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Abstract—To compute dynamic characteristics of nonlinear 

viscoelastic springs with elastic structures having huge 
degree-of-freedom, Yamaguchi proposed a new fast numerical method 
using finite element method [1]-[2]. In this method, restoring forces of 
the springs are expressed using power series of their elongation. In the 
expression, nonlinear hysteresis damping is introduced. In this 
expression, nonlinear complex spring constants are introduced. Finite 
element for the nonlinear spring having complex coefficients is 
expressed and is connected to the elastic structures modeled by linear 
solid finite element. Further, to save computational time, the discrete 
equations in physical coordinate are transformed into the nonlinear 
ordinary coupled equations using normal coordinate corresponding to 
linear natural modes. In this report, the proposed method is applied to 
simulation for impact responses of a viscoelastic shock absorber with 
an elastic structure (an S-shaped structure) by colliding with a 
concentrated mass. The concentrated mass has initial velocities and 
collides with the shock absorber. Accelerations of the elastic structure 
and the concentrated mass are measured using Levitation Mass 
Method proposed by Fujii [3]. The calculated accelerations from the 
proposed FEM, corresponds to the experimental ones. Moreover, 
using this method, we also investigate dynamic errors of the S-shaped 
force transducer due to elastic mode in the S-shaped structure. 
 

Keywords—Transient response, Finite Element analysis, 
Numerical analysis. Viscoelastic shock absorber, Force transducer. 

I. INTRODUCTION 
O reduce impacts from precision instruments and so on, 
viscoelastic shock absorbers are used. These viscoelastic 

absorbers sometimes have nonlinearity between their restoring 
forces and deformations under relatively large load. Moreover, 
their restoring forces sometimes have nonlinearity in hysteresis. 
Therefore, it is of importance to clarify nonlinear dynamic 
properties of viscoelastic absorbers with elastic structures 
under impact load.  

This paper deals with numerical analysis of impact responses 
for a viscoelastic shock absorber connected with an elastic 
structure (an S-shaped structure) using a fast finite element 
method proposed by Yamaguchi [1]-[2]. In this analysis, the 
viscoelastic absorber is modeled by using a nonlinear complex 
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spring.  The restoring force of the spring is expressed as power 
series of its elongation. The restoring force also includes 
nonlinear hysteresis damping. Therefore, complex spring 
constants are introduced for not only the linear component but 
also nonlinear components of the restoring force. Finite 
element for the nonlinear complex spring is expressed and is 
connected to an elastic structure modeled by linear solid finite 
elements.  

The discrete equations of this system in physical coordinate 
are transformed into the nonlinear ordinary coupled equations 
using normal coordinate corresponding to linear natural modes. 
The transformed equations are integrated numerically in 
extremely small degree-of-freedom. 

 In this paper, we apply our proposed FEM to examine 
dynamic errors in an S-shaped force transducer when transient 
responses of a viscoelastic shock absorber are measured. The 
transient responses are obtained when a concentrated mass (i.e. 
a rigid levitated block) is collided with the absorber. The elastic 
structure in this study is an S-shaped structure, which is a part 
of the force transducer as shown in Fig.1.  

To investigate the dynamic errors in the transducer, the 
reference force is measured using Levitation Mass Method 
proposed by Fujii [3]. The experimental dynamic errors [3] are 
compared with the calculated ones from our proposed FEM. 

II.  EXPERIMENTAL SYSTEM [3] 
Fig. 1 shows the outline of the experimental system carried 

out by Fujii [3]. To evaluate mechanical responses of a 
viscoelastic shock absorber, an S-shaped force transducer is 
connected with the absorber. A mass levitated by linear 
pneumatic bearing is collided with the absorber in y direction, 
and transient responses are measured using the force transducer. 
The S-shaped structure in the force transducer has two thin 
portions as twin beams near the central hole as shown in Fig.2. 
These two beams play a role of a pair of parallel springs in y 
direction. When external load is applied in y direction, strains 
are measured using strain gauges fabricated in the S-shaped 
structure. Using the strains, forces transF  of the transient 
responses are measured.  

