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Abstract—An experiment of vented gas explosions involving two 

different cylinder vessel volumes (0.2 and 0.0065 m3) was reported, 
with equivalence ratio (Φ) ranged from 0.3 to 1.6. Both vessels were 
closed at the rear end and fitted at the other side with a circular 
orifice plate that gives a constant vent coefficient (K =Av/V2/3) of 
16.4. It was shown that end ignition gives higher overpressures than 
central ignition, even though most of the published work on venting 
uses central ignition. For propane and ethylene, it is found that rich 
mixtures gave the highest overpressures and these mixtures are not 
considered in current vent design guidance; which the guideline is 
based on mixtures giving the maximum flame temperature. A strong 
influence of the vessel volume at constant K was found for methane, 
propane, ethylene and hydrogen-air explosions. It can be concluded 
that self- acceleration of the flame, which is dependent on the 
distance of a flame from the ignition and the ‘suction’ at the vent 
opening are significant factors affecting the vent flow during 
explosion development in vented gas explosion. This additional 
volume influence on vented explosions is not taken into account in 
the current vent design guidance.   

 
Keywords—Equivalence ratio, ignition position, self-acceleration 

flame, vented gas explosion. 

I. INTRODUCTION 
XPLOSION venting is widely accepted as the effective 
protection measures against gas and dust explosions. Even 

though experimental and modeling work in this area has been 
extensively investigated and many correlations associated with 
the venting design were developed [1]- [9], the impact on 
venting at different vessel volume is not recognized in the 
current guideline offered by NFPA 68 [6] and European 
Standard [1]. Both guidelines rely on the vent correlation first 
published by Bartknecht [10] which indicated that the same 
vent area is required irrespective of the vessel volume. The 
V2/3 dependence of overpressure in Bartknecht’s equation on 
the vessel volume is a characteristic of spherical or compact 
vessel explosions, where the flame remains spherical during 
most of the flame propagation period during the venting 
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process. If the spherical flame propagates at a constant rate, 
irrespective of the vessel volume, then there should be no 
other dependence of Pred on volume, other than K. For 
methane and propane, these were undertaken in a cubic vessel 
of 10 m3 and the results for hydrogen were obtained in a 1m3 
spherical vessel [10]. For methane and propane the vented 
explosion overpressures were lower at any other volumes less 
than 10 m3 and greater (60 m3), as previously discussed by 
Kasmani et al. [11]. The design equations in the European 
Standards [1] are Bartknecht’s equations for the above vessel 
sizes. These design equations grossly over predict the 
overpressures for explosion venting in vessels smaller than 
10m3, as shown in Bartknecht’s results [10] and further 
illustrated in the present work. The ATEX Directive [12] 
applies to all vessels that have an explosive atmosphere, 
irrespective of its volume. The present work presents new data 
on vented explosion in vessels of small volume as well as 
demonstrating the failure of the Bartknecht Equation to predict 
this data. Analysis of the flame position data is used to suggest 
that the additional volume effect is related to the vent ‘suction’ 
effect and associated flow turbulence. 

However, Kasmani et al [11] demonstrated that there is a 
volume effect in K that is not included in the Bartknecht’s 
equation and is likely associated with flame self-acceleration 
due to the development of cellular flame for subsonic venting 
at K<~5. The net effect is an increase in burning velocity, Su 
and mixture reactivity, KG, which has not been accounted for 
in venting design guidelines. In principle, the effect is similar 
to that of vent induced turbulence and the turbulent 
enhancement factor, β term in the burning velocity equation 
should be accounted in this manner. The present work presents 
new data on vented explosion in vessels of small volume as 
well as demonstrating the failure of the Bartknecht’s 
correlation [6] to predict this data. Analysis of the flame 
position data is used to suggest that the additional volume 
effect is related to the vent ‘suction’ effect and associated flow 
turbulence. 

II. MATERIALS AND METHOD  
In this study, two different cylindrical vessel volumes were 

used; 0.2 and 0.0065 m3 (refer to Fig. 1). Both vessels have a 
length to diameter ratio (L/D) of 2, complying the compact 
vessel as described in NFPA 68 and European Standard 
guideline. Both vessels were closed at the rear end and fitted 
at the other side with a circular orifice plate given a constant 
vent coefficient, K (= Av/V2/3) of 16.4, simulating as a vent 
before connecting to dump vessel. The gate valve was closed 
when the mixture were mixed homogeneously before opening 
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This left most of the unburned mixture trapped in the outer 
part of the vessel. Peak overpressure occurred when this 
trapped mixture burnt rapidly, forcing high velocity gases out 
of the vent. 

