International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:6, 2011

Globally convergent edge-preserving reconstruction
with contour-line smoothing
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Abstract—The standard approach to image reconstruction is to
stabilize the problem by including an edge-preserving roughness
penalty in addition to faithfulness to the data. However, this method-
ology produces noisy object boundaries and creates a staircase effect.
The existing attempts to favor the formation of smooth contour
lines take the edge field explicitly into account; they either are
computationally expensive or produce disappointing results. In this
paper, we propose to incorporate the smoothness of the edge field in
an implicit way by means of an additional penalty term defined in the
wavelet domain. We also derive an efficient half-quadratic algorithm
to solve the resulting optimization problem, including the case when
the data fidelity term is non-quadratic and the cost function is non-
convex. Numerical experiments show that our technique preserves
edge sharpness while smoothing contour lines; it produces visually
pleasing reconstructions which are quantitatively better than those
obtained without wavelet-domain constraints.

I. INTRODUCTION

E consider the classical inverse problem of recovering
a piecewise-smooth image z* € R¥ from some data
d € RX' of the form

d = H(z") + ey, (1

where H € Lk k/(R) models the acquisition process—
Ly n(R) denotes the set of linear maps from R™ to R —
and where the noise term e,, € RE" is a realization of a zero-
mean random vector 7. Throughout this paper, we make no
distinction between a real-valued image with K pixels and its
vector representation in R

A common estimate of the original image z* is defined as
any global minimum of a cost function U : RX — R which
combines a data-fidelity term ®; with a stabilization term ¥
weighted by a parameter A > 0:

U(z) = O4(z) + AU (). 2)

The justification for this choice lies within the regularization
framework [1] or its Bayesian interpretation [2].

The data-fidelity term accounts for the noise characteristics
and is usually defined by

Q4(w) = Z o (|He(z) — dil), 3)

ke[1,K']
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where the ¢;’s are increasing in Ry ([1, K'] is a shorthand
notation for the set {1,...,K’}). In the Bayesian setting,
this form is obtained under the assumption that the noise
components 7)1, ...,7k are independent and that, for each
k, ni has a density proportional to exp(—a¢x(|t])).

The regularization functional ¥ is intended to promote the
formation of smooth regions separated by edges; it is of the
form

V() = D di([Ru@)]), “)
le[1,L]
where || - || is the fo-norm, R; € Lk ,,(R) (o € N¥), and

the functions ¢; are increasing in R. Most of the time, the
functions ¢, are the same for all [ and {R; : | € [1,L]}
is a set of first-order difference operators (p; = 1) or a
discrete approximation to the gradient (p; = 2). The ;’s are
called potential functions (PFs) in the Bayesian framework.
On the one hand, some authors encourage the use of convex
PFs which ensure the convexity of U and reduce smoothing
in the vicinity of discontinuities under mild conditions [3].
On the other hand, one can be interested in non-convex PFs
which yield sharper edges [4] at the expense of increased
optimization difficulty.

The formulation of the image reconstruction problem as the
minimization of a cost function of the form (2)—(4) has proven
effective, and yet it has two limitations.

1) Noisy contour lines: Regularization functionals of the type
of (4) do not embed prior knowledge on the geometry of
edges and thus tend to produce noisy object boundaries which
are not faithful to the original image. The accepted way to
reduce this effect is to take into account the mutual depen-
dence between neighboring discontinuities by introducing an
explicit edge process, either boolean [5], [6] or continuous
[71, [8]. However, boolean edge processes drastically increase
computational complexity and continuous edge processes give
disappointing results.

2) Staircase effect: Convex edge-preserving PFs are often
similar to the identity on R, but with zero derivative at the
origin to make the regularization term ¥ differentiable. A well-
known example is the approximation idﬁsh to idg, defined by

i} (t) = V62 +12 -3, (5)

where § > 0 is small compared to the expected amplitude
range of the original image. When 1y = idg,, ¥(x) is the
discrete total variation (TV) of z. Despite its popularity, TV
regularization produces blocky images (see, e.g., [9], [10]) and
so do PFs close to the identity. This phenomenon is called the
staircase effect because ramps (affine regions) tend to turn into
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stairs (piecewise-constant regions). The staircase effect is also
observed for non-convex PFs and is more pronounced in this
case (see, e.g., [11]).