To verify precision of the measured force transF , Fujii also 
measured the velocity 1v  of the levitated mass using an 
interferometer as shown in Fig.1. By differentiating the 
measured velocity 1v , acceleration 1a of the levitated mass is 
obtained. Further, the reference force 11aMFmass = is identified 
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using the acceleration 1a  and mass kgM 6526.21 =  of the 
levitated mass. Fujii compared between the reference force 

 

 
Fig. 1 Outline of experimental system [3] 

 

 
Fig. 2 Photo of the S-shaped force transducer [3] 

 

 
Fig. 3 Comparison between the measured force transF   from the 

S-shaped transducer and the reference force transF  using Levitation 
Mass Method [3] 

 
 
 
 

 
Fig. 4 Comparison between the measured dynamic error =ΔF  

masstrans FF − and the estimated error using acceleration 22aM  of 
the S-shaped structure [3] 

 

 
Fig. 5 Simulation model of the viscoelastic shock absorber 

and the S-shaped force transducer [3] 
 

massF  and the force transF  obtained from the S-shaped 
transducer as shown in Fig.3. And he showed that there exist 
small dynamic errors in the measured force transF of the 
S-shaped force transducer. Fig.4 shows a time history of the 
discrepancy masstrans FFF −=Δ between the measured force 

transF by the transducer and the reference force massF . Further, 
Fujii found out that the discrepancy masstrans FFF −=Δ  

corresponds to the force calculated by 22aM . 2a  is the 

acceleration of the S-shaped structure and 2M  is the half of the 
mass for the S-shaped structure. Using 22aMF ≅Δ , Fujii 
proposed a correction method of the measured force transF . To 
obtain correction force FΔ , he added an accelerometer to the 
S-shaped structure as shown Fig.1.  The measured acceleration 

2a is utilized to correct the measured force transF  in real time. 
In this paper, to investigate the correction force FΔ (i.e. the 

discrepancy between transF  and  massF  ) in detail, numerical 
simulations for this experimental system are performed.  

We also use the experimental results to verify our proposed 
numerical method using FEA (i.e. Finite Element Analysis) 
with a nonlinear complex spring.  

The detail conditions of this experimental system are added 
as follows. The experimental system has the levitated mass (i.e. 
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a levitated rigid block), which can smoothly travel along a 
guide way in y direction due to a pneumatic linear bearing as 
shown in Fig.1. The block is levitated due to air film (thickness 
is 8 (μm)) at the interfaces between the block and the guide. 
Pressure at the interfaces is self-controlled by orifice effect to 
maintain the thickness of the air film. Owing to this system, the 
block can move toward the y-direction under extremely low 
friction. An extension rod is connected with the levitated mass. 
These parts have a role of moving parts with initial velocity 0v  
given by a hand. The moving parts collide with the small strip 
of the viscoelastic shock absorber attached with one end of the 
S-shaped structure. This experimental system is proposed and 
named as Levitation Mass method by Fujii [4]-[6]. In the 
vicinity of this end of the transducer, the accelerometer is 
fabricated. Another end of the transducer is fixed on the rigid 
base. A gel is filled in the central hole of the S-shaped structure 
to obtain damping effect as shown in Fig.2. 

III. NUMERICAL PROCEDURE 
Fig. 5 represents the FEM model for the S-shaped structure 

in the force transducer to evaluate. In this figure, the S-shaped 
structure is modeled as an elastic body using finite elements, 
and the levitated mass is modeled by a concentrated mass. The 
viscoelastic shock absorber is modeled by a nonlinear spring 
with nonlinear damping. Origin of this model is set on the 
position where the levitated mass begins to contact with the 
viscoelastic absorber. An initial velocity 0v = -180 (mm/sec) in 
y-direction is given to the concentrated mass (i.e. the levitated 
mass). 

A. Discretized Equation for the Viscoelastic Absorber 
A small strip of the viscoelastic absorber is modeled by using 

a concentrated nonlinear spring with nonlinear hysteresis.  To 
represent the nonlinear hysteresis, we propose to introduce a 
nonlinear complex spring.  As shown in Fig.5, it is assumed that 
the nonlinear complex spring with viscoelasticity has principal 
elastic axis in y  direction. We denote displacement as yUα  in 
y  direction at the nodal point α  where one end of the 
nonlinear complex spring (i.e. the viscoelastic absorber) is 
connected with the S-shaped force transducer. yUβ is the 
displacement at the nodal point β  on another end of the 
nonlinear complex spring. The levitated block is connected at 
the nodal point β . Nonlinear function using power series is 
given for the nodal force of the spring  at the point α . 
Therefore, restoring force of the spring is expressed as =yRα

