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Abstract—In this paper, we present two new one-step iterative
methods based on Thiele’s continued fraction for solving nonlinear
equations. By applying the truncated Thiele’s continued fraction
twice, the iterative methods are obtained respectively. Analysis of
convergence shows that the new methods are fourth-order convergent.
Numerical tests verifying the theory are given and based on the
methods, two new one-step iterations are developed.
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I. INTRODUCTION

S
OLVING non-linear equations with computers is one of

the most important problems in numerical analysis. In this

paper, we construct two iterative methods to find a simple root

of a nonlinear equation f(x) = 0, where f : X → R, X ⊂ R,

is a scalar function.

Expanding f(x) into a Taylor series about the point xk gives

f(x) = f(xk) + (x− xk)f
′(xk) +

1

2!
(x− xk)

2f ′′(xk) + · · · .

If f ′(xk) 6= 0, we can obtain an approximate expression of

the equation f(x) = 0 by substituting the linear part of above

expansion for the function f(x). Denote by xk+1 the root of

the equation f(xk) + (x− xk)f
′(xk) = 0. Then we have

xk+1 = xk −
f(xk)

f ′(xk)
. (1)

This is the Newton’s method (NM) [1], [2], [3] for root-finding

of nonlinear equation, which converges quadratically.

Halley’s method (HM) in [10], [11], [12] is well-known for

its order of convergence three. The method can be written as

below

xk+1 = xk −
2f(xk)f

′(xk)

2f ′2(xk)− f(xk)f ′′(xk)
. (2)

It is easy to see that Halley’s method need to compute second

derivative of the function f(x).
The iterative methods with higher-order convergence are

presented in some literature [13], [14], [15]. In [14], Abbas-

bandy gives an iterative method, called Abbasbandy’s method

(AM) provisionally, which is expressed as

xk+1 = xk−
f(xk)

f ′(xk)
−
f2(xk)f

′′(xk)

2f ′3(xk)
−
f3(xk)f

′′′(xk)

6f ′4(xk)
. (3)
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It is pointed out that AM has nearly supercubic convergence.

One can see easily that AM requires the evaluation of second

and third derivatives of the function f(x). Kou et al present

some higher-order methods in [13], [15], [16], [17], but most

of which are two-step methods.

In this paper, we use the Thiele’s continued fraction to

construct two new one-step iterative methods. It is shown

that the new methods are at least fourth-order convergent.

Numerical results demonstrate that the iteration schemes are

efficient and superior to Newton’s scheme, Halley’s scheme

and Abbasbandy’s method.

II. THE NEW METHOD

Given a set of real points G = {xi|xi ∈ R, i = 0, 1, 2, · · ·}
and bn ∈ R, n = 0, 1, 2, · · ·.

Definition 1 A continued fraction of the following form

b0 +
x− x0

b1
+

x− x1

b2
+ · · ·+

x− xn−1

bn
+ · · ·

is called Thiele’s continued fraction (see [4], [5]).

Definition 2 The following continued fraction

b0 +
x− x0

b1
+

x− x1

b2
+ · · ·+

x− xn−1

bn

is called the n-th truncated Thiele’s continued fraction (see

[4], [5]).

Viscovatov Algorithm Suppose that the function f(x) has

n-th derivative in the interval X . If f(x) can be expanded into

the following Thiele’s continued fraction

f(x) = b0 +
x− xk

b1
+

x− xk

b2
+ · · ·+

x− xk

bn
+ · · · ,

then the coefficients bn, n = 0, 1, 2, · · ·, can be computed by

means of the Viscovatov algorithm as below





b0 = C
(0)

0 ,

b1 = 1/C
(0)

1 ,

C
(1)

i = −C
(0)

i+1
/C

(0)

1 , i ≥ 1,

bl = C
(l−2)

1 /C
(l−1)

1 , l ≥ 2,

C
(l)
i = C

(l−2)

i+1
− blC

(l−1)

i+1
, i ≥ 1, l ≥ 2,

where C
(0)

i = f(i)
(xk)

i!
, i = 0, 1, 2, · · · (see [4], [5]).

