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Helicopter System
Santosh Kr. Choudhary

Abstract—In this article, LQR based PID controller design for
3DOF helicopter system is investigated. The 3-DOF helicopter
system is a benchmark laboratory model having strongly nonlinear
characteristics and unstable dynamics which make the control of such
system a challenging task. This article first presents the mathematical
model of the 3DOF helicopter system and then illustrates the basic
idea and technical formulation for controller design. The paper
explains the simple approach for the approximation of PID design
parameters from the LQR controller gain matrix. The simulation
results show that the investigated controller has both static and
dynamic performance, therefore the stability and the quick control
effect can be obtained simultaneously for the 3DOF helicopter
system.

Keywords—3DOF helicopter system, PID controller, LQR
controller, modeling, simulation.

I. INTRODUCTION

THE 3-DOF helicopter system is a benchmark laboratory
model for theoretical study on helicopter controls

and verification of the control algorithm. The helicopter
is a complex mechanical system with strongly nonlinear
characteristics and has open-loop unstable dynamics which
make the control of such system a challenging task. The
purpose of the control is to regulate desired pitch and roll
positions as well as angular travel speed of the prototype
3DOF helicopter model. The 3-DOF helicopter system (see

Fig. 1. 3-DOF Helicopter System [1]

Fig. 1) consists of base upon which an arm is mounted. The
arm carries the helicopter body on one end and a balance block
on the other end. The arm can roll about an pitch axis as well
as swivel about a travel axis. Sensors that are mounted on
these axes allow measuring the roll and travel of the arm. The
helicopter body is mounted at the end of the arm and is free to
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swivel about a pitch axis. The pitch angle is measured via third
sensor. Two motors with propellers mounted on the helicopter
body can generate a force proportional to the voltage applied
to the motors.The force generated by the propellers can cause
the helicopter body to lift off the ground. The purpose of
the balance block (counterweight) is to reduce the power
requirements on the motors.

The 3DOF helicopter system control involves linearization
of the nonlinear dynamics about a set of pre-selected
equilibrium conditions within the flight envelope. Based on
the obtained linear models, classical single input single-output
(SISO) techniques with a PID controller are widely used
[2]–[5], etc. In another control approach, optimal tracking
strategy using Linear quadratic regulator (LQR) control for
helicopter model was proposed in [6]. Fuzzy and PID
combined control used for an unmanned helicopter was
discussed in [7]. Conventional PID controller’s tuning methods
seem inadequate for achieving better control performance
because of bad tuning of parameters therefore these situations
give strong motivation to LQR based PID control strategy for
helicopter model.

In this article, LQR based PID controller design for 3DOF
helicopter system is investigated. The paper begins with
mathematical modeling of the 3DOF helicopter system and
then controller design methodology is briefly discussed to
deal with both performance and stability for the system.
The design problem is then dealt with finding a LQR
controller gain matrix, which gives a control solution.
Finally an approximation method is suggested for finding the
design parameters for PID controller from the obtained LQR
controller gain matrix. The whole procedure involves selecting
several parameters and the computation is simple, so it serves
as a PID tuning method for 3DOF helicopter system. The
simulation results show that the method is easy to use and the
resulting PID controller has good time-domain performance
and robustness of the system.

II, we present a mathematical modelling of helicopter system.
Section III illustrates basic ideas and technical formulations
for controller design. Section IV discuss about the results and
simulation analysis and Section V concludes the paper with
some remarks and conclusion.

II. MATHEMATICAL MODELLING OF HELICOPTER SYSTEM
DYNAMICS

Understanding the flight behavior has become essential to
ensure control. Helicopter models are now well established [8],576104 India, (e-mail: santosh.kumar@manipal.edu).

The rest of the article is organized as follows: In Section
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[9] within the reach of many fields (academic and commercial
purposes). Indeed, the ability to describe and explain the
various phenomena involved and interacting in the helicopter
dynamics has a large impact in practice. The aim of modeling
is then to evaluate and control as soon as possible.

