
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

490

Abstract—Software crisis refers to the situation in which the

developers are not able to complete the projects within time and
budget constraints and moreover these overscheduled and over
budget projects are of low quality as well. Several methodologies
have been adopted form time to time to overcome this situation and
now in the focus is component based software engineering. In this
approach, emphasis is on reuse of already existing software artifacts.
But the results can not be achieved just by preaching the principles;
they need to be practiced as well. This paper highlights some of the
very basic elements of this approach, which has to be in place to get
the desired goals of high quality, low cost with shorter time-to-
market software products.

Keywords—Component Model, Software Components, Software
Repository, Process Models.

I. INTRODUCTION
OMPONENT based software development (CBSD) refers
to the development of software systems making

considerable use of software components. CBSD can help the
software industry realize productivity and quality gains similar
to those achieved in hardware and manufacturing industry.
Instead of building software systems from scratch, they are
assembled from already developed components. This
approach facilitates the development of software within time
and budget constraints. It also results in quality and
productivity gains[1].

Component-based development has a lot of promises. But it
is not a silver bullet. For achieving all the gains, CBSD
approach needs to be followed religiously. We cannot get
along with the scheme of things used in the traditional way of
development of software. There is significant difference in
component based software development and traditional
software development approach. Technical standardization is
necessary, and a method suited to CBD has to be followed.

The effective use of COTS components demands a new
way of doing business: new skills, knowledge, and abilities;

Manuscript received March 30, 2007.
Kuljit Kaur is Lecturer in department of Computer Science and

Engineering, Guru Nanak Dev University, Amritsar, Punjab, India (phone:
011-0183-5089481; e-mail: kuljitchahal@yahoo.com).

Parminder Kaur is a Lecturer in the department of Computer Science and
Engineering, Guru Nanak Dev Universsity, Amritsar, Punjab, India.

Jaspreet Bedi is a lecturer in department of computer science and
engineering, Guru Nanak Dev niversity, Amritsar, Punjab, India.

Hardepp Singh is Professor and Head, depart of Computer Science and
Engineering, Guru Nanak Dev University, Amritsar, Punjab, India.

changed roles and responsibilities; and different processes–
and these changes are not happening [2]. Developing a
component based software system is a complex activity and
for achieving a cost-effective, time bound and high quality
solution using this approach, it is required that at least the
following elements [3] are in place:

1. Software Components repository
2. A Component Model.
3. Component Based Development Process.

In this paper, an elaborative study regarding these elements
is carried out in the following sections.

II. THE SOFTWARE COMPONENTS REPOSITORY
In contrast to the traditional approach of developing

software products, component based software development
approach is based on integration of already existing software
components. So to start with, there should be an available set
of software components that can be reused. This Software
components repository can be housed by in-house built
software components or Software components that can be
acquired from third party vendors (known as Commercial off
the Shelf Components-COTS). Before developing software
application for a problem domain, it is necessary to identify
the software components that can be used in multiple
applications in that domain. So domain engineering is a key
part of the component based development process. This
repository of components (also called software reuse library)
has to be maintained so that desired components can be
retrieved when required. So proper component classification,
browsing and, retrieval techniques need to be incorporated in
the repository management process. Some of the existing
software reuse libraries can be taken as a reference point such
as Comprehensive Approach to Reusable Defense Software
(CARDS), Defense Software Repository system (DSRS),
Asset Source for Software Engineering Technology
(ASSET)[13].

III. COMPONENT MODELS
Standards play a big role in formalizing the development

process for component based applications. In the absence of
standards, even when the required software components are in
hand, they can not be used because the chosen parts do not fit
together [4]. There must be a backplane in which the
components can exist and communicate. There must also be a
component model that can support the assembly and

Towards a Suitable and Systematic Approach
for Component Based Software Development

Kuljit Kaur, Parminder Kaur, Jaspreet Bedi, and Hardeep Singh

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

491

interaction of software components. A component model is
the backbone of a component based system which provides
basic infrastructure for component based composition,
communication, deployment and evolution [3}. The
cornerstone of any CBD methodology is its underlying
component model which defines what components are, how
they can be constructed, how they can be assembled. At
present several component models exist such as EJB,
CORBA, .NET, Koala, SOFA, Kobra, Architecture
Description languages, UML 2.0 [5]. Conformance to a
component model can help in the following ways:

A. Independent Extensions

Legacy software lacks flexibility whereas components can
be extended and a component model prescribes exactly how
extensions are made. Extended components can be even
deployed in a running application. The component models and
frameworks ensure that that extensions do not have
unexpected interactions. Thus extensions may be
independently developed and deployed.