In this paper, we propose an improved model constructed by
adding constraints in a multiresolution space. More precisely,
we consider the minimization of an augmented functional V" :
RX — R defined by

V(z) = Ulx) + XA (T o T)(x), (6)

where 7 is a multiresolution directional transform (e.g.,
wavelet, curvelet), ¥ is a smoothness penalty term operating
on the detail coefficients, and A > 0 weights the influence of
. Unlike other edge-continuation methods, this technique in-
corporates the smoothness features of the edge field implicitly
rather than explicitly. Not only does it encourage the formation
of smooth contours while preserving edges, but it also reduces
the staircase effect. We also derive an efficient fixed-point
iteration scheme to minimize V'; the associated convergence
results extend those presented in [12].

The paper is organized as follows. In Section II, we discuss
our approach to the issue of edge continuation. Section III is
devoted to the description of the optimization algorithm along
with its convergence properties. Experimental results are given
in Section IV, followed by concluding remarks.

II. IMPLICIT EDGE CONTINUATION
A. General description

We start with the assumption that the level curves of
the underlying continuous original image (from which z*
is sampled) are smooth except at finitely many points. In a
multiscale directional transform domain, this prior information
is synonymous with clean and strongly oriented detail images.
Consequently, edge continuation can be incorporated into the
reconstruction process by means of an additional penalty term
of the form

V@) = > tu(lDa@)). 7

me[1,M])

where Z denotes the multiresolution decomposition of x, the
D,,’s are discrete directional derivatives operators acting on
the detail coefficients, and the functions 1), are increasing in
R+.

Let 7 € L (R) be the considered multiresolution trans-
form. Our estimate of x* is defined as any global minimum
of the augmented cost function V : RK — R obtained
by combining the contour-line smoothing term W with the
standard cost function U:

V(z) = ®4(x) + AU(2) + A (Vo T)(x)
> on(Ha(x) — dil)
ke[1,K']

+ A ) wi(lRu(@)]) ®)

l1€[1,L]

+X3 Y Gn([(Dmo (@),

me[l,M]

where the positive parameters A and X control the degree of
smoothing in the space domain and in the transformed domain,
respectively. The interest of this approach are that (i) it avoids
the delicate use of explicit-line processes such as proposed
in [5]-[8], (ii) it involves only one extra hyper-parameter
(namely, A), and (iii) the associated increase in optimization
complexity is small if the 1,,,’s are convex.

In the following subsection, we refine the description of
the contour-line smoothing term ¥ in the case of a non-
redundant wavelet transform. We focus on this situation for
computational efficiency reasons and because the construction
is easier when directional selectivity is limited. Yet, the
approach can be applied to the case of a redundant transform
with high directional selectivity (e.g., the curvelet transform)
at the expense of additional design efforts and increased
computational burden.

B. Wavelet-domain edge continuation

Let J € N*. The J-level decomposition of an image = €
RE in an orthonogonal (or biorthogonal) wavelet basis is a
set of subimages

{Ao(z), Aj(x), A (2), Al(x) :j e [0, —1] },

J

where the index j represents the scale, Ag(z) is the ap-
proximation of 2 at resolution 2~ (the resolution of z is
equal to one and its scale is zero), and the detail images
AP (z), AY(x) and Af(z) convey the difference of infor-
mation between .A;(z), the approximation of x at resolution
2777, and the finer approximation A;,1(z) (A} gives the
horizontal high frequencies, that is, the vertical edges, A}
gives the vertical high frequencies, that is, the horizontal
edges, and A;-j gives the high frequencies in both directions).
The wavelet transform 7 can be viewed as the concatenation
of the component functions of the maps Ay € Ly 4-7x(R)
and A]h,A]-V7A]d € L 4i-1x(R) for j € [0,J —1].

Smooth level curves in the original continuous image trans-
late to the fact that the horizontal and vertical detail images
of x* are respectively vertically- and horizontally-oriented.
This suggests to define the contour-line smoothing term U,
as follows:

(ByoT)x) = > <

jefo,7-1]

Yo d(l(DFk 0 AP (@)])

ke[1,K;]

+ i(u.fMD;:koA;)(x)D) ©)

h
ke[1,KP]

where {/; is increasing in R4, the p;’s are positive reals, and
the D;’s and the D]h’s are vertical and horizontal discrete
derivative operators, respectively. The outer summation is over
the scale and the inner summations are over the locations in the
detail images at which the derivatives are computed. A natural
choice for v is the identity on R, as we would ideally like
to preserve both sharp transitions and smooth variations along
the preferential directions of the detail images. However, we
advocate using a differentiable convex function similar to idg,,
but with zero derivative at the origin (an example of which
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Fig. 1. Frequency regions penalized by the wavelet-domain smoothing term
Wy, for J = 2: (a) schematization of the passbands of the involved filtering
operators; (b)—(d) actual 3 dB passbands and frequency responses of Dy’ o.Alh
and Dy o .Ag‘ for biorthogonal spline wavelets and first-order differences.

is given by (5)) so as to facilitate the optimization process
without compromising the quality of the reconstructions. The
weights 11 allow to strengthen the edge continuation effect at
some particular resolution level(s).