)(1 yy UU βαγ − + 2)(2 yy UU βαγ − + 3)(3 yy UU βαγ −  using the relative 
displacement yUα - yUβ  between yUα  and yUβ . Further, linear 
hysteresis damping is introduced as )1( 111 sjηγγ += . 1γ  is the 
real part of 1γ , and  1sη  is material loss factor of the 
concentrated spring. j  is imaginary unit. Moreover, nonlinear 
hysteresis damping is also introduced as )1( 222 sjηγγ += , 

)1( 333 sjηγγ += in the same manner. 2γ  and 3γ  are the real 

part of 2γ and 3γ ,respectively. 2sη and 3sη  are nonlinear 
components of material loss factor for the concentrated spring, 
respectively. For the nonlinear complex spring, nonlinear 
spring constants have complex quantity to represent changes of 
hysteresis due to the deformation of the spring. These relations 
can be rewritten in the matrix form as: 
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where T

yy RRr }0,,0,0,,0{}{ βα=  is nodal force vector at the 
nodes α and β . T

zyxzyxs UUUUUUU },,,,{}{ , βββααα=  is nodal 
displacement vector at the nodes. ][ 1γ  is complex stiffness 
matrix involving only linear term of the restoring force. }{d  is 
vector containing nonlinear terms of the restoring force. 

For the later computations, we use nonlinear complex spring 
constants as 

1γ =1.37×  104 (N/m), 2γ =0.00 (N/m2), 3γ =2. 35 
× 1011 (N/m3), 1sη =0.300, 2sη =0.000, 3sη =0.300. 

B. Discretized Equations of the S-Shaped Force Transducer 
Filled with the Gel 

We assumed that equations of motion for the elastic structure 
of the S-shaped force transducer are expressed under 
infinitesimal deformation using a conventional three 
dimensional finite element method. To add damping effects, a 
viscoelastic gel is filled in the central hole of the force 
transducer as shown in Fig.2. Thus, we also create the three 
dimensional finite elements for the gel as depicted in Fig.5. 
Viscoelasticity of the gel is taken into account using complex 
modulus of elasticity )1( ggg jEE η+= . The real part gE  of the 

gE  stands for storage modulus of elasticity while gη  is 

material loss factor of the gel. For the transducer made by 
aluminum, complex modulus of elasticity )1( fff jEE η+= is 

also considered. By superposing all elements related to the 
S-shaped transducer and the gel, the following equations are 
obtained.  

 
}{}]{[}]{[ sssss fuKuM =+                                                         (2) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:11, 2012

2308

 

 

where, ][ sM , ][ sK , }{ sf  and }{ su are mass matrix, complex 
stiffness matrix, nodal force vector and displacement vector for 
the S-shaped transducer and the gel, respectively. Isoparametric 
hexahedral elements with non- conforming modes are mainly 
used for the three dimensional finite elements. 
 

C. Discrete Equation for Combined System between the 
S-Shaped Force Transducer with the Gel and the Viscoelastic 
Absorber with the Levitated Block 

The restoring force }{r  in Eq. (1) is added to the nodal force 
at the ends of the nonlinear complex spring on the nodes α and 
β  .  On the node α , the nonlinear complex spring (i.e. the 
viscoelastic absorber) is connected with the S-shaped force 
transducer. On the node β , the  spring is attached with the 
levitated mass modeled as a concentrated mass. And then the 
following expression in global system can be obtained: 

 
}{}ˆ{}]{[}]{[ fduKuM =++                                                   (3) 

 
where, }{u , ][M , ][K  and }{ f are displacement vector, mass 
matrix, complex stiffness matrix and external force vector in 
global system, respectively. }ˆ{d  is modified from }{d to have 
the identical vector size to degree- of- freedom of the Eq.(3). 

 

D. Approximate Computation of Modal Damping 
To calculate linear modal damping (i.e. modal loss factor), 

we consider the following complex eigenvalue problem by 
neglecting the terms of the non-linear restoring force and the 
external force.  

}){)1(][])[1()(( )(
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1
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i jKMj φηηω∑
=

+++−  }0{= (4) 

In this equation, superscript (i)  stands for the i-th 
eigenmode. eη  includes 1sη , fη  and gη . 2)( )( iω  is the real 

part of complex eigenvalue. }{ )( iφ is the complex eigenvector 

and ηtot
(i)  is the modal loss factor. Next, we introduce the 

following eβ  using the maximum value maxη  among the 

elements' material loss factors eη , ),...3,2,1( maxee = . 