Now, we give two new iterative schemes as follows.

• (A) Replacing f(x) with the second truncated Thiele’s

continued fraction in f(x) = 0 yields

b0 +
x− xk

b1
+

x− xk

b2
= 0.
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Solving the above equation gives

x− xk = −
b0b1b2
b0 + b2

. (4)

Furthermore, substituting f(x) with third truncated

Thiele’s continued fraction yields the following equation

b0 +
x− xk

b1
+

x− xk

b2
+

x− xk

b3
= 0. (5)

From (4) and (5), we have

b0 +
x− xk

b1
+

x− xk

b2
+

− b0b1b2
b0+b2

b3
= 0. (6)

Let xk+1 denote the root of the equation (6). We have

xk+1 = xk −
b0b1(b2b3(b0 + b2)− b0b1b2)

(b0 + b2)2b3 − b0b1b2
. (7)

Using Viscovatov algorithm, one gets

b0 = f(xk), (8)

b1 =
1

f ′(xk)
, (9)

b2 = −
2(f ′(xk))

2

f ′′(xk)
, (10)

b3 =
3(f ′′(xk))

2

2(f ′(xk))2f ′′′(xk)− 3f ′(xk)(f ′′(xk))2
. (11)

Substituting (8), (9), (10) and (11) into (7), we obtain

xk+1 = xk − P1(xk)

Q1(xk)
. (12)

This is a new one-step iterative scheme based on Thiele’s

continued fraction, which is called Thiele’s method (T-

M1). Therefore the corresponding iteration function for

TM1 can be defined by

ϕ1(x) = x− P1(x)

Q1(x)
, (13)

where P1(x) = 4f(x)f ′(x)(3f ′2(x)f ′′(x) −
3f(x)f ′′2(x) + f(x)f ′(x)f ′′′(x)) and Q1(x) =
12f ′4(x)f ′′(x)−18f(x)f ′2(x)f ′′2(x)+3f2(x)f ′′3(x)+
4f(x)f ′3(x)f ′′′(x).

• (B) Replacing f(x) with the first truncated Thiele’s

continued fraction in f(x) = 0 gives

b0 +
x− xk

b1
= 0.

Solving the above equation yields

x− xk = −b0b1. (14)

Then, substituting (14) into (5) gets the following equa-

tion

b0 +
x− xk

b1
+

x− xk

b2
+

−b0b1
b3

= 0. (15)

Let xk+1 denote the root of the equation (15). We have

xk+1 = xk −
b0b1(b2b3 − b0b1)

(b0 + b2)b3 − b0b1
. (16)

Substituting (8), (9), (10) and (11) into (16), we obtain

xk+1 = xk − P2(xk)

Q2(xk)
. (17)

This is another new one-step iterative scheme based on

Thiele’s continued fraction, which is also called Thiele’s

method (TM2). Therefore the corresponding iteration

function for TM2 can be defined by

ϕ2(x) = x− P2(x)

Q2(x)
, (18)

where P2(x) = f(x)(6f ′2(x)f ′′(x) − 3f(x)f ′′2(x) +
2f(x)f ′(x)f ′′′(x)) and Q2(x) = 2f ′(x)(3f ′2(x)f ′′(x)−
3f(x)f ′′2(x) + f(x)f ′(x)f ′′′(x)).

III. CONVERGENCE ANALYSIS

Theorem 1 Suppose that Q1(x) = 12f ′4(x)f ′′(x) −
18f(x)f ′2(x)f ′′2(x) + 3f2(x)f ′′3(x) + 4f(x)f ′3(x)f ′′′(x).
Let x∗ be a root of the equation f(x) = 0. Then we have

Case (a): x∗ is a single root of the equation f(x) = 0 if

Q1(x
∗) 6= 0.