From a filtering perspective, the action of \wa is to discard
the solutions that convey significant information in the fre-
quency regions schematized in Fig. 1(a). These regions are
exemplified in Figs. 1(b)—(d) for biorthogonal spline wavelets
with two vanishing moments and when D, and Djh compute
differences between neighboring detail coefficients, as used
in our experiments. It appears that W,, not only favors the
formation of horizontal and vertical edges, but also preserves
diagonal boundaries, which is why we do not add a penalty
on the diagonal subbands Af(z), j € [0,J — 1].

III. DETERMINISTIC RELAXATION

In this section, we focus on the minimization of the aug-
mented cost function V' given in (8) (the proposed wavelet-
domain smoothing term W, defined by (9) is an instance of
(7)). To simplify notation, we make no distinction between a
linear map from R™ to R™ and its n X m matrix representation
and between a vector of R™ and its n X 1 column matrix
representation. For further convenience, we write V' in the
more compact form

Vie) = > ou((He—dpl) + Y 6(lQzl) (10

ke[l,K’] 1e1,L]
where L' = L + M and

{(M/n,Rz) if e[l 1],

0,0) =4 2
(61, 2) (ANu_p, D, T) ifle[L+1,L1].

(11

A. Construction of the algorithm

We assume that each function 6; : Ry — R satisfies the
following groups of conditions.

C1. 0, is increasing and C%, and 6;(0) = 0.
C2. 0; is four times differentiable at zero and ¢, (0) = 0.
C3. The function

o,(t)/t if t>0,

12
0r(0) ift =0, (12)

9; :te R+ — {
is continuous and strictly decreasing, and lim;_, 4 o HIT (t) = 0.

(Conditions C1 are standard in regularized reconstruction, con-
ditions C2 are technical requirements for convergence proofs,
and conditions C3 guarantee edge-preservation properties.) For
the functions ¢y, we define d)L similarly to of, that is, ¢>};(t) =
@ (t)/tif t > 0 and qz&L(O) = ¢}/(0), and we assume that either
C4 or C4' below holds.

C4. The ¢;’s satisfy the same conditions as the 6;’s.
C4’. ¢ (t) = t2 for all k.

For any z € R¥, we define the diagonal matrices
Eolx) = diag(of(|(He — d)il) : k€ [1,K']) (13)
and & (z) = diag(0] (| Quz|) 1, : L€ [1,L]),  (14)

where 1, = (1,...,1) € R" and p; is the number of rows of
Q. The first-order necessary condition for x € R¥X to be a
local minimum of V' (namely VV (z) = 0) writes

(HTEp(2)H + QTEy(2)Q )z = HT Ey(2)d, (15)
=: M(z)

where Q = [QT,..., 9T |7 (ie., Q is the vertical concate-
nation of the matrices Q). For any 2 € R¥, the symmetric
matrix M (z) is positive semidefinite; it is positive definite if
and only if

C5. ker(H) N ker(Q) = {0}.

If C5 is satisfied, (15) suggests the following iterative relax-
ation algorithm starting from a given z(®) € RX:

This fixed-point iteration can be equivalently written as

2+ arg;élnig}( Vo(w, e¢(x(n)),69 (at(n)))> 17

where 1 : REx RE'x RL — R is defined by
Vo(z,d,e) = Z Sp(Ho —d)E + Z || Qiz||3 (18)
ke[1,K’] le[1,L]

and where ey = (eg,1,...,€4,x7) and eg = (€g,1,...,€9,1/)

are the vector-valued functions with components
esk(x) = o (|(Hz—d)k|) and eqi(z) = 0] (| Quz]]). (19)

The map x — Vp(z, 9, €) is a positive definite quadratic form
for all (d,¢), and thus (16) belongs to the class of half-
quadratic algorithms.
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B. Convergence properties

The convergence properties of the proposed optimization
algorithm (16) are given in Theorems 1 and 2 below. The proof
of Theorem 1 uses ideas from [12] (it is omitted because of
space limitations), and Theorem 2 is a corollary of Theorem
1. We denote by = the set of critical points of V, that is,

E = {z eR¥|VV(z) =0} (20)

and we use the following terminology: a sequence (x("))n in
R is said to be generated by (16) if it satisfies (16) for all
n € N; a continuum of R¥ is a connected compact subset of
RE: we call © € E isolated if

da >0, vy e E\{z}, [ly — 2| > «;

and = is said to be discrete if all its points are isolated.