The substantial proportions of the original flammable 
mixture in the test vessel after the flame has exited the vessel 
and trapped at the corner region inside the vessel would be 
larger for central ignition than for end ignition as it takes 
longer time for the combustion to take place before reaching 
the maximum pressure as suggested from Fig. 4. The direction 
of unburned gas flow, due to gas expansion behind the flame 
front, was preferentially in the axial direction towards the 
vent, where the unburned gases are displaced. The induced 
flow through the vent, ahead of the flame leads to a significant 
increase in flame speeds and expansion ratio of the main 
vessel. If the ignition is initiated at the end wall of the vessel, 
it resulted in an elongation of the flame shape with a 
corresponding increase of its flame area and thus, increasing 
the burning rate and flame speed eventually. In the case of 
centrally ignited, the flame will be in spherical vessel initially 
before progressively being stretched on one side towards the 
vent and thus, reducing the flame area as postulated by Ferrara 
et al [13] and Kasmani et al [14]. In case of central ignition, 
there is an indication of higher quantity of residual unburned 
mixture in the vessel whereas almost complete combustion 
occurred at end ignition that eventually leads to higher peak 
pressure. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Pressure-time history for different fuel/air mixtures at Ф = 1.0 

at end ignition. Test vessel 2. 
 

B. Flame Speed Upstream of the Vent 
The flame speeds upstream of the vent for methane/air 

explosions are shown in Fig. 6 for central and end ignition. 
These show higher flame speeds for end ignition and the peak 
flame speed for Φ =1.06 was 23 m/s, about 9 times of 2.6 m/s 
flame speed for a spherical methane/air laminar explosion 
[15]. The flame speeds are plotted as a function of distance 
from the spark for Φ =1.06 in Fig. 7. Fig. 7 is also shown the 
expected influence of flame self-acceleration due to the 
development of cellular flames. This is based on the results in 
NFPA 68 [6] for KG as a function of vessel volume, translated 
into normalized KG with the value for 5 litre vessel and plotted 
against the vessel radius. These normalized results were then 
multiplied by the 2.6 m/s value of the spherical flame speed 
for small diameter flames. The results illustrated in Fig. 7 

show that the initial flame acceleration in the vented 
explosions did follow the self-acceleration trend. However, 
sudden flame acceleration was spotted when the flame was 
0.3m from the vent for central ignition and 0.6m from the vent 
with end ignition. It is considered that this is due to the action 
of flow ‘suction’ from the vent flow. For centrally ignited 
explosion, there is no vent flow until significant mass has been 
burnt and this requires the spherical flame to be larger. For 
end ignition, there is more time for the flame to develop 
before it is influenced by the vent flow. A flame speed of 23 
m/s will have an unburned gas flow of 87 % of the flame 
speed if the process was adiabatic and this would give a jet 
velocity towards the vent of about 20 m/s. This jet velocity, of 
roughly the diameter of the vent, creates a shear region with 
the surrounding stationary mixture and this generates 
turbulence, which further accelerates the flame. It is due to the 
turbulence that results in the fast combustion of the trapped 
mixture in the outer part of the vessel. 

 

 
 

Fig. 6 Methane/air peak flame speeds upstream of the vent as a 
function of Φ for Test Vessel 1. 

 

Fig. 7 Methane/air peak flame speeds for Φ=1.06 plotted as a 
function of distance from the spark for end and central ignition for 

Test Vessel 1. 
 

C. Propane, Ethylene and Hydrogen Results 
The equivalent results to those for methane were obtained 

for propane, ethylene and hydrogen and are shown in Fig. 8-
10 for Test Vessel 1. These results show that for mixtures up 
to Φ = 1.06 at end ignition gives the highest overpressure. Fig. 
11 shows high vent ‘suction’ flame speeds, with 30 m/s for 
propane. For mixtures richer than Φ =1.2, central ignition 
becomes the worst case for overpressure and flame speed 
upstream of the vent. Hydrogen mixtures richer than Φ = 0.6 
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were not investigated as the overpressure was already very 
high. It is clear that K = 16.4 is too large for a value of K in 
order to be suitable for hydrogen explosion risks. This 
observation implies that venting is effective at lower H2 
concentration (Ф < 0.41) but not in higher concentration in the 
case of smaller vent area i.e. high K. The reason for the high 
overpressures and flame speeds for rich mixtures have to be 
related to Lewis numbers influences, which are highest for 
rich propane air mixtures and rich ethylene air mixtures. 
However, it is difficult to know why the same acceleration 
does not occur with end ignition position.  