1,/ max ≤= eee βηηβ                                                              (5) 
On assumption of 1max <<η , solutions of Eq.(4) are 

expanded using a small parameter maxημ j= : 
( ) ( ) ( ) 2 ( )
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In these equations, under conditions ofβe ≤1 and 1max <<η , 
we can obtain  . Thus,   is regarded as small 
parameters like  

In the equations, {φ(i)}0 , {φ ( i)}1 , 2
)( }{ iφ  and (ω0

( i))2 , 

(ω2
( i))2 , (ω4

( i))2  and )(
1

iη , η3
(i) , )(

5
iη  have real quantities. 

Substituting Eqs.(6)-(8) into Eq. (4) yields approximate 
equations using  and μ1 orders. The following equation can 
be derived by arranging the approximate equations: 
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According to these expressions, modal loss factor ηtot
( i)  can be 

calculated using material loss factors eη  of each element , 
share )(i

eS  of strain energy of each element to total strain energy. 
The parameter )(i

eeSη  corresponds to damping contribution of 
each element   to the entire system.  

E. Conversion from the Discretized Equation in Physical 
Coordinate to the Nonlinear Equation in Normal Coordinate 

It takes huge amount of computational time to calculate 
Eq.(3) in physical coordinate, directly. In this section, a 
numerical manipulation is proposed to decrease the 
degree-of-freedom for the discretized equations of motion. 

First, we assume that linear natural modes }{ )(iφ of vibration 
can be approximated to 0

)( }{ iφ . Next, by introducing normal 
coordinates 

ib~  corresponding to the linear natural modes

0
)( }{ iφ , the nodal displacement vector can be expressed using 

both 0
)( }{ iφ  and ib~ as follows. 

 

0
)( }{~}{ i

i
i

bu φ∑=                                                                 (10) 

By substitution of Eq.(10) into Eq.(3),  the following 
nonlinear ordinary simultaneous equations as to normal 
coordinates ib~ can be obtained as: 
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In Eq.(11), )(

0
iω  represents the i-th natural frequency. )(i

totη  
is the i-th modal loss factor. Since Eq.(11) has much smaller 
degree-of-freedom than that of Eq.(3), we can save 
computational time drastically. In Eq.(11), subscript t  
following a comma stands for partial differentiation with 
respect to time t . iyαφ  is the y-component of the eigenmode 

0
)( }{ iφ at the connected node α  between the S-shaped force 

transducer and the viscoelastic shock absorber. 

ηmaxβe << 1 μβe
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F. Nonlinear Impact Response  
We give an initial velocity to the levitated mass connected 

with the viscoelastic shock absorber. And nonlinear impact 
responses of the S-shaped force transducer with the viscoelastic 
absorber are calculated by applying Runge-Kutta-Gill method 
to Eq.(11). 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. Verification of the Proposed Numerical Method  
First, we verify our proposed numerical method using Finite 

Element Analysis with nonlinear complex spring. Fig.6 shows 
time histories of the measured and calculated reference forces 

massF  using the levitated mass. These reference forces are 
obtained by 11aMFmass = , where 1a is the measured or 
calculated acceleration.  In this graph, the origin of time is set 
when the levitated mass begins to collide with the viscoelastic 
shock absorber connected with the S-shaped structure. From 
Fig.6, the calculated reference force is consistent with the 
measured one. We can say that the reference force can be 
simulated using our proposed FEA for the transient response of 
the viscoelastic shock absorber.  

Next, we compute dynamic errors of the S-shaped force 
transducer. Fujii found out in the previous paper [3] that the 
dynamic errors FΔ  of the transducer have relationship as

22aMF ≅Δ . 2a is the measured acceleration from the 
accelerometer fabricated on the S-shaped structure. And 2M  is 

  

Fig. 6 Comparison of the reference force using the levitated mass 
between calculated data and measured data [3] 

 
 

 Fig. 7 Comparison o f the acceleration at the S-shaped structure 
between calculated data and measured data [3] 

 
the half of the mass for the S-shaped structure. Therefore, to 
investigate the dynamic errors, we simulate the acceleration 2a
on the S-shaped structure. 