Theorem 1: Assume that conditions C1, C2, C3 and C5 are
satisfied and that either C4 or C4’ holds. Let (z(™)),, be any
sequence generated by (16).

(1) (m("))n has convergent subsequences and all its accumu-
lation points are in =.
() (V(2(™)),, is strictly decreasing if #(?) ¢ =, and there
exists £ € = such that lim,, ., V(2(™) = V(¢).
(1) Either (z(™),, converges or its accumulation points form
a continuum.

(1v) Let £ be an isolated critical point of V. If £ is a minimum
of V, then there exists an open neighborhood €2 of £ such
that (z(™),, converges to ¢ if z(0) € Q.

Theorem 2: Let (z(™),, be any sequence generated by (16)
under the same conditions as in Theorem 1.

(V) If V is strictly convex, then (z(™), converges to the
global minimum of V.

(vi) If Z is discrete, then (x("))n converges to a critical point
of V.

(VD) limy, o0 infeez |2 — €] = 0.

Theorems 1 and 2 characterize the behavior of the algorithm
in three mutually exclusive situations covering all possibilities:
(i) when V is strictly convex, (ii) when V is not strictly
convex and Z is discrete, and (iii) when Z is not discrete.
The corresponding conclusions are the following.

(i) The cost function V' is strictly convex if C5 holds and
if the data penalty functions ¢1,...,¢x  and the PFs
01, ...,0r areincreasing and strictly convex. Therefore,
from (V), convergence to the global minimum always
occurs when the ¢’s and the 6;’s are strictly convex.
(i) If V is not strictly convex, then, from (VI), the algorithm
is guaranteed to converge to a critical point £ € = if =
is discrete. We cannot rigorously exclude the possibility
that £ is a maximum or a saddle point, but this is
very unlikely since any isolated critical point that is a
minimum is an attractor (by (IV)) whereas maxima and
saddle points are unstable (by (II)).
(iii) If Z is not discrete, then, from (1) and (111), either
(x("))n converges or = contains a non-empty contin-
uum. The algorithm also behaves well in the latter

Fig. 2. (a) original image; (b) degraded observation: 7 X 7 uniform blur +
20 dB noise.

situation: by (11) and (vir), (V(z(™)),, converges and
(z(™),, gets arbitrarily close to =Z.

IV. EXPERIMENTS

We consider the reconstruction of the 128 x 128 image x*
shown in Fig. 2(a) from the data d displayed in Fig. 2(b).
The original image has intensity values ranging from 0 to 255
and the data were generated by blurring with a 7 x 7 uniform
mask and adding white Gaussian noise at 20 dB SNR. (The
standard deviation o of the noise is defined via the decibel
level of the signal-to-noise ratio: (SNR)qp = 201og;((ce/0),
where o, is the standard deviation of the exact data H(x*).)
The metrics used to assess reconstruction quality are the mean-
square error (MSE) and the improvement in SNR (ISNR); the
ISNR associated with a solution x is defined by

| 2*|s —d|l
(ISNR)as = 20%og10 <|| s — mu)’ @b
where y|s: denotes the restriction of y to the lattice S’
supporting d (in image deblurring, the solution space R¥ and
the data space R¥ "are supported by two rectangular lattices
S and S’ such that S’ C S).

The estimates of the original image are obtained by min-
imizing the augmented cost function V' given in (8) with
the contour-line smoothing term defined by (9), using the
algorithm presented in Section III. Since the components of
the noise term are i.i.d. normal random variables, we take
¢ (t) = t2 for all k. However, our optimization algorithm
works well for any set of data penalty functions satisfying C4,
which includes in particular the standard smooth approxima-
tion to the identity idfh (5) and the continuously differentiable
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functions stemming from robust statistics [13]—hence our
approach can deal with impulse or “salt-and-pepper” noise
and with data corrupted by outliers.

Each operator R; in the spatial-domain smoothing term ¥
computes a discrete approximation to the gradient at pixel [.
The PFs 1); are the same for all /; we consider the convex
smooth approximation to the identity, idfh, defined by (5) and
the non-convex PF

YiL(t) = In(1+ (t/6)?). (22)

The parameter J associated with idf?br is set to 0.1 so that
() approximates the discrete TV of z. In the case of ¢{}; ,
we take § = 10, and thus ¥ acts as a quadratic regularizer
for gradient magnitudes up to 3—4 and as an edge detector for
gradient magnitudes greater than 10. B

As regards the wavelet-domain smoothing term ¥y, we use
the biorthogonal spline wavelet transform with two vanishing
moments and two resolution levels. We take ¢ = id]‘fh with
d = 0.1 and we set (uo,p1) = (1,2). The D;”’s compute
differences between vertically adjacent coefficients in the
horizontal detail images, and the Djh’s compute differences
between horizontally adjacent coefficients in the vertical detail
images.