B. Components for Third Party Composition

Component models prescribe the necessary standards to
ensure tat independently developed components may be
deployed in a common environment and any kind of
unanticipated interactions will not be experienced.

C. Reduced Time to Market

Use of components that confirm to prescribed standards
also reduces the time it takes to design, develop and deploy
systems .Time is reduced because key architectural decisions
have already been made.

D. Improved Reliability

Component models can be designed to support those quality
attributes that are most important in application areas.
Component models specify design rules that are uniformly
enforced over all components deployed in a component
model. This uniformity means that various global properties
such as scalability, security and so forth can be predicted for
the system as a whole.

The key contribution of component models is the
enforcement of architectural principles. By forcing component
instances to perform certain tasks, the component model can
enforce principles. The use of component models can be an
appropriate way of component development. If components
are developed independently, it is highly unlikely that they
will be able to cooperate usefully.

IV. COMPONENT BASED SOFTWARE DEVELOPMENT PROCESS
The development cycle of a component based system is

different from those of the traditional models such as
waterfall, iterative, prototyping and incremental models [6].
CBSD clearly signal a paradigm shift. Building software using
pre-existing components is different from typical custom

development in the sense that the components are not
designed to meet a specific - project requirements. COTS
components are built to satisfy the needs of a market segment.
Therefore, an understanding of the components’ functionality
and its evolution over time must be used to modify the user-
requirements. Major points of difference of the traditional
development and component based development approach are
listed below:

A. User Centered

Traditional approaches tend to be developer centered.
Although users may initiate requests for applications to be
developed, developers control the development process. In the
beginning of the development process, users participate to
provide information and then later to verify that the end
product meets their requirements. But users are not involved
in the design process itself. The CBSD paradigm, on the other
hand, is more users centered. With the availability of
components supporting the general functions (such as User
Interface, data storage and retrieval) in the commercial
component market, a user does not have to depend upon a
development team to develop and maintain a new system. The
users may combine their application domain knowledge with
fairly limited technical knowledge to produce useful systems.

B. Reuse- Based

Component based software development paradigm focuses
on reuse of already existing software components using a
systematic reuse approach. The reuse process is interwoven
into the thread of development process. Pre-built components
are stored in the component repository. Requirements of the
system are identified and then negotiated depending on the
availability of the reusable software components in the
market. The design is also based on existing components. Of
course this means that there may be requirements
compromises. The design may be less efficient than a special
purpose design. However the lower costs of development,
more rapid system delivery and increased system reliability
should compensate for this [7].

C. Different Processes

Component based software engineering addresses
challenges and problems similar to those encountered
elsewhere in software engineering. Many of the methods,
tools and principles of software engineering used in other
types of system will be used in the same or a similar way in
CBSE. But however, CBSE focuses on system development
from two different perspectives. It distinguishes the process
of component development from that of system development
using components. There is a difference in requirements and
business ideas in these two cases and different approaches are
necessary [8].

The two approaches are:
1) Developing reusable components – the producer

perspective
2) Developing with reusable components – the

consumer perspective

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

492

This paper focuses on the consumer perspective only,
assuming that “high quality” reusable components exist either
in house or can be procured from outside.

D. Design Optimization v/s Design Selection

All software design problems exhibit optimization and
selection decisions. Systems developed primarily from
custom-built software are dominated by optimization
decisions, while systems designed from pre-existing software
components are dominated by selection decisions.

Optimization decisions arise when there are too many
design options to itemize. In custom-made systems, the
designer is free to partition functionality into components of
arbitrary scope, to define component interfaces in arbitrary
ways, and to select arbitrary mechanisms to support
interaction of components. This freedom means there is an
infinite number of design options, hence optimization.