Case (b): x∗ is a multiple root of the equation f(x) = 0 if

Q1(x
∗) = 0.

Proof Suppose n is the multiplicity of the root x∗. Then

f(x) can be rewritten as the form

f(x) = (x− x∗)nh(x), (19)

where h(x∗) 6= 0. Computing first and second derivatives of

(19), we have

f ′(x) = (x− x∗)nh′(x) + n(x− x∗)n−1h(x), (20)

f ′′(x) = (x− x∗)nh′′(x) + 2n(x− x∗)n−1h′(x)
+ n(n− 1)(x− x∗)(n−2)h(x).

(21)

Substituting (19), (20) and (21) into Q1(x) and noticing that

f(x∗) = 0, we get the following conclusions.

Case (a): Q1(x
∗) = 24h4(x∗)h′(x∗) 6= 0 for n = 1, i.e., x∗

is a single root of the equation f(x) = 0.

Case (b): Q1(x
∗) = 0 for n ≥ 2, that is, x∗ is a multiple root

of the equation f(x) = 0.

The proof is completed.

Theorem 2 Suppose that Q1(x) = 12f ′4(x)f ′′(x) −
18f(x)f ′2(x)f ′′2(x) + 3f2(x)f ′′3(x) + 4f(x)f ′3(x)f ′′′(x)
6= 0 for an arbitrary x ∈ [a, b] ⊂ X . Then the equation

f(x) = 0 has at most one single root in the interval [a, b].
Proof According to Theorem 1, it is obvious that f(x) = 0

has only single roots if any. Let

ϕ(x) = f(x)e

∫
x

a

3f(t)f′′3
(t)−18f′2

(t)f′′2
(t)+4f′3

(t)f′′′
(t)

12f′3(t)f′′(t)
dt
.
(22)

The root-finding problem f(x) = 0 can clearly be transformed

into the equivalent problem ϕ(x) = 0. Computing first

derivative of (22), we have

ϕ′(x) = K(x)e

∫
x

a

3f(t)f′′3
(t)−18f′2

(t)f′′2
(t)+4f′3

(t)f′′′
(t)

12f′3(t)f′′(t)
dt
,

where K(x) = Q1(x)

12f ′3(x)f ′′(x)
. It follows from Q1(x) 6= 0 that

ϕ′(x) 6= 0.
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Assume that the equation f(x) = 0 has two different roots in

the interval [a, b]. Then by Rolle mean-value theorem, at least

a point ξ ∈ [a, b] exists such that f ′(ξ) = 0 and ϕ′(ξ) = 0,

which contradicts with the fact that ϕ′(x) 6= 0 in the interval

[a, b]. Therefore there is a unique single root in the interval

[a, b]. Theorem 2 is proved.

Lamma 1 Suppose that x∗ is a root of the equation

f(x) = x − ϕ(x) = 0, where ϕ(x) = x − Φ(f(x)) and Φ
is a continuous function such that Φ(0) = 0. Let ϕ(x) have

m-th derivative in the neighborhood of x∗, where m ≥ 2. And

assume that ϕ(x) satisfies

ϕ(j)(x∗) = 0, j = 1, 2, · · · ,m− 1, ϕ(m)(x∗) 6= 0.

Then the convergence order of fixed-point iteration xk =
ϕ(xk−1) is at least m.

Proof For the details of the proof, see the literature [1],

[2].

Theorem 3 Suppose that x∗ is a root of the equation

f(x) = 0 and let f ′(x∗) 6= 0. If f(x) is sufficiently smooth in

the neighborhood of x∗, then the convergence order of Thiele’s

method (TM1) given in (12) is at least four.

Proof Using the iterative function defined by (13), one

can easily verify that

ϕ′

1(x
∗) = 0,

ϕ′′

1(x
∗) = 0,

ϕ′′′

1 (x∗) = 0

and

ϕ
(4)

1 (x∗) =
3f ′′(x∗)f (4)(x∗)− 4(f ′′′(x∗))2

3f ′(x∗)f ′′(x∗)
6= 0.

