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Modeling Parametric Vibration of Multistage Gear
Systems as a Tool for Design Optimization

James Kuria, John Kihiu

Abstract—This work presents a numerical model developed to
simulate the dynamics and vibrations of a multistage tractor gearbox.
The effect of time varying mesh stiffness, time varying frictional
torque on the gear teeth, lateral and torsional flexibility of the shafts
and flexibility of the bearings were included in the model. The model
was developed by using the Lagrangian method, and it was applied to
study the effect of three design variables on the vibration and stress
levels on the gears. The first design variable, module, had little effect
on the vibration levels but a higher module resulted to higher bending
stress levels. The second design variable, pressure angle, had little
effect on the vibration levels, but had a strong effect on the stress
levels on the pinion of a high reduction ratio gear pair. A pressure
angle of 25o resulted to lower stress levels for a pinion with 14 teeth
than a pressure angle of 20o. The third design variable, contact ratio,
had a very strong effect on both the vibration levels and bending
stress levels. Increasing the contact ratio to 2.0 reduced both the
vibration levels and bending stress levels significantly. For the gear
train design used in this study, a module of 2.5 and contact ratio of
2.0 for the various meshes was found to yield the best combination
of low vibration levels and low bending stresses. The model can
therefore be used as a tool for obtaining the optimum gear design
parameters for a given multistage spur gear train.

Keywords—bending stress levels, frictional torque, gear design
parameters, mesh stiffness, multistage gear train, vibration levels.

NOMENCLATURE

Cgi(t) Time varying gear mesh damping coefficient
Csi Shaft damping coefficient
h Time interval
Ji Mass moment of inertia of rotor i
K Stiffness matrix
Kgi(t) Time varying gear mesh stiffness
T1 Input torque
T2, T3 Output torque
Tp Number of teeth on pinion
T Total kinetic energy of the system.
U Change in potential energy of a system

with respect to its potential energy
in the static equilibrium position.

Wdi Dynamic load
δi Gear teeth relative displacement
δ̇i Gear teeth relative velocity
τj Time period for gear pair j
θi Torsional displacement of rotor i
θ̇i Torsional velocity of rotor i
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GEARS are essential components in most power trans-
mission applications, such as automobiles, industrial

equipment, airplanes, helicopters and marine vessels. These
power transmission systems are often operated under high
rotational speeds and/ or high torques and hence their dynamic
analysis becomes a relevant issue. The dynamic behavior of
gear systems is important for two reasons [1]:

i. durability of the gears
ii. vibration and noise

The physical mechanism of gear meshing has a wide
spectrum of dynamic characteristics including time varying
mesh stiffness and damping changes during meshing cycle
[1]. Additionally, the instantaneous number of teeth in contact,
governs the load distribution and sliding resistance acting on
the individual teeth. These complexities of the gear meshing
mechanism have led prior researchers [2]–[8] to adopt analyt-
ical or numerical approaches to analyze the dynamic response
of a single pair of gears in mesh.

A large number of parameters are involved in the design
of a gear system and for this reason, modeling becomes
instrumental to understanding the complex behavior of the
system. Provided all the key effects are included and the right
assumptions made, a dynamic model will be able to simulate
the experimental observations and hence the physical system
considered. Thus a dynamic model can be used to reduce the
need to perform expensive experiments involved in studying
similar systems. The models can also be used as efficient
design tools to arrive at an optimal configuration for the system
in a cost effective manner.

Mechanical power transmission systems are often subjected
to static or periodic torsional loading that necessitates the
analysis of torsional characteristics of the system [9]. For
instance, the drive train of a typical tractor is subjected
to periodically varying torque. This torque variation occurs
due to, among other reasons, the fluctuating nature of the
combustion engine that supplies power to the gearbox [9].
If the frequency of the engine torque variation matches
one of the resonant frequencies of the drive train system,
large torsional deflections and internal shear stresses occur.
Continued operation of the gearbox under such a condition
leads to early fatigue failure of the system components [9].
Dynamic analysis of gears is essential for the reduction of
noise and vibrations in automobiles, helicopters, machines and
other power transmission systems. Sensitivity of the natural
frequencies and vibration modes to system parameters provide
important information for tuning the natural frequencies away
from operating speeds, minimizing response and optimizing
structural design [10].

