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Abstract—In this paper we developed the Improved Runge-Kutta
Nystrom (IRKN) method for solving second order ordinary differen-
tial equations. The methods are two step in nature and require lower
number of function evaluations per step compared with the existing
Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are
computationally more efficient at achieving the higher order of local
accuracy. Algebraic order conditions of the method are obtained and
the third and fourth order method are derived with two and three
stages respectively. The numerical results are given to illustrate the
efficiency of the proposed method compared to the existing RKN
methods.
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I. I NTRODUCTION

CONSIDER the special second-order ordinary differential
equations of the form

y′′ = f(x, y), y(x0) = y0, y′(x0) = y′0. (1)

Such problem often arise in science and engineering fields
such as celestial mechanics, molecular dynamics , semi-
discretization of wave equations and electronics. The second-
order equations can be directly solved by using Runge-Kutta
Nystrom (RKN) methods or multistep methods. Phohomsiri
and Udwadia [1], [2] constructed the Accelerated of Runge-
Kutta method for solving autonomous first order ordinary
differential equationsy′ = f(y). Rabiei and Ismail [3]
proposed the third-order Improved Runge-Kutta method for
solving ordinary differential equationsy′ = f(x, y). Rabie et.
al [4], [5] developed the general form of Improved Runge-
Kutta method for solving ordinary differential equations. In
this paper, we developed the Improved Runge-Kutta Nystrom
(IRKN) method for solving special second-order equation
y′′ = f(x, y). The third-order Improved Runge-Kutta Nystrom
(IRKN3) method used only 2-stages and the fourth-order
Improved Runge-Kutta Nystrom (IRKN4) method used 3-
stages per step.

In section II, we constructed the IRKN method for solving
second order ODE’s and the order conditions of the method
are obtained in section III. In section IV, the derivation of
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the method is given. Numerical examples to illustrate the
efficiency of the methods compared with the existing RKN
methods are presented in the last section.

II. CONSTRUCTION OFIRKN M ETHOD

Rabie et. al [4], [5] developed the general form of Improved
Runge-Kutta method as follows

yn+1 = yn + h

(
b1k1 − b−1k−1 +

s∑

i=2

bi(ki − k−i)

)
, (2)

where

k1 = f(xn, yn), k−1 = f(xn−1, yn−1),

ki = f(xn + cih, yn + h
i−1∑

j=1

aijkj),

k−i = f(xn−1 + cih, yn−1 + h
i−1∑

j=1

aijk−j).

For 2 ≤ i ≤ s. We developed the IRKN method for solving
the second-order equation directly by following the approach
discussed in Dormand [6] on the derivation of RKN method
and based on IRK method formulas (2).

The general form of explicit IRKN method withs-stages a
as follows :

yn+1 = yn +
3h

2
y′n −

h

2
y′n−1 + h2

s∑

i=2

b̄i(ki − k−i),

y′n+1 = y′n + h(b1k1 − b−1k−1 +
s∑

i=2

bi(ki − k−i)),

(3)

k1 = f(xn, yn), k−1 = f(xn−1, yn−1),

ki = f(xn + cih, yn + hciy
′
n + h2

i−1∑

j=1

aijkj),

k−i = f(xn−1 + cih, yn−1 + hciy
′
n−1 + h2

i−1∑

j=1

aijk−j)).

For i = 2, . . . , s..
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III. O RDER CONDITIONS

To find the order conditions for IRKN method we applied
the Taylor’s series expansion to equations (3) (see [3], [4],
[5]). Here, after using the Taylor’s series expansion the order
conditions of method fory′n and yn up to order five are
presented in Table I.

TABLE I
ORDER CONDITIONS OFIRKN METHOD FORy′n AND y.

order of method order condition fory′ order condition fory

first order b1 − b−1 = 1

second order b−1 +
s∑

i=2
bi = 1

2

third order
s∑

i=2
bici = 5

12

s∑
i=2

b̄i = 5
12

fourth order
s∑

i=2
bic

2
i = 1

3

s∑
i=2

b̄ici = 1
6

fifth order
s∑

i=2
bic

3
i = 31

120

s∑
i=2

b̄ic
2
i = 31

360

s∑
i=2

biaijcj = 31
720

IV. D ERIVATION OF IRKN METHOD

In this section we derived the IRKN method of order three
with two stages (IRKN3) and IRKN method of order four with
three stages (IRKN4). All the derivation of our methods with
details are given as follows.

A. Third-order method with two-stages (IRKN3)

The IRKN3 method with two-stages (s = 2) from formulas
(3) is given by:

yn+1 = yn +
3h

2
y′n −

h

2
y′n−1 + h2b̄2(k2 − k−2),

y′n+1 = y′n + h(b1k1 − b−1k−1 + b2(k2 − k−2)),
(4)

k1 = f(xn, yn), k−1 = f(xn−1yn−1),
k2 = f(xn + c2h, yn + hc2y

′
n + h2a21k1),

k−2 = f(xn−1 + c2h, yn−1 + hc2y
′
n−1 + h2a21k−1).

To find the coefficients of IRKN3 method in equations (4),
order conditions up to order three foryn and y′n must be
satisfied. Therefore we need to satisfy the following equations:

b1 − b−1 = 1, b−1 + b2 =
1
2
, b2c2 =

5
12

, b̄2 =
5
12

.