The most important feature of these results is that for 
propane and ethylene, the worst-case vented explosion is at Φ 
=1.3 and not at Φ = 1.06, where all the current venting 
explosion data has been determined. This indicates that the 
current design procedures for venting may not include the 
worst case for propane and ethylene.  

 
 

  
 
 
 
 

 
 
 
 

Fig. 8 Pmax v. equivalence ratio, Φ for propane/air mixtures 
 

 
 
 
 
 
 
 
 
 
 

Fig. 9  Pmax v equivalence ratio, Φ for ethylene/air mixtures 
 
                 

 
 
 
 
 
 
 
 
 

Fig. 10 Pmax v. equivalence ratio, Φ for hydrogen-air 

 
Fig. 11 Flame speeds for propane/air mixtures 

 
Fig. 12 Flame speeds prior to the vent for ethylene/air mixtures 

 

 
Fig. 13 Flame speeds prior to the vent for hydrogen/air mixtures 

D.  Explosion in Test Vessel 2 
The overpressures and flames speeds in the smaller vessel 

for the same Kv of 16.4 are shown in Fig. 14 and 15 for all 
four gases. The peak overpressures are compared with Test 
Vessel 1 and also to those correlations from NFPA [6], 
Bradley and Mitcheson [2] and Molkov[5] as listed in Table 1. 
Test Vessel 1 has much higher overpressures and flame speeds 
(2-3 times) than Test Vessel 2, by a factor of 1.8 for methane 
and 2.4 for ethylene.  

 
Fig. 14 Maximum pressure Pmax for different fuel/air mixtures as a 

function of equivalence ratio. 
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Fig. 15 Flame speeds for the four gas/air as a function of equivalence 

ratio. 
 
Propane peak overpressure at Φ = 1.13 is 0.68 bar in the 

larger vessel and 0.3 bar in the smaller; the peak pressure ratio 
is then 2.27. However, only the predictions of Molkov [5] 
include an influence of vessel volume at constant K, but these 
predictions are much too high for Pred. All the predictions have 
a major over prediction of the present results, as they are 
calibrated against explosions in larger volumes. Only Bradley 
and Mitcheson [2] and Molkov [5] are closest to the present 
measured results in Test Vessel 1. 

 
TABLE I 

EXPERIMENTAL DATA AND CALCULATED EQUATIONS FOR TEST VESSELS AT Ф 
= 1.0 

Gas/ai
r 

Experiment
al data 
(bar) 

Bartknecht 
Eq 

(bar) 

Swift 
Eq 

(bar) 

Bradley 
and 

Mitcheson 
Eq 

(bar) 

Molkov 
Eq 
(bar) 

Test Vessel 1 
CH4/ 
air 

0.35 5.44 12.43 1.163 2.09 

C3H8/ 
air 

0.53 7.45 20.92 1.46 2.26 

C2H4/ 
air 

3.06 10.92 20.92 3.35 3.07 

H2/ 
air 

- 14.57 - 42.72 4.16 

Test Vessel 2 
CH4/ 
air 

0.19 5.44 12.43 1.163 1.15 

C3H8/ 
air 

0.47 7.45 20.92 1.46 1.36 

C2H4/ 
air 

1.25 10.92 20.92 3.35 2.32 

H2 /air 2.28 14.57 - 42.72 4.44 

IV. CONCLUSION 
The volume of a vented explosion has a very significant influence 

on the overpressure for a constant K. This is not included in vent 
design guidance and leads to gross over prediction of the required 
vent area for small volumes. The peak overpressure occurs after the 
flame has left the vent and is caused the ‘suction’ jet of the vent that 
creates a rapid turbulent explosion of the unburned mixture trapped in 
the vessel after the centerline jet flame has been vented.  
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