Few models for the dynamic analysis of a multistage gear
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train have been developed [11]–[14] and those that exist
treat either the shafts of the gear system or the gear teeth
as rigid bodies depending on the purpose of the analysis.
Effect of varying gear design parameters on the dynamics of a
multistage gearbox in order to obtain the optimum parameters
for a given gear train has also not been explored. Herbert
and Daniel [15] showed that gearboxes must be evaluated for
dynamic response on an individual basis. There is therefore the
need to develop a general model for a multistage gear train
vibrations and one that can be used to obtain the optimum gear
design parameters (module, addendum and pressure angle)
based on vibration levels, dynamic load and dynamic root
stress.

With the advancement of Computer Aided Drafting and De-
sign (CADD) softwares like Mechanical Desktop and Inventor
series, the design of gear trains in terms of relative sizes has
been made easy. With Autodesk inventor, it is possible to
simulate the relative movement of various parts in the design
and any interference can be corrected at this stage of the design
without having to first fabricate the prototype. However, it is
necessary to carry out vibration and dynamic analysis in order
to predict the performance of the system before the various
parts are fabricated. The effect of the various gear design
parameters on the vibration and dynamic characteristics also
need to be analyzed in order to optimize the design. The aim
of this work is to develop a general model to analyze the
vibrations of a multistage gear train taking into account time
varying mesh stiffness, time varying frictional torque and shaft
torsional stiffness. The model will then be used to analyze the
effect of gear design parameters on the vibration levels and
gear tooth root stress with the aim of identifying the optimum
configurations of the gearbox.

II. METHODOLOGY

The model developed here is based on a four-stage reduction
gearbox (figure 1) with an overall reduction ratio of 54:1. The
gearbox contains five pairs of gears in mesh, the input and out-
put inertias, five shafts and bearings. The major assumptions
on which the dynamic model is based are as follows:

i. Gears are modeled as rigid disk with radius equal to the
base circle radius and flexibility at the gear teeth.

ii. Each gear is supported by a pair of lateral springs to rep-
resent the lateral deflection of shafts and bearings.This
implies the simplifying assumption that the gear may
move laterally but do not tilt.

iii. Shaft torsion is represented by equivalent torsion spring
constants.

iv. The casing is assumed to be rigid (deflections are much
smaller than the deflections of the gear teeth, shafts and
bearings and can be neglected.)

v. Static transmission error effects are much smaller than
the dynamic transmission error effects and so they can
be neglected [11].

vi. Gear teeth are assumed to be perfectly involute and
manufacturing and assembly errors are ignored.

vii. Backlash is not considered in this model. This is because
while running at steady state, the gears are loaded in a

Fig. 1. Gear train for bottom gear ratio

single direction only and thus tooth separation is not
considered.

The resulting model is shown in figure 2, while a detailed
gear pair model is shown in figure 3. The mathematical model
shown in figure 2 can be described by a total of 33 coordinates.
The rotational position of the gears, input and output inertias
require thirteen coordinates. The lateral positions of the gears
due to the lateral deflection of the shafts and bearings require
another twenty coordinates.

A set of governing equations of motion for the model was
derived using the standard Lagrangian equation, which is given
here without proof [16]:

d

dt

(∂T

∂q̇i

)
− ∂T

∂qi
+

∂V

∂qi
= Qi, (1)

Where,

qi generalized coordinate.
T Total kinetic energy of the system.
U Change in potential energy of a system with respect to

its potential energy in the static equilibrium position.
Qi generalized non-potential forces or moments resulting

from excitation forces or moments that add energy
into the system, and damping forces and moments
that remove energy from it.