Convex case: Fig. 3(a) shows the best reconstruction ob-
tained when using ¢; = id]%+1 without wavelet-domain smooth-
ing. The corresponding value of the space-domain smoothing
parameter A is 1.0, the MSE is 208.0 and the ISNR is
5.70 dB. The edges are noisy, not to say visually unpleasant,
and the staircase effect is clearly visible at the bottom of
the image. By comparison, Fig. 3(b) displays the best solu-
tion achieved by adding the wavelet-domain smoothing term
(A = 0.8). There are noticeable improvements: the image
contours are smoother without penalizing object boundaries,
and the “patchy” appearance due to the staircase effect is
softened. Quantitatively, the MSE is 180.4 and the ISNR is
6.32dB. Fig. 4 displays the ISNR as a function of the wavelet-
domain smoothing parameter A. Predictably, too large values
of A give over-smooth solutions. Yet, the values of A that
improve reconstruction quality cover a relatively large interval
O <A <b.7).

Non-convex case: Figs. 5 and 6 show the estimates obtained
with ¢, = ¥ for (A, A) = (12.6,0) and (A, \) = (12.6,2.2).
The particular value A = 12.6 was purposely selected to obtain
a slightly under-regularized reconstruction in the absence of
wavelet-domain smoothing (the optimal value is 25.2), and
A = 2.2 is the optimal setting associated with A = 12.6.
The MSE and ISNR are 484.2 and 2.03 dB for the standard
regularization approach, and 201.8 and 5.83 dB using our
model. The improvements are even more striking than in
the convex case: the edge artifacts are almost completely
removed and the contour plots show substantial reduction of
the staircase effect. As seen in Fig. 7, the evolution of the
ISNR as a function of A is reasonably smooth, which indicates
that our optimization algorithm behaves well in the non-convex
case. Improvements in reconstruction quality are observed for
a wider range of values of A than in the convex case (up to
A = 200). Furthermore, even though A is not optimal (the best
reconstruction achieved without wavelet-domain smoothing

()
Fig. 3. Reconstruction using the space-domain convex PF idﬂ%lz (a) without

+
contour-line smoothing (MSE = 208.0, ISNR = 5.70dB); (b) with contour-
line smoothing (MSE = 180.4, ISNR = 6.32 dB).

6.32 ¢
6.2

6.0

ISNR (dB)

5.8

5.7 ——————————— no contour-line smoothing

1072 10! 100 A

Fig. 4. ISNR as a function of the wavelet-domain smoothing parameter by
when using the space-domain convex PF id%1 (A is set to its optimal value
in terms of ISNR without contour-line smoothing).

has an MSE of 375.8 and an ISNR of 3.13 dB), our model
outperforms optimal standard regularization over a significant
range of values of A (0.12 < A\ < 60).

V. CONCLUSION

We introduced the idea of “implicitly interacting” discon-
tinuities by means of an additional penalty term operating
on the detail images in the wavelet domain; the associated
increase in optimization complexity is small compared to the
use of an explicit line-processes. We also provided an efficient
half-quadratic optimization algorithm which converges even
when the faithfulness to the data is non-quadratic and the cost
function is non-convex.

Compared to standard edge-preserving regularization, our
model preserves boundary sharpness while smoothing contour
lines. Aside from producing visually more pleasing reconstruc-
tions, this behavior is desirable for subsequent feature extrac-
tion and segmentation tasks; another benefit is the reduction of
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Fig. 5. Reconstruction using the space-domain non-convex PF ¢11{(£ without
contour-line smoothing (MSE = 484.2, ISNR = 2.03 dB).

g

=

Fig. 6. Reconstruction using the space-domain non-convex PF w%{OL and
contour-line smoothing (MSE = 201.8, ISNR = 5.83 dB).

the staircase effect. The only drawback is the introduction of
the additional hyper-parameter A which controls the degree of
smoothing in the wavelet domain. However, our experiments
show that the range of values of A that lead to an improvement
in reconstruction quality is quite large, and preliminary results
suggest that A can be selected by tracking the value of the
space-domain regularizer .
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