Selection decisions arise when there is a bounded and
usually small set of a priori design options. In this situation,
the fundamental design problem is to select the option that
best satisfies specific design qualities. In systems built from
pre-existing software components, the designer is not free to
define the scope of components, their interfaces, and their
interaction mechanisms, as these decisions have already been
made by the component developer. This greatly restricted
design freedom leads to the primacy of selection decisions.

E. Role of Architecture

Traditionally software architecture is focused on in the
early design phase. But at the time of execution, the
application reduces to a monolithic piece of software.
Architecture of the software application is concealed. Whereas
in component based software development approach,
application is assembled from components, which remain
recognizable even at the time of application execution. So
software architecture remains in the picture (an important
factor) during the execution phase as well.

F. Early Integration

From a component based perspective the process of system
design involves the selection of components, together with an
analysis of which components can be acquired from external
sources and which ones must be developed from scratch. In
contrast to other kinds of systems in where system integration
is often the tail end of an implementation effort, in component
based systems determining how to integrate components is
often the primary task performed by designers.

V. PROCESS MODELS FOR COMPONENT BASED DEVELOPMENT
Component Based development can be architecture driven

or component driven, that depends upon whether the software
architecture is decided first and then components are selected
or components are selected first and then architecture is
decided to suit this selection. The former approach is more
appropriate for component based development as it will result
in high levels of reuse and it also conforms to the international
standards laid down for reuse based processes.

1) The process model for CBSD as proposed by [10] supports
the former approach. In component Based software
engineering, Component Based development occurs in parallel
with domain engineering. Domain Engineering performs the
work required to establish a set of software components that
can be reused by the software engineer. Once the architecture
has been established, it must be populated by components that
are available in the component repository. If required
components are not available in the repository, they can be
acquired from third party vendors.

2) Sommerville [7] proposes a reuse driven process for
application development as shown in Fig. 1. Rather than
design then search for reusable components, the reusable
components are first searched. In this way the design is based
on the components that are available. The system
requirements may have to be modified in accordance with the
behavior of the available components. This may end in
requirement compromises also.

Fig. 1 Software process using reusable artifacts

3) The V-model for component based development approach
– In the V-model [6] adopted for component based software
development [11], throughout the life cycle of the software
product (spanning development and maintenance phases), a
component pool is available from which components can be
selected in the initial phases and to which components can be
added in the later phases (newly developed components for an
application). The process starts with requirement engineering,
where the requirement engineers try to find, from the
component pool, the components that can fulfill the
requirements. If such components are not available, then the
requirements are possibly negotiated and modified in order to
use the available software components.

Fig. 2 (a) The adopted V-model [11] and (b) The Y-Model [12]

Outline system
requirements

Search For
Reusable
Components

Modify req
according to
available
components

Search for
reusable
components

Design system
using reusable
components

Architectural
design

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

493

4) The Y-model –
The Y-model [12] also emphasizes the use of existing
component archives. To this component archive, components
can be added after the domain engineering exercise, and any
new set of components developed for an application as some
new requirement arises for which no suitable component is
available in the archive. In the initial phases, components can
be selected and adapted from this repository.

5) The EPIC approach – The Evolutionary Process for
Integrating COTS [2] is a modified form of Rational Unified
Process (RUP) [6]. To accommodate the continuous change
induced by the COTS marketplace, EPIC uses a risk-based
spiral development process. EPIC users manage the gathering
of information from the marketplace and the stakeholders and
refine that information through analysis and negotiation into a
coherent, emerging solution that is embodied in a series of
executable representations through the life of the project.
Stakeholders actively participate in EPIC as key players in
day-to-day negotiations that also continue through the life of
the solution [6]. EPIC evolved from a U.S. Air Force need to
meet the challenges of building, fielding, and supporting COTS-
based business solutions.

The four phases are, as in RUP, Inception, Elaboration,
Construction, and Transition.