The kinetic energy of the system is given by:

T =
1
2
Σ

(
Jiθ̇

2
i + miẋi + miẏi

)
. (2)

The generalized non-potential forces or moments (Qi) result
from excitation forces or moments that add energy into the
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Fig. 3. Detailed gear pair model.

system, and damping forces and moments that remove energy
from it. The potential energy is classified into three groups of
stored energy caused by:

1) Distortion of the gear meshes, for example the potential
energy stored in gear mesh in figure 3 is expressed as:

Vm1 =
1
2
Kg(t)[R2θ2−R3θ3−(y1−y2)cosγ+(x1−x2)sinγ]2,

(3)
2) Twisting of gear shafts, for example the potential energy

stored in shaft 1 is expressed as:

Vs1 =
1
2
Ks1[θ1 − θ2]2, (4)

3) Lateral deflection of the shafts and bearings, expressed
as:

Vsl =
1
2
Σ

(
Kxix

2
i + Kyiy

2
i

)
. (5)

The lateral stiffness of the shafts was obtained by consider-
ing the shafts as simply supported. The influence coefficients
were then obtained and using the relation K = A−1 the
stiffness coefficients were obtained [16]. This method ensures
that the shaft is statically determinate. The bearing stiffness
was obtained by using methods developed by Holm-Hansen
and Gao [?]. The effective lateral stiffness was then obtained
by series combination of the shaft stiffness and bearing stiff-
ness. Under these conditions, the system is described by 33
equations of motion. The sources of forced vibration for the
system used in this study were the time varying mesh stiffness
and the time varying frictional torque.

The time varying mesh stiffness was obtained by consid-
ering the gear tooth as a cantilever beam [17]. The effect
of axial deformation, shear deformation and Hertzian contact
deformation [18] were included in the stiffness model.

The time varying frictional torque on the gear teeth occurs
due to the sliding action of the gear teeth. Sliding friction on
the gear tooth surface causes frictional force Ft along the off-
line of action direction and a frictional torque Tf about the
gear axis. During gear meshing action, the tooth contact point
moves along the line of action, and Tf changes continuously
due to linearly varying values of the radius of curvature.

The magnitude of the frictional torque is directly related to
the friction coefficient and the normal tooth load. Therefore,
accurate determination of the friction coefficient is required.
In this study, an empirical formula developed by Xu and
Kahraman [19] was adopted as it was found to accurately
model the instantaneous coefficient of friction along the path
of contact of a pair of gears in mesh.

A numerical computer program in FORTRAN code was
developed to study the time domain behavior of the system
[?]. The time domain behavior of the system was obtained by
integrating the set of governing differential equations using
4th order Runge-Kutta method. The differential equations
were linearized by dividing the mesh period of the output
pair into many small intervals. The mesh period for any pair
of teeth in mesh was taken as the time interval from the
initial point of contact to the highest point of single tooth
pair contact.

To integrate initial value problems, an appropriate set of
initial conditions is required. In this study, all generalized
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coordinates were set to zero. Starting with this initial estimates
of θi(0) and θ̇i(0) at the initial contact point, the values of θi(t)
and θ̇i(t) were calculated for one mesh period of the output
pair of gears.

The calculated value of the relative displacement δi(τj)
and relative velocity δ̇i(τj) after the end of one period τj of
each pair of gears j in mesh were compared with the initial
values δi(0) and δ̇i(0). Unless the difference between them
was sufficiently small (≤ 0.002%), an iteration procedure was
used to obtain the (i + 1)th iteration values of θi(t) and θ̇i(t)
by taking the ith iteration values of θi(τj) and θ̇i(τj) as the
new initial trial conditions. Once the solution has converged,
this state corresponds to the steady state rotational speed of
the shafts.

III. RESULTS AND DISCUSSION

This section presents the results of the time domain, fre-
quency spectrum, dynamic load and dynamic stress. Table
I shows the operating conditions and gear parameters. The

TABLE I
OPERATING CONDITIONS AND GEAR PARAMETERS FOR GEAR TRAIN 1

Input speed 1500 rpm 
Nominal Torque 1300 Nm 

Module (m) 3.0 mm 
Pressure angle 20

g 0.1
s 0.05

relative dynamic displacement of gear i and i + 1 represents
the deflection of the gear teeth from their mean position. If
gear i is the driving gear, the following situations will occur
[17]:

i. δi > 0 This represents the normal operation case
and the dynamic mesh force is given by:

Wdi = Kgi(t)δi + Cgiδ̇i, (6)

ii. δi ≤ 0 and |δi| ≤ bh,
where bh is the backlash between the gears.
In this case, gears will separate and contact be-
tween the gear teeth will be lost.