A. Pitch Axis Model

Fig. 2. Schematic Diagram for Pitch Axis Model

Consider the diagram in Fig. 2. Assuming the roll is zero,
then the pitch axis dynamics of 3-DOF helicopter system can
be modelled as:

Jeε̈ = l1Fh − l1G

= l1(F1 + F2)− l1G

= Kcl1(V1 + V2)− Tg

⇒ Jeε̈ = Kcl1Vs − Tg (1)

where ε is the pitch angle, Je = mhl
2
1 +mbl

2
2 is the moment

of inertia of the system about pitch axis, mb is the mass of
balance blocks, mh is the total mass of two propeller motor,
V1 and V2 are the voltages applied to the front and back motors
resulting in force F1 and F2, Kc is the force constant of the
motor-propeller combination, l1 is the distance from the pivot
point to the propeller motor, l2 is the distance from the pivot
point to the balance blocks, Tg is the effective gravitational
torque due to the mass differential G about the pitch axis.

B. Roll Axis Model

Fig. 3. Schematic Diagram for Roll Axis Model

Consider the diagram in Fig. 3. If the force generated by the
left motor is higher than the force generated by the right motor,
the helicopter body will be overturned clockwise. The roll axis
dynamics of 3-DOF helicopter system can be modelled as:

Jpp̈ = F1lp − F2lp

= Kclp(V1 − V2)

⇒ Jpp̈ = KclpVd (2)

where p is the roll angle, Jp is the moment of inertia of the
system about the roll axis, lp is the distance from the roll axis
to either motor.

C. Travel Axis Model

Fig. 4. Schematic Diagram for Travel Axis Model

When the roll axis is tilted and overturned, the horizontal
component of G will cause a torque about that the travel
axis which results in an acceleration about the travel axis.
Assume the body has roll up by an angle p as shown in Fig.
4. The travel axis dynamics of 3-DOF helicopter system can
be modelled as:

Jtṙ = −G sin(p)l1

⇒ Jtṙ = −Kp sin(p)l1 (3)

where Jt is the moment of inertia of the system about the travel
axis, r is the travel rate in rad/sec, Kp is the force required
to maintain the helicopter in flight and is approximately G,
sin(p) is the trigonometric sin of the roll angle.

Remark 1: If the roll angle is zero, no force is transmitted
along the travel axis. A positive roll causes a negative
acceleration in the travel direction.

Remark 2: To design a speed controller for the travel axis,
we consider the model (3) but for a position controller, we
need to consider the travel differential equation as:Jtr̈ =
−Kp sin(p)l1.

D. State Space Model of 3 DOF Helicopter system
The simplified state space dynamic model of 3 DOF

helicopter system relies on the following assumptions:
• All angles are sufficiently small so that the linear

approximation is valid.
• The coupling dynamics is neglected.
• The gravitational torque Tg is neglected.
• The frictions forces are neglected.

Under the above assumptions, (1), (2) and (3) for the overall
motion of the helicopter can be effectively reduced to these
following equations: ⎧⎪⎪⎨

⎪⎪⎩
ε̈ = Kcl1

Je
U1

p̈ =
Kclp
Jp

U2

ṙ = Gl1
Jt

p

(4)

where control inputs U1 and U2 are given by{
U1 = Vs+Vd

2

U2 = Vs−Vd

2

(5)
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Remark 3: We calculate the input voltage U1 and U2 for
each motor.
Finally, using (4), the sate space model of the helicopter is
formulated as below:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε

p

ε̇

ṗ

r

ξ

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 Gl1
Jt

0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε

p

ε̇

ṗ

r

ξ

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
Kcl1
Je

Kcl1
Je

Kclp
Jp

−Kclp
Jp

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
U1

U2

]

(6)

⎡
⎢⎣
ε

p

r

⎤
⎥⎦ =

⎡
⎢⎣
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε

p

ε̇

ṗ

r

ξ

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎣
0 0

0 0

0 0

⎤
⎥⎦
[
U1

U2

]
(7)

where ε, p and r are the pitch angle, roll angle and travel rate
of the 3-DOF helicopter system respectively and ξ̇ = ε and
γ̇ = r.

TABLE I
PHYSICAL PARAMETERS OF 3-DOF HELICOPTER SYSTEM

Symbol Physical unit Numerical values

Je Kg.m2 1.8145
Jt Kg.m2 1.8145
Jp Kg.m2 0.0319
G N 4.2591
l1 m 0.88
l2 m 0.35
lp m 0.17
Kc N/V 12

In order to obtain the linear 3-DOF state space model, we
consider the physical parameter’s value from Table I.

III. CONTROLLER DESIGN

This section is dedicated to design three PID controllers
to allow us to command a desired pitch position, roll angle
and travel rate of 3-DOF helicopter system. In this work, PID
controller’s design parameters are approximated from the LQR
controller gain matrix.