Fig. 7 (b) shows the calculated time history of the 
acceleration 2a for the S-shaped structure in comparison with 
an experimental one in Fig.7 (a). As illustrated in Fig. 8: 

 

 
Fig. 8 Elastic mode of the S-shaped structure in y-direction appeared 

in dynamic errors of the transducer 
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The calculated curve in Fig.7 (b) using nonlinear complex 
spring for the viscoelastic shock absorber is consistent with 
experimental data in Fig.7 (a). In Fig. 7, we can find two typical 
periods both in the experimental and calculated accelerations at 
the S-shaped structure. The short period 0.0025(S) corresponds 
to the eigen frequency of the elastic mode for the S-shaped 
structure in y-direction as shown in Fig.8.  

 

 
Fig. 9 Comparison of the velocity at the S-shaped structure between 

calculated data and measured data [3] 
 
As can be seen this figure, a half part of the S-shaped 

structure moves in this eigenmode, while the other half part of 
the S-shaped structure is at rest. Therefore, in this mode, the 
dynamic motion of the half part for the S-shaped structure is 
dominant. This fact leads that the correction method proposed 
by Fujii [3] using the acceleration 2a and the half mass 2M of 
the S-shaped structure is proper. 

The long period 0.013 (s) is related with the subharmonic 
component of order 1/7 for this elastic mode. Moreover, the 
long period is also related with the superharmonic component 
of order seven for the translation mode of the concentrated 
mass (i.e. the levitated mass) in y-direction. These relations can 
be regarded as internal resonance. This is caused by the 
nonlinearity of the viscoelastic shock absorber.  

Additionally, Fig.9 shows the measured and calculated 
velocities at the S-shaped structure. Both results also agree 
well. 

B. Effect of Material Properties for Gel on Dynamic Errors 
of S-Shaped Force Transducer  

Next, we investigate influences of the material properties of 
the gel filled in the central hole on the dynamic errors of the 
S-shaped structure. For the previous simulations in Figs. 6-9, 
we use the material loss factor gη =0.700 (-) and the storage 

modulus of elasticity gE =0.00400 (GPa) for the gel. Under 

this condition, we obtain the modal loss factor ηtot
( i)  =0.0496 (-) 

for the dominant eigen mode on the dynamic errors (i.e. the 

elastic mode of the S-shaped structure in y-direction) as shown 
in Fig.8. According to Eq. (9), to increase modal damping η tot

( i)  
using the gel, we have to increase not only the material loss 
factor gη  of the gel but also the share of the strain energy of the 

gel to the total strain energy in this system.  
 

 
Fig. 10 Effects of elasticity 

gE of the gel on modal loss factors ηtot
( i)  

Fig. 11 Effects of elasticity 
gE of the gel on dynamic errors of 

the force transducer 
 

 
Fig. 12 Effects of elasticity 

gE  of the gel on the reference force 

 
Fig.10 shows the relation between the modal loss factors ηtot

( i)  
in this system and the storage modulus of elasticity gE  for the 

gel. In this graph, the constant value gη =0.700 (-) is given for 

the material loss factor of the gel. Thus, the change of the modal 
loss factor η tot

( i)  in Fig.10 is caused by the change of the share of 
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the strain energy in the gel. As shown in Fig.10, the modal loss 
factor η tot

( i)  has the local maximum value η tot
( i) =0.318 (-) near 

gE =0.0900 (GPa). Using the local maximum value, we 

compute a time history of the acceleration 2a for the S-shaped 
structure as shown in Fig.11. The component of the short period 
for the mode decreases due to the increment of η tot

( i) . This leads 
to less dynamic errors FΔ  in the measured force using the 
force transducer. Fig.12 shows changes of the reference forces 

massF due to change of the modal loss factor from the initial 

value η tot
( i)  =0.0496 (-) to the local maximum value η tot

( i)=0.318 
(-). There exist significant changes of the reference force massF
due to the increase of the storage modulus of elasticity gE  for 

the gel. Therefore, the measured force using the force 
transducer is affected if we give too large storage modulus of 
elasticity 

gE  for the gel. Thus, this result reveals that it is 

undesirable to use too large storage modulus of elasticity
gE for 

precision measurement of the force, even though we obtain less 
dynamic errors due to the elastic mode in the S-shaped 
transducer.  

