAL LOCATIONS

128 nodes Location EFG
x y LMM % diff PM % diff FEM

1.0
1.5
2.0
3.0
3.0
4.0
4.0
4.0

1.5
1.5
1.5
1.5
1.0

1.75
1.5

1.25

1.2028
1.1565
1.1266
1.0248
0.3548
1.4145
0.8947
0.4280

0.06
0.04
0.06
0.03
0.50
0.03
0.11
0.65

1.2026
1.1562
1.1264
1.0247
0.3548
1.4144
0.8946
0.4280

0.04
0.02
0.04
0.02
0.50
0.04
0.12
0.65

1.2021
1.1560
1.1259
1.0245
0.3566
1.4149
0.8957
0.4308

TABLEVII COMPARISON OF VELOCITY ( u ) WITH FEM FOR 55 NODES AT THE 
FEW TYPICAL LOCATIONS

55 nodes Location EFG
x y LMM % diff PM % diff FEM

1.5
1.5
3.0
3.0
4.0
4.0
4.0
4.0

1.75
0.75
1.25
0.75

1.875
1.625
1.375
1.125

0.9756
1.0325
1.0776
0.8290
1.2476
1.2708
1.3644
1.5285

0.18
0.15
0.59
2.34
0.32
0.70
1.13
0.80

0.9756
1.0323
1.0776
0.8296
1.2480
1.2706
1.3644
1.5282

0.18
0.13
0.59
2.27
0.35
0.71
1.13
0.82

0.9774
1.0310
1.0713
0.8489
1.2436
1.2797
1.3492
1.5409

TABLE VIII COMPARISON OF VELOCITY ( u ) WITH FEM FOR 128 NODES AT 
THE FEW TYPICAL LOCATIONS

128 nodes Location EFG
x y LMM % diff PM % diff FEM

1.5
1.5
3.0
3.0
4.0
4.0
4.0
4.0

1.75
0.75
1.25
0.75

1.875
1.625
1.375
1.125

0.9643
1.0123
1.0720
0.8504
1.2491
1.2795
1.3576
1.5218

0.03
0.03
0.30
0.24
0.08
0.10
0.40
0.66

0.9643
1.0120
1.0718
0.8504
1.2493
1.2795
1.3573
1.5218

0.03
0.00
0.28
0.24
0.10
0.10
0.38
0.66

0.9646
1.0120
1.0688
0.8484
1.2481
1.2782
1.3522
1.5319
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Fig. 11 Effect of scaling parameter on stream function ( ) at 
( )1,2 mymx for two sets of nodes 
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Fig. 12 Effect of scaling parameter on stream function ( ) at 
( )5.1,4 mymx for two sets of nodes 
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Fig. 13 Effect of scaling parameter on velocity ( u ) at 
( )75.0,2 mymx for two sets of nodes 
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Fig. 14 Effect of scaling parameter on velocity ( u ) at 
( )5.1,4 mymx for two sets of nodes 
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Fig. 15 Effect of penalty parameter on stream function ( ) at 
( )1,2 mymx for two sets of nodes 
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Fig. 16 Effect of penalty parameter on stream function ( ) at 
( )5.1,4 mymx for two sets of nodes 
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Fig. 17 Effect of penalty parameter on velocity ( u ) at 
( )75.0,2 mymx for two sets of nodes 
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Fig. 18 Effect of penalty parameter on velocity ( u ) at 
( )5.1,4 mymx for two sets of nodes 

VI. CONCLUSIONS

In this paper, meshless element free Galerkin method has 
been successfully extended to solve two-dimensional potential 
flow problems. The essential boundary conditions were 
enforced using penalty and Lagrange multiplier techniques. 
Four point Gauss quadrature were used to evaluate the 
integrals over the two-dimensional domain and nodal 
integration scheme was used for the application of essential 
boundary conditions on the edges. The meshless numerical 
results have been obtained for a sample data and are compared 
with those obtained by finite element method. It was noticed 
that the results obtained by EFG method have been found in 
good agreement with those obtained by finite element method. 
Moreover, with the increase in number of nodes EFG results 
start conversing for both Lagrange multiplier and penalty 
methods. From above analysis, it was also noticed that the 
results obtained by Lagrange multiplier and penalty methods 
are almost similar for potential flow problems. The range of 

scaling ( maxd ) and penalty ( ) parameters has been found to 
be 1.2 maxd 1.8 and 103 1015 respectively. Finally 
it can be concluded that the penalty method can be used in 
fluid flow problems due to its simplicity in applying the 
essential boundary conditions.

NOTATIONS

)(xja = non constant coefficients

% diff = percentage difference of EFG results with FEM 

H = height of computational domain 

L = Length of computational domain 

m  = number of terms in the basis 

n  = number of nodes in the domain of influence 

KN = Lagrange interpolant 

)(xjp = monomial basis function 

r  = normalized radius 

or = radius of sphere/cylinder 

u  = x -component of velocity 

)( Iw x-x = weight function used in MLS approximation 

1w = weighting function used in weighted integral form 

 = penalty parameter 

4321 ,, and = Lagrange multipliers 

 = boundary of the computational domain  

 = two-dimensional computational domain 

= stream function 

)(xh = approximation function for stream function 

)(xI = shape function
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