Wdi = 0, (7)

iii. δi < 0 and bh < |δi|
In this case, gear i + 1 will collide with gear i on
the back side, and the mesh force will be given by:

Wdi = Kgi(t)(δi − bh) + Cgiδ̇i. (8)

where, Wdi is the dynamic load. In this study, one of the
assumptions in the development of the model was that there
was no backlash, therefore only the first case was considered.
Figures 4 and 5 show the dynamic transmission error in the
time domain and frequency domain for the first two gear
meshes. The frequency analysis of the Dynamic Transmission

Error (DTE), the relative displacement between the gear teeth,
was performed by taking the Fast Fourier Transform (FFT) of
its time wave.

In all the time plots, figures 4(a) and 5(a), the tooth cycle is
clearly visible with the two distinct regions corresponding to
single and double tooth contact. The response is periodic with
a period equal to the mesh period τ (shown explicitly in figure
4(a)) as the fundamental meshing period. Larger displacements
are seen to occur at the single tooth contact zone due to the
lower mesh stiffness in this region.

The effect of reversal of the frictional torque at the pitch
point can be seen on figure 4(a), point P. The effect of friction
is visible on stages I and II where the rotational speeds are
higher. However, at very low speeds, the effect of frictional
torque are minimal.

Referring to figure 4(b) and 5(b), it can be seen that the
dynamic response corresponds proportionately to the tooth
mesh frequency which is the product of the shaft speed and the
the number of teeth on the gear. For a perfect tooth, the peak
amplitude of the DTE is found at the mesh frequency. The
amplitudes of higher harmonics are relatively small and their
contribution can be neglected. Both time and frequency spectra
indicate that parametric excitations have significant effect on
the system response.
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Fig. 4. Vibration signatures for gears in stage I (gear train 1)
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Fig. 5. Vibration signatures for gears in stage II (gear train 1)

The dynamic relationship between all the gear stages are
coupled through the non-linear interactions in the gear mesh.
The gear mesh forces and moments were evaluated as func-
tions of relative motion and rotation between two meshing
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gears and the corresponding mesh stiffness as shown in
equation 6.

Figure 6 shows the static load and the dynamic load response
for a single tooth in mesh for all the reduction stages. The
dynamic load is basically a static load sharing in phase with
the stiffness change due to the change in the number of teeth
in contact superimposed by an oscillating load.

The peak tooth force under dynamic conditions is much higher
than the static load especially in the single pair contact region
as can be seen in figure 6. Thus if the gear teeth are designed
using the static load, there are high possibilities of tooth failure
due to the resulting high bending and contact stresses. The
dynamic load is also influenced by the pitch-line velocity
as shown on table II. The percentage difference between the
peak dynamic load and static load decreases as the pitch line
velocity reduces.

10 15 20 25 30 35
400

600

800

1000

1200

1400

1600

1800

2000

Roll angle ( o )

Fo
rc

e 
( N

 )

10 15 20 25 30 35
1000

1500

2000

2500

3000

3500

4000

4500

Roll angle ( o )

Fo
rc

e 
( N

 )

10 20 30
3000

4000

5000

6000

7000

8000

9000

10000

Roll angle ( o )

Fo
rc

e 
( N

 )

10 15 20 25 30 35
4000

6000

8000

10000

12000

14000

Roll angle ( o )

Fo
rc

e 
( N

 )

 static load
 dynamic load

 static load
 dynamic load

 static load
 dynamic load

 static load
 dynamic load

(a) stage I (b) stage II 

(c) stage III (d) stage IV 

Fig. 6. Comparison of the dynamic and static load on a single tooth over
the path of contact (gear train 1)

TABLE II
PERCENTAGE DIFFERENCE BETWEEN PEAK DYNAMIC LOAD AND

MAXIMUM STATIC LOAD FOR VARIOUS GEAR MESHES

Gear mesh Pitch line 
velocity (m/s) 

Static load 
(N)