Therefore, the convergence order of TM1 given in (12) is at

least four according to Lemma 1.

Similarly, we give three theorems as below:

Theorem 4 Suppose that Q2(x) = 2f ′(x)(3f ′2(x)f ′′(x)−
3f(x)f ′′2(x) + f(x)f ′(x)f ′′′(x)). Let x∗ be a root of the

equation f(x) = 0. Then we have

Case (a): x∗ is a single root of the equation f(x) = 0 if

Q2(x
∗) 6= 0.

Case (b): x∗ is a multiple root of the equation f(x) = 0 if

Q2(x
∗) = 0.

Theorem 5 Suppose that Q2(x) = 2f ′(x)(3f ′2(x)f ′′(x)−
3f(x)f ′′2(x) + f(x)f ′(x)f ′′′(x)) 6= 0 for an arbitrary x ∈
[a, b] ⊂ X . Then the equation f(x) = 0 has at most one

single root in the interval [a, b].
Theorem 6 Suppose that x∗ is a root of the equation f(x) =

0 and let f ′(x∗) 6= 0. If f(x) is sufficiently smooth in the

neighborhood of x∗, then the convergence order of Thiele’s

method (TM2) given in (17) is at least four.

IV. NUMERICAL EXAMPLES

Now, we employ the new methods (TM1 and TM2) given in

(12) and (17) to solve some non-linear equations and compare

it with Newton’s method (NM), Halley’s method (HM) and

Abbasbandy’s method (AM). All computations are carried out

with double arithmetic precision. All problems are solved with

a given initial value x0. Displayed in Table 1 are the number of

iterations (k). We choose |f(xk)| < 10−14 as stopping criteria

so that the iterative process is terminated when the criteria is

satisfied. x∗ is the root of equation. We use the following

functions, most of which are the same as in [6], [7], [8], [9],

[16], [17].

f1(x) = x3 + 4x2 − 25, x∗ = 2.035268481182.

f2(x) = x2 − ex − 3x+ 2, x∗ = 0.257530285439.

f3(x) = x3 − 10, 2.154434690032.

f4(x) = cos(x)− x, x∗ = 0.739085133215.

f5(x) = sin2(x)− x2 + 1, x∗ = 1.404491648215.

f6(x) = x2 + sin(x/5)− 1/4, x∗ = 0.409992017989.

f7(x) = ex − 4x2, x∗ = 0.714805912363.

f8(x) = e−x + cos(x), x∗ = 1.746139530408.

f9(x) = x cosx+ sinx− 1, x∗ = 0.555968430719.

f10(x) = ex sinx− ln(x2 + 1), x∗ = 3.029169668013.

TABLE I
COMPARISON OF NM, HM, AM AND TM

kf(x) x0
NM HM AM TM1 TM2

f1(x) x0 = −0.9 29 10 9 9 6
x0 = 3.5 6 4 5 3 3

f2(x) x0 = 0.5 4 3 3 3 3
x0 = −1 5 3 3 3 3

f3(x) x0 = 1 7 4 5 3 4
x0 = −0.5 10 8 16 5 4

f4(x) x0 = 1 4 3 3 2 2
x0 = 0.5 4 3 3 2 2

f5(x) x0 = 3.5 6 4 4 4 4
x0 = 1.2 5 3 3 2 3

f6(x) x0 = 1 6 4 4 3 3
x0 = 0.2 5 3 4 2 3

f7(x) x0 = 1 5 3 3 2 2
x0 = 0.4 6 4 6 3 3

f8(x) x0 = 2.4 5 4 4 3 3
x0 = 0.5 5 4 4 3 4

f9(x) x0 = 0 5 4 4 3 3
x0 = −0.4 5 4 6 3 3

f10(x) x0 = 3.5 6 4 4 3 3
x0 = 3 4 3 3 2 2
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