A. PID Equation

If εc, pc and rc are the desired pitch angle, desired roll angle
and desired travel rate of helicopter system, we can express
the PID controllers in the following form to meet closed loop
expectations:
Pitch Control Equation:

Vs = Kεp (ε− εc) +Kεdε̇+Kεi

∫
(ε− εc) dt (8)

Roll Control Equation:

Vd = Kpp(p− pc) +Kpdṗ (9)

Travel Control Equation:

pc = Krp(r − rc) +Kri

∫
(r − rc) dt (10)

Remark 4: In order to achieve a desired travel rate rc, we
design a controller to command a desired roll angle pc.

B. LQR Controller

Linear-quadratic-regulator (LQR) is a part of the optimal
control strategy [10] which has been widely developed and
used in various applications. LQR design is based on the
selection of feedback gains K such that the cost function
or performance index J is minimized. This ensures that the
gain selection is optimal for the cost function specified. An
advantage of using the LQR optimal control scheme is that
system designed will be stable and robust, except in the case
where the system is not controllable.
In this design method, the system must be described by state
space model: {

ẋ = Ax+Bu

y = Cx+Du
(11)

The performance index J is defined as:

J =

∫ ∞

0

(xTQx+ uTRu)dt (12)

Where Q is positive definite (or semi-positive definite)
Hermitian or a real symmetric matrix. and R is positive
definite Hermitian or real symmetric matrix. These two
matrices Q and R are often known as weighting matrices.

The LQR optimal control principle [10] for the system
defined in (11) is to determine matrix K that gives the optimal
control vector

u(t) = −Kx(t) (13)

such that performance index J is minimized.
The control gain matrix K is given by

K = R−1BTP (14)

and P can be found by solving the continuous time algebraic
Riccati equation:

ATP + PA− PBR−1BTP +Q = 0 (15)

The block diagram showing the LQR control system
configuration is shown in Fig. 5.

Fig. 5. LQR Control Systems Configuration

The crucial and difficult task in the LQR controller design



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1310

is a choice of the weighting matrices. We generally select
weighting matrices Q and R to satisfy expected performance
criterion. The different Q and R values give a different system
response. The system will be more robust to disturbance and
the settling time will be shorter if Q is larger (in a certain
range). But there is no straightforward way to select these
weighting matrices and it is usually done through an iterative
simulation process. In this article, we apply the Bryson’s rule
for weighting matrix selection and select the matrices Q and
R for the 3-helicopter system in the following manner:

Q = ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2
1

(εmax)2
0 0 0 0 0 0

0
α2
2

(pmax)2
0 0 0 0 0

0 0
α2
3

(ε̇max)2
0 0 0 0

0 0 0
α2
4

(ṗmax)2
0 0 0

0 0 0 0
α2
5

(rmax)2
0 0

0 0 0 0 0
α2
6

(ξmax)2
0

0 0 0 0 0 0
α2
7

(γmax)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0

0 0.2 0 0 0 0 0

0 0 0.02 0 0 0 0

0 0 0 0.02 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0.02 0

0 0 0 0 0 0 0.01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

R = ρ

⎡
⎣ β2

1

(U1max )
2 0

0
β2
2

(U2max )
2

⎤
⎦

=

[
1 0

0 1

]
(17)

where:
• εmax, pmax, ε̇max, ṗmax, rmax, ξmax and γmax represent

the respective largest desired response for that component
of the states.

• U1max and U2max are maximum acceptable control voltage
inputs for actuator signal.

•
7∑

i=1

α2
i = 1 and

2∑
i=1

β2
i = 1 are used to add an additional

relative weighting on the various components of the state
and control respectively.

• ρ is used as the last relative weighting between the control
and state penalties which gives a relatively concrete way
to discuss the relative size of Q and R and their ratio
Q/R.

The synthesis of a state feedback controller K is obtained
according to the LQR control system configuration shown
in the Fig. 5. Using MATLAB code K=lqr(A,B,Q,R), we
obtain controller gain as follows:

K =
[
1.0426 0.8661 0.4349 0.1534 1.0292 0.1000 0.0707
1.0426 −0.8661 0.4349 −0.1534 −1.0292 0.1000 −0.0707

]
(18)

C. PID Approximation
In this subsection PID controller’s design parameter

Kp,Kiand Kd are approximated from the LQR controller gain
matrix (18).