Fig.13 shows time histories of the reference force massF  
when the storage modulus of elasticity 

gE  changes from 
gE

=0.00 100 (GPa) to 0.00900 (GPa). These values of 
gE  are less 

than the maximal value 
gE =0.0900 (GPa) in Fig.12. The 

corresponding modal loss factor ηtot
( i)  changes from ηtot

( i)

=0.0277 (-) to η tot
( i)=0.0928 (-) as 

gE  increases. As shown in 

Fig.13, the curves of the reference force massF  never change 
under this condition. From these results, there are no influences 
on the reference force when the storage modulus of elasticity 
for the gel is less than 0.00900 (GPa). Using the same 
conditions for the storage modulus of elasticity

gE , we also 

compute the time histories of acceleration 2a for the S-shaped 

structure as shown in Fig.14. The acceleration 2a decreases as 

gE  increases from 
gE =0.00100 (GPa) to 0.00900 (GPa). From 

these results, it is possible to reduce the dynamic errors due to 
the acceleration 2a  of the S-shaped structure without 

influences on the  
Fig. 13 Effects of elasticity 

gE  of the gel on the reference force 

massF  

reference force massF , when we set the storage modulus of 
elasticity

gE =0.00900 (GPa) for the gel. 

On the other hand, the modal loss factors ηtot
( i)  are also written 

in Fig.10 for the mode related with the long period in the 
dynamic errors in Fig.7. As shown in Fig.10, ηtot

( i)  for this mode 
(i.e. the   mode of the levitated mass and the spring of the 
absorber) maintains a constant value, though the storage 
modulus of elasticity changes. The constant value corresponds 
to the material loss factor 1sη =0.300 for the viscoelastic shock 
absorber. Thus, there are small influences of storage modulus 
of elasticity

gE  on these modal loss factors η tot
( i)  for this mode. 

This implies that effects of the gel are small on the component 
of the long period in dynamic errors. 

According to Eq. (9), the modal loss factor ηtot
( i)  also 

increases as the material loss factor gη of the gel increases.  

Fig. 14 Effects of elasticity 
gE of the gel on dynamic errors of 

the force transducer 

 
Fig. 15 Effects of material loss factor gη  of the gel on the reference 

force massF  

Fig. 16 Effects of material loss factor gη of the gel on dynamic 

errors of the force transducer 
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When the material loss factor gη  of the gel changes from gη
=0.0100 (-) to gη =0.700 (-) under the constant storage modulus 

of elasticity 
gE =0.00400 (GPa), Figs.15 and 16 show the 

calculated reference force massF and the calculated acceleration 

2a  of the S-shaped structure (i.e. dynamic error), respectively. 
The corresponding modal loss factor ηtot

( i)  changes from ηtot
( i)

=0.0144 (-) to ηtot
( i) =0.0496 (-).  As shown in Fig.16, the 

dynamic error decreases as the material loss factor gη of the gel 

increases. On the other hand, the reference force massF does not 
change though the material loss factor gη  of the gel increases 

as shown in Fig.15. These results imply that the material loss 
factor gη  of the gel can reduce the dynamic error of the force 

transducer without the influences on the reference force massF . 

V.  CONCLUSION 
By applying the numerical method proposed by Yamaguchi, 

simulation was carried out for impact responses of a 
viscoelastic shock absorber with an S-shaped elastic structure. 
This fast computational method using nonlinear finite element 
method is aimed for nonlinear impact responses of elastic 
structures connected with nonlinear concentrated springs with 
nonlinear hysteresis. 

The restoring force of the spring is assumed to express as 
power series of elongation with nonlinear hysteresis damping. 
In this expression, nonlinear complex spring constants are 
introduced. Finite element for the nonlinear complex spring is 
expressed and is connected to elastic structures modeled by 
linear solid finite elements. Further, the discretized equations in 
physical coordinate are transformed into the nonlinear ordinary 
coupled equations using normal coordinate corresponding to 
linear natural modes. The transformed equations were 
integrated numerically. This transformation can save 
computational time drastically. 

In this report, the proposed method is applied to simulation 
for impact responses of a viscoelastic shock absorber with an 
elastic structure (an S-shaped structure) by colliding with a 
concentrated mass. The concentrated mass has initial velocities 
and collides with the shock absorber. Accelerations of the 
elastic structure and the concentrated mass are measured using 
Levitation Mass Method proposed by Fujii [3]. The calculated 
accelerations from the proposed FEM, corresponds to the 
experimental ones.  

Moreover, using this method, we also investigate dynamic 
errors of the S-shaped force transducer due to elastic mode in 
the S-shaped structure.  
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