1. The goal of the Inception Phase is to achieve concurrence
among affected stakeholders on the life-cycle objectives for
the project. The Inception Phase establishes feasibility
through the business case that shows that one or more
candidate solutions exist.
2. The goal of the Elaboration Phase is to achieve sufficient
stability of the architecture and requirements; to select and
acquire components; and to mitigate risks so that a single,
high-fidelity solution can be identified with predictable cost
and schedule.
3. The goal of the Construction Phase is to achieve a
production-quality release ready for its user community. The
selected solution is prepared for fielding.

4. The goal of the Transition Phase is to transition the solution
to its users. The selected solution is fielded to the user
community and supported.

The four EPIC phases are repeated for each solution. Thus

across the life of a large or complex project, many solutions–
often overlapping–are created and retired in response to new
technology, new components, and new operational needs.

In general following activities are to be performed in the
life cycle of component based software [13]. The way each
activity is performed depends upon a number of factors such
like availability of resources, commitment of the developer’s
team as well as the clients.

Find – The process of finding components defines how to

document and create repositories of components. Finding
components is an activity in the domain engineering phase.
Domain engineers mine families of similar products to
document core components.

Select – specific components from the component repository
are selected for use.
Adapt – Adaptation is the process of customizing selected
components to satisfy user requirements in the new context in
which the component is used.
Create – in component based software development, it might
happen that selected components do not fit into the application
requirements even after adaptation. In such situations the
component integrator has to develop and create new
components for this specific application.
Compose – Composition is an assembly and integration
process. The effort of integration depends on the nature of the
component to be integrated.
Replace – The replacement process is related to product
maintenance. Component systems evolve over time to fix
errors in components and add new functionalities. The old
version of the component is swapped out and a new version is
swapped in, this is often referred as component upgrade.

Current trends in component based design point toward an
increased focus on this type of development approach because
it enforces a structured approach to component based
development that is expected to deliver same kind of benefits
obtained as a result of use of structured programming
techniques in computer programs.

VI. CONCLUSION
No Doubt in the future, the demand for custom applications

will still be there. However, given an increase in domain or
application specific component models, component driven
architectural design will be preferred. It is crucial to follow a
proper reuse based process and to use the building blocks
(software components) that confirm to standards (component
models), in order to come out of the software crisis.

REFERENCES
[1] Szyperski, C, Component Software: Beyond Object-Oriented

Programming, Addison Wesley, 1999.
[2] Cecilia Albert and Lisa Brownsword, Evolutionary Process for

Integrating COTS-Based Systems (EPIC): An overview, Technical
Report CMU/SEI-2002-TR-009 ESC-TR-2002-009, July, 2002.

[3] Jerry Zeyu Gao, Jacob Tsao, Ye Wu, Testing and Quality Assurance for
Component Based Software, Artech House Publishers, 2003.

[4] David Garlan et al, “Architecural Mismatch: Why Reuse is so Hard”,
IEEE software, 1995.

[5] Kung –Kiu and Zheng Wang, “A survey of Software Component
Models”, School of computer Science, University of Manchester, April,
2005, available at http://www.cs.man.ac.uk/preprints/index.htm.

[6] Ian graham, Object Oriented Methods, - Principles and practice, 3rd
Edition, Addison Wesley, Object Technology Series.

[7] Ian Sommervilee, Software Engineering, 7th Edition, Pearson Education.
[8] Ivica Crnkovic. and M. Larson, 2002, Building Reliable Component

Based Software Systems, Artech House, Boston,
[9] IEEE, IEEE standard for information technology – Software life cycle

Processes – Reuse processes (IEEE 1517-1999), Piscataway, NJ, 1999.
[10] R.S.Pressman, Software Engineering – A Practioners Approach, Fourth

Edition, McGraw Hill International Series.
[11] Ivica Crnkovic, component Based Development Process and Component

Life Cycle, 27th International Conference on Information Technology
Interfaces, IEEE, Caretat, Croatia, 2005.

[12] Luiz Fernado Caprtz, Y: A New software development life cycle Model,
Journal of Computer Science 1(1):76-82, © Science Publications, 2005.

[13] Hafedh Mili et al, Reuse Based Software Engineering, Techniques,
organization and Controls, John Wiley and Sons, 2002.