We choose the value ofb−1 ∈ [−1 1] as a free parameter,
here we setb−1 = − 1

3 and found the remaining coefficients
as follows:

c2 =
1
2
, a21 =

1
8
, b1 =

2
3
, b2 =

5
6
.

B. Fourth-order method with three-stages (IRKN4)

Consider the IRKN4 with three-stages (s = 3) from for-
mulas (3), to find the coefficients of IRKN4 method the order
conditions from Table I up to order four foryn andy′n must be
satisfied. Therefore we need to satisfy the following equations:

b1 − b−1 = 1, b−1 + b2 + b3 =
1
2
,

b2c2 + b3c3 =
5
12

, b2c
2
2 + b3c

2
3 =

1
3
,

and
b̄2 + b̄3 =

5
12

, b̄2c2 + b̄3c3 =
1
6
.

We choosec2 = 1
4 andc3 = 3

4 as free parameters and obtained
the remaining parameters as follows:

a21 =
1
32

, a31 = 0, a32 =
9
32

,

b−1 =
1
18

, b1 =
19
18

, b2 =
−1
6

, b3 =
11
18

,

b̄2 =
7
24

, b̄3 =
1
8
.

V. NUMERICAL EXAMPLES

In this section, we tested a standard set of second-order
initial value problems to show the efficiency and accuracy
of the proposed method. The exact solutiony(x) and
y′(x) are used for starting values ofy1 and y′1 at the first
step[x0 x1]. The following problems are solved forx ∈ [0 10].

problem 1 (The undamped Duffing’s equations [7])

y′′ + y + y3 = 0.002cos(1.01x),

y(0) = 0.200426728067, y′(0) = 0.

exact solution computed by Galerkin method and given by:

y(x) =
4∑

i=0

a2i+1cos[1.01(2i + 1)x],

with a1 = 0.200179477536, a3 = 0.246946143×10−3, a5 =
0.304014× 10−6, a7 = 0.374× 10−9 anda9 < 10−12.

Problem 2 (An almost periodic Orbit problem studied by
Stiefel and Bettis [8])

y′′ + y = 0.001 eix, y(0) = 1, y′(0) = 0.9995i.

exact solution:y(x) = (1− 0.0005ix)eix.

we write in equivalent form:

y′′1 + y1 = 0.001cos(x), y1(0) = 1, y′1(0) = 0,

y′′2 + y2 = 0.001sin(x), y2(0) = 0, y′2(0) = 0.9995.

exact solutions:

y1(x) = cos(x) + 0.0005xsin(x),

y2(x) = sin(x)− 0.0005xcos(x)
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TABLE II
MAXIMUM GLOBAL ERROR AGAINST STEP SIZEh FOR PROBLEM2

h IRKN3 IRKN4 RKNV3 RKND3 RKNV4 RKN4

0.5 1.87E-2 6.81E-4 2.80E-1 1.95E-2 9.91E-3 2.06E-3
0.1 1.13E-4 5.52E-7 1.07E-2 1.49E-4 1.40E-5 3.09E-6
0.05 1.39E-5 3.34E-8 2.63E-3 1.86E-5 8.65E-7 1.92E-7
0.01 1.07E-7 5.47E-11 1.07E-4 1.48E-7 3.74E-9 3.05E-10
0.005 1.43E-8 3.84E-12 2.69E-5 1.85E-8 2.47E-10 1.91E-11

To illustrate the efficiency of new methods we compared
the numerical results with existing methods. The codes have
been denoted by the following.

(i) IRKN3 : The Improved Runge-Kutta Nystrom method
of order three with two stages in this paper.

(ii) RKNV3 : The third order Runge-Kutta Nystrom method
with zero dissipation three stages given in van der
Houwen and Sommeijer [9]

(iii) RKND3 : The third order three stages Runge-Kutta
Nystrom method given in Dormand.[6]

(iv) IRKN4: The Improved Runge-Kutta Nystrom method of
order four with three stages in this paper.

(v) RKNV4 :The fourth order Runge-Kutta Nystrom method
with ten order dispersion, fifth order dissipation four
stages given in Van der Huwen and Sommeijer [9]

(vi) RKN4 : The fourth order three stages classical Rnge-
Kutta Nystrom method give in Garcia et al .[10]

The logarithm of maximum global error versus the number
of function evaluations for IRKN3 and IRKN4 methods for
tested problem 1 is shown in Figure 1. In part (a) the results
are shown for IRKN3 compared with the existing methods
RKNV3 and RKND3 which indicate that the IRKN3 with
lower number of function evaluations is more accurate. In
part (b) the results are shown for the fourth order methods
which indicate that the IRKN4 with three stages is more
efficient compared with RKNV4 and RKN4. In Table II the
maximum global error against the different values of step size
h is presented for problem 2 and we observed that the new
methods are more accurate compared to the given methods.

VI. CONCLUSION

In this paper we constructed the Runge-Kutta Nyström
(RKN) method for solving second order ODE’s. The order
conditions of the IRKN methods are derived and using these
order conditions, the methods are obtained for order 3 and 4
with two and three stages respectively. Numerical results are
presented to illustrate the efficiency of IRKN3 and IRKN4
compared to the existing methods. The IRKN methods in terms
of error accuracy and number of function evaluations are more
efficient compared to RKNV3, RKND3 ,RKNV4 and RKN4
methods.
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Fig. 1. The logarithm of maximum global error versus number of function
evaluations for problem 1, (a) third order methods (b) fourth order methods
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