Dynamic load 
(N) % difference

I 3.30 1246 1611 29 
II 1.36 3026 3728 23 
III 0.51 8070 8586 6 
IV 0.18 11529 12120 5 

Figures 7 to 8 compare the static and dynamic stress on a
single tooth of all the gears in mesh. The root bending stress on
the gear teeth depends on the magnitude of the dynamic force
and the position of the force along the path of contact. For

the driving gear, the point of contact moves from the lowest
point of contact along the tooth profile to the highest point of
contact and thus the cantilever beam length of the gear tooth
increases along the path of contact. This explains why both the
static and dynamic stresses increase with time for the driving
gear. The converse is true for the driven gear.
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Fig. 7. Tooth bending stress as a function of the contact position for gears
in stage I (gear train 1), (a) pinion, (b) gear
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Fig. 8. Tooth bending stress as a function of the contact position for gears
in stage II (gear train 1), (a) pinion, (b) gear

A. Effect of Gear Design Parameters

In order to optimize the design with respect to gear design
parameters, the effect of varying the following gear design
parameters was investigated:

i. module
ii. pressure angle

iii. contact ratio
1) Effect of module: The effect of the module of the gear

dynamics was investigated by changing the module from 3.0
to 2.5 and 2.0, while holding the pressure angle and pitch
radius constant. In order to maintain the pitch radius constant,
the number of teeth was varied. However, since the number
of teeth for any gear is an integer, the pitch radius of some
gears varied slightly (by less than 0.5 mm).

Figure 9 shows the vibration levels of the first two meshes on
the gear train in the frequency domain for modules, 2.0, 2.5
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and 3.0. It can be seen that the peak amplitude of the vibrations
for the different modules are almost the same though gears
with module 2.0 show slightly lower amplitudes for mesh I,
which resulted from the high mesh stiffness for gears with
a smaller module. Figure 10 shows sample dynamic bending
stress curves for a pair or gears as function of the contact
position. It can be observed that reducing the module of a pair
of gears increases the dynamic bending stress significantly.
This could be attributed to the smaller tooth thickness at the
root for gears with a smaller module.
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Fig. 9. Vibration levels for various modules for bottom gear ratio (stage I
and II)
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Fig. 10. Root stress on stage IV of gear train 1 for different modules.

2) Effect of Pressure Angle: The pressure angle was in-
creased from 20o to 25o while holding the module and number
of teeth for the various meshes constant. Figure 11 shows the
vibration levels of the first and second meshes. It can be ob-
served that the variation of the vibration levels between gears
with a pressure angle of 20o and 25o is small and the difference
varies from mesh to mesh. However, from the sample bending
stress levels (Figure 12) the peak bending stress on the pinion
(14T) with a pressure angle of 20o is higher than that with
a pressure angle of 25o which is attributed to the addendum
modification of the teeth with a pressure angle of 20o to reduce
interference. This modification increases the length of the tooth
and consequently the cantilever effects on the tooth.
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Fig. 11. Comparison of the vibration amplitudes for different pressure angles
(stage I and II)

10 20 30 40
0

50

100

150

200

250

300

350

400

450

500

Roll angle ( o )

R
oo

t s
tre

ss
 (M

Pa
)

10 20 30 40
0

50

100

150

200

250

300

350

400

450

500

Roll angle ( o )

R
oo

t s
tre

ss
 (M

Pa
)

 = 20o, 14T
 = 25o, 14T

 = 20o, 40T
 = 25o, 40T

(a) pinion (b) gear 

Fig. 12. Sample root stress for gears with different pressure angle.

3) Effect of Contact Ratio: The contact ratio of a pair of
gears in mesh is given by equation 9 and is affected by the
following parameters:

• addendum
• center distance
• pressure angle
• module

C.R =

√
R2

o1 − R2
b1 +

√
R2

o2 − R2
b2 − (Rp1 + Rp2)sinφ

pccosφ
.