First, we write the LQR optimal control law using (13) and
(18) for the 3-DOF helicopter system as :

[
U1
U2

]
= −[

1.0426 0.8661 0.4349 0.1534 1.0292 0.1000 0.0707
1.0426 −0.8661 0.4349 −0.1534 −1.0292 0.1000 −0.0707

]
⎡
⎢⎢⎣

ε
p
ε̇
ṗ
r
ξ
γ

⎤
⎥⎥⎦

= −
[
k11 k12 k13 k14 k15 k16 k17

k21 k22 k23 k24 k25 k26 k27

]
x(t) (19)

Analyzing carefully (19), we can obtain:

[
U1

U2

]
= −[

k11 k12 k13 k14 k15 k16 k17

k11 −k12 k13 −k14 −k15 k16 −k17

]
⎡
⎢⎣

ε
p
ε̇
ṗ
r
ξ
γ

⎤
⎥⎦ (20)

Now, the sum of the rows of (20) results in:

U1 + U2 = −(2k11ε+ 2k13ε̇+ 2k16ξ)

= −
(
2k11ε+ 2k13ε̇+ 2k16

∫
εdt

)
(21)

The full state feedback results in a controller that feedback
two voltages, therefore (21) can be written as:

Vs = −2k11 (ε− εc)− 2k13ε̇− 2k16

∫
(ε− εc) dt (22)

Equations (8) and (22) have the same structure, this means that
the gains we obtain from LQR design can still be used for the
pitch PID controller. Thus, comparing (22) with (8), we can
get the following pitch PID controller design parameters:⎧⎪⎪⎨

⎪⎪⎩
Kεp = −2k11

Kεd = −2k13

Kεi = −2k16

(23)

Similarly, the difference of the rows of (20) results in:

U1 − U2 = −2k12p− 2k14ṗ− 2k15 (r − rc)− 2k17γ

⇒ Vd = −2k12p− 2k14ṗ− 2k15 (r − rc)− 2k17

∫
(r − rc) dt

(24)

Now, using PID equation (10) in (9), we can get,

Vd = Kppp + Kpdṗ − KppKrp (r − rc) − KppKri

∫
(r − rc) dt (25)

Equations (24) and (25) have exactly the same structure. The

TABLE II
PID DESIGN GAINS VALUE

PID parameters Relationship Absolute Value

Kεp −2k11 2.0852

Kεd −2k13 0.8698

Kεi −2k16 0.2

Kpp −2k12 1.7322

Kpd −2k14 0.3069

Krp − 2k15
2k12

1.1883

Kri − 2k17
2k12

0.0816

means that we can design an LQR controller and still maintain
the same structure we used previously.
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On comparing (24) and (25), the feedback gains for the
controller are obtained from the LQR gains as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Kpp = −2k12

Kpd = −2k14

Krp = − 2k15

2k12

Kri = − 2k17

2k12

(26)

The design we have performed, resulting in the controller gain
values and it is shown in the Table II and got PID controller,
PD controller and PI controller for pitch, roll and travel axis
model respectively of 3DOF helicopter system.

Remark 5: Due to the minimum-phase requirement of a
PID controller, the signs of the proportional gain, the integral
gain and the differential gain must be the same. Therefore,
absolute gain values are considered to avoid the problem of

IV. SIMULATION AND RESULTS ANALYSIS

We now present the performance analysis for 3DOF
helicopter feedback system through MATLAB simulation.
Simulations are carried out for different axis: pitch, roll and
travel axis. The control objective is to get good performances
in dynamics as well as in statics. In the simulation, the
reference signal for the pitch, travel and roll angles are
changed between 0◦ to 20◦ to simulate the demands given
by the pilot. Also sampling time and simulation time used are
0.1 and 60 seconds respectively.
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Fig. 6. PID control simulation of the pitch axis model

A. Pitch Axis Model Simulation
The control objective is to minimize the error between the

desired pitch positions with the helicopter pitch axis position.
The Fig. 6 illustrates the tracking curve of reference input with
PID controller for pitch axis model of the 3DOF helicopter
system. Simulation result shows that PID control for pitch axis
has negligible overshoot and shorter settling time and is able
to track the desired response, which is considerable system
performance.