(9)
The contact ratio of a gear pair can be increased by varying
one of the above parameters or a combination of two or more
of these parameters. Increasing the addendum is normally
recommended for increasing the contact ratio since this can
be achieved by simply adjusting the cutter depth [17]. The
maximum permissible addendum modification coefficients are
obtained by iteratively varying the addendum modification
coefficient of the pinion and gear until the top land thickness
is equal to the minimum allowable (usually 0.3m) [20]. In this
research work, a code was developed to obtain the maximum
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possible contact ratio for a gear pair by varying the addendum
and adjusting the center distance in order to avoid interference
[?]. Figures 13 and 14 show sample plots for vibration levels
of gear pairs with high contact ratio. A pair of gears with a
contact ratio close to 2.0 shows relatively low vibration levels
especially those with a module of 2.0. A contact ratio of 2.0
reduces the vibration levels by up to 75% in both cases. This
effect is due to the very narrow band of single-tooth contact
being passed so quickly during gear rotation that the system
could not respond until after excitation has passed resulting to
a very gentle dynamic response. A contact ratio close to 2.0
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Fig. 13. Sample vibration levels for gear pairs with increased contact ratio
(gears with a module of 2.0 mm)
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Fig. 14. Sample vibration levels for gear pairs with increased contact ratio
(module 2.5 mm)

also results to a smooth root stress curve as shown on figure
15 and 16. A contact ratio of 2.0 reduces the peak dynamic

root stresses on the gear teeth by about 45% in both cases.
In addition, the discontinuities in the stress curves that occur
during the transition from double tooth contact to single tooth
contact and vice versa are eliminated. This implies that the
gears with a contact ratio of 2.0 would have a higher fatigue
life than those with a contact ratio lower than 2.0. However,
the gears with a module of 2.5 show lower root stresses than
those with a module of 2.0 as shown in figure 17. This could
be attributed to the larger tooth thickness on the gears with
a module of 2.5. The root stress is dependent on the tooth
thickness at the fillet area and the length between the contact
point and the critical section of the tooth in addition to the
load. The zone of single contact is also eliminated since a
contact ratio of 2.0 implies that there are at least 2.0 pairs of
teeth in contact at any one point. The only variation in the root
bending stress is due to the change in the contact positions.
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Fig. 15. Root stress on stage IV gears of gear train 1 for different contact
ratios using a module of 2.0.
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Fig. 16. Root stress on stage IV gears of gear train 1 for different contact
ratios using a module of 2.5.

The speed of the gearbox is varied by sliding the speed gears
into mesh. This means that the rate of wear for these gears is
very high. Thus despite the fact that gears with a module of
2.0 and a contact ratio of 2.0 show lower vibration levels than
those with a module of 2.5 and a contact ratio of 2.0, those
with a module of 2.5 exhibit lower stresses and have a larger
tooth thickness and would therefore be more suitable for this
application.
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Fig. 17. Root stress on stage IV gears of gear train 1 for a contact ratio of
2.0.

IV. CONCLUSION

A mathematical model was developed to analyze the dy-
namic and vibration characteristics of multistage gear trans-
missions. The model consists of 33 equations of motion which
were developed using the Lagrangian method and solved using
Fourth Order Runge Kutta method. The main sources of
excitation for the gear train were the time varying gear mesh
stiffness and the time varying frictional torque on the gear
teeth. The effect of torsional stiffness of the shafts and lateral
stiffness of the shafts and bearing stiffness were considered in
the model. Parametric studies were also conducted to examine
the effects of three design variables, module, pressure angle
and contact ratio. The following following specific conclusions
can be drawn from the study:

1) Reducing the module from 3.0 to 2.5 and 2.0 does
not yield significant difference in the vibration levels.
However, reducing the module increases the dynamic
bending stress on the gear teeth and therefore increase
gear life. Increased gear life means: Low maintenance
costs, low operating costs, increased production of plant/
machine since there will be no downtime, fewer accidents
in the plant.

2) Increasing the pressure angle of the gears from 20o to 25o

has no significant difference on the vibration levels. For
gears with a high reduction ratio, increasing the pressure
angle results to reduced stress levels since the gears with
a higher pressure angle requires less or no addendum
modification depending on the number of teeth.

3) Increasing the contact ratio reduces the vibration levels
for the various gears in mesh, with the lowest vibration
levels recorded for gears with a contact ratio of 2.0.
A high contact ratio also leads to lower bending stress
levels. Particularly for a contact ratio of 2.0, the discon-
tinuities on the stress curves observed due to variation in
the number of teeth in contact is eliminated. Therefore,
gears with a contact ratio of 2.0 would have a higher
fatigue life. Gears with a module of 2.5 and a contact
ratio of 2.0 were found to yield the best combination
of low vibration levels and low stress levels and would
therefore be recommended for the gear train considered

in this research.
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