B. Roll Axis Model Simulation

The aim of this part is to design a controller that will allow
us to command the roll movement. The tracking curve of the
reference input signal to PD control of the roll axis model is
shown in the Fig. 7. From the figure it can be seen that steady
state have been completely obtained. The system has small
overshoot which is settled within a fraction of a second.
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Fig. 7. PD control simulation of the roll axis model
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Fig. 8. PI control simulation of the travel axis model

C. Travel Axis Model Simulation

This section is dedicated to control of the travel rate of the
helicopter by means of PI controller. The Fig. 8 shows the
control curve of helicopter travel rate. It is cleared from the
simulation result that PI control of the travel axis model is able
to track desired response and has no overshoot. The simulation
also shows that there is negligible steady state tracking error
but overall tracking performance looks acceptable.

different signs.
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V. CONCLUSION

In this work, LQR based PID controller design for
3DOF helicopter system is investigated. The 3DOF helicopter
dynamical equations along with state space model are
first presented in the paper and then the basic ideas and
technical formulations for designing a PID controller are
briefly illustrated. This paper presents a simple approach
for designing a PID controller based on the approximation
of design parameters from the LQR controller gain matrix.
The investigated controller has both static and dynamic
performance, therefore the stability and the quick control
effect can be obtained simultaneously. The robustness of the
designed controller is superior in terms of less overshoot, short
settling time and stable tracking of reference inputs.

ACKNOWLEDGEMENTS

The author would like to acknowledge the support of
Manipal Institute of Technology, Manipal University, Manipal,
India.

REFERENCES

[1] 3DOF Helicopter Experiment manual, Googol Technology Ltd.,
Kowloon, Hon Kong, 2009.

[2] H. Rios, A. Rosales, A. Ferreira, and A. Davilay, “Robust regulation
for a 3-dof helicopter via sliding-modes control and observation
techniques,” in American Control Conference (ACC), 2010, June 2010,
pp. 4427–4432.

[3] S. Lee, C. Ha, and B. Kim, “Adaptive nonlinear control system design
for helicopter robust command augmentation,” Aerospace Science and
Technology, vol. 9, no. 3, pp. 241 – 251, 2005.

[4] J. Gao, X. Xu, and C. He, “A study on the control methods based
on 3-dof helicopter model.” journal of Computers, vol. 7, no. 10, pp.
2526–2533, 2012.

[5] A. Boubakir, S. Labiod, F. Boudjema, and F. Plestan, “Design and
experimentation of a self-tuning pid control applied to the 3dof
helicopter,” Archives of Control Sciences, vol. 23, no. 3, pp. 311–331,
2013.

[6] Z. Liu, Z. Choukri El Haj, and H. Shi, “Control strategy design based on
fuzzy logic and lqr for 3-dof helicopter model,” in Intelligent Control
and Information Processing (ICICIP), 2010 International Conference
on, Aug 2010, pp. 262–266.

[7] E. N. Sanchez, H. Becerra, and C. Velez, “Combining fuzzy and pid
control for an unmanned helicopter,” in Fuzzy Information Processing
Society, 2005. NAFIPS 2005. Annual Meeting of the North American,
June 2005, pp. 235–240.

[8] M. Boukhnifer, A. Chaibet, and C. Larouci, “H-infinity robust control
of 3-dof helicopter,” in Systems, Signals and Devices (SSD), 2012 9th
International Multi-Conference on, March 2012, pp. 1–6.

[9] Z. Yujia, N. Mohamed, N. Hazem, and A. Yasse, “Model predictive
control of a 3-dof helicopter system using successive linearization,”
International Journal of Engineering, Science and Technology, vol. 2,
no. 310, pp. 9–19, 2010.

[10] D. S. Naidu, Optimal Control Systems. CRC Press, 2002.

Santosh Kr. Choudhary received the M.Tech
in Astronomy & Space Engineering in 2009
from Manipal University, Manipal, Karnataka and
B.Sc(Hons) and M.Sc in Mathematics from Magadh
University, Bodh-Gaya, Bihar, India in 2001 and
2003 respectively. He is currently working as an
assistant professor in MIT, Manipal University,
Manipal, India. He is also the life member of Indian
Society of Technical Education (ISTE), Indian
Society of Systems for Science and Engineering
(ISSE), Asian Control Association (ACA), Society

for Industrial and Applied Mathematics (SIAM) and International Association
of Engineers (IAENG). His area of research interests includes control theory,
scientific computing, robust & optimal control, modeling & simulation,
spacecraft dynamics & control, industrial & applied mathematics and orbital
mechanics.


