
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

271

Abstract—Jayanti’s algorithm is one of the best known abortable

mutual exclusion algorithms. This work is an attempt to overcome an
already known limitation of the algorithm while preserving its all
important properties and elegance. The limitation is that the token
number used to assign process identification number to new
incoming processes is unbounded. We have used a suitably adapted
alternative data structure, in order to completely eliminate the use of
token number, in the algorithm.

Keywords—Abortable, deterministic, local spin, mutual
exclusion.

I. INTRODUCTION
HE mutual exclusion is a classic problem. However,
distributed mutual exclusion problem, being insidious in

nature, has been a favorite area of research since many
decades. In a distributed mutual exclusion algorithm, the code
of each process p is divided into four sections: Entry Section,
Critical Section (CS), Exit Section, and Remainder Section. In
order to make it abortable, we introduce an Abort Section,
which makes it possible for a process that waits “too long” to
abort its attempt to acquire the resource. A process p may
initiate a new attempt while in the Remainder Section. A
successful attempt consists of executing the Entry Section,
then the CS and finally the Exit Section. After completing the
Exit Section, p goes back to the Remainder Section. When p
busywaits in the Entry Section, it can (nondeterministically)
choose to abort its attempt, in which case it executes the Abort
Section and then goes back to the Remainder Section. The
problem is to design an algorithm for Entry, Exit and Abort
Sections so that the following properties hold:
1. Safety: mutual exclusion and deadlock freedom
2. Liveness: lockout freedom, bounded abort, and bounded
exit
3. Fairness: first-come-first-served (FCFS)
In order to have better performance, preferably, the algorithm
should be local-spin as well as adaptive.

We have considered Jayanti’s algorithm [1] because it
handles distributed mutual exclusion problem succinctly and
satisfies all the properties stated in the previous section.
Moreover, the algorithm has O(n) space complexity and
O(min(k, log n)) remote reference complexity, where n is the

A. K. Singh is with the Department of Computer Engineering, National

Institute of Technology, Kurukshetra, 136119, India (e-mail:
aksinreck@rediffmail.com).

total number of processes in the system and k is the
contention. The performance of algorithm is good, in both
cases, when the level of contention is low or high. At low
levels of contention (k << n), the number of remote references
made by the algorithm is proportional to k; and at high levels
of contention (k n≈), the number of remote references is
bounded by log n. Thus, the algorithm performs well at all
levels of contention.

The algorithm uses 64-bit objects supporting the LL, SC,
read and write operations, which are described in Fig. 1.

The operation LL(O) returns O's value.
The operation SC(O, v) by a process p "succeeds" if and only if no process
performed a successful SC on O since p's latest LL. If SC succeeds, it changes
O's value to v and returns true. Otherwise, O's value remains unchanged and
SC returns false.

Fig. 1 The Behavior of LL and SC Operations

Although, real machines do not support LL and SC

operations, however, there are constant time implementations
of 64-bit LL/SC objects from 64-bit compare&swap objects
and from 64-bit "realistic" LL/SC objects [2]. As a result, the
algorithm can run on almost all modern machines, as they
support either compare&swap (e.g., UltraSPARC [3] and
Itanium [4]) or realistic LL/SC (e.g., POWER4 [5], MIPS [6]
and Alpha [7]).

Jayanti’s algorithm [1] has a limitation that the token
numbers, assigned to new incoming processes, grow
unbounded, that is, its value increases indefinitely. Our
algorithm is a modified form of Jayanti’s algorithm, without
sacrificing any of its salient properties. We have attempted to
modify it in a deterministic way. The approach is based on
replacing the data structure used in Jayanti’s algorithm,
namely f-array [8], with a suitably adapted alternative data
structure, in order to completely eliminate the use of token
numbers. Accordingly, the code of Jayanti’s algorithm has
also been modified, a little bit. The proofs of various
properties have been included in the analysis of the modified
algorithm.

II. JAYANTI’S ALGORITHM
The readers may refer [1] to see Jayanti’s complete

algorithm, its working, complexity analysis, and detailed
formal proof. However, in order to have a quick look over
various pieces of the algorithm that work together to prevent

On Bounding Jayanti’s Distributed Mutual
Exclusion Algorithm

Awadhesh Kumar Singh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

272

undesirable race conditions, the pseudo code is presented in
the following Fig. 2.

A. The Shared Variables
The algorithm is based entirely on LL/SC variables.

Although, some variables (specifically, C and Q) are not
LL/SC variables, however, they can be efficiently
implemented from LL/SC variables. Now, we describe below
the use of shared variables of the algorithm.

Wait[p]
Before entering the CS, any process p busywaits on this

boolean flag. At the start of its Entry Section, p sets it to true.
When it is assigned false, by some other process q, p is
released from its busywait loop and p becomes the owner of
CS. Wait[p] is allocated to p's memory module, in order to
make the algorithm local-spin.

CSowner
It holds the name of process, which is current owner of the

CS. CSowner is assigned ⊥, if no process currently owns the
CS.

Counter C
It is used to assign token numbers to processes requesting

the CS. Any process p, incrementing C by executing inc(C, 1),
gets the new value of C as its token number. Any other
process q, incrementing C after p, would get a higher token
number than that of p. As a result, the algorithm maintains
FCFS and lockout-freedom properties.

Priority process-queue Q
It is a priority process-queue to hold the names and token

numbers of processes waiting to enter CS. In the Entry
Section, a process p inserts in Q an element [p, t], where t is
p's token number. Process p deletes this element when exiting
or aborting. An element can be deleted only by the process
that inserted it; and a process can not insert a new element
before deleting the older element inserted by it. As the priority
ordering of elements in Q is similar to Lamport’s clock system
[9], opearation findmin returns the name of longest waiting
process, that is, the element with smallest token number from
Q. If Q is empty, findmin returns the special value [⊥, ⊥].

B. The Pseudo Code

Shared variables
C is a counter, initially 0; supports inc and read operations.
Q is a priority process-queue, initially empty; supports insert, findmin and
delete operations.
CSowner takes on a value from, { } {0,1,..., 1}n⊥ ∪ − , initially ⊥; supports LL,
SC, read and write operations.

{0,1,..., 1},p n∀ ∈ − Wait[p] is a boolean, arbitrarily initialized; supports LL,
SC, read and write operations.
procedure Entry(p)

1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure Exit(p)

8. delete(Q, [p, t])
9. CSowner = ⊥
10. promote()

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q, t′] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q], false)

Fig. 2 Abortable mutual exclusion algorithm for n processes. Code
shown here is for process p

III. THE DOUBLY LINKED CONCURRENT LIST
The tokens are required to maintain first-come-first-serve

(FCFS) property of the algorithm. In place of f-array, another
data structure, namely doubly linked concurrent list, has been
used for maintaining the list of processes. Each new incoming
process is added to tail of the list, so that the order of
incoming processes, i.e. FCFS property, is already managed
by the structure of the linked list.

A queue can be implemented by a singly linked list,
however, we have used doubly linked list, as it supports the
traversal from both ends. The detailed discussion on parallel
linked list data structure is available in the paper by Tang et.
al. [10]. The algorithms for various operations over a parallel
linked list were originally designed for processor self-
scheduling on parallel computers. However, we have modified
them to accommodate our requirement. Before we present the
algorithms for append, delete, and search operations, we
describe the structure of a node for the doubly linked
concurrent list. We consider that our list goes from left to
right. In addition to the data field that depends on the
application of the linked list each node (representing a
process), as shown in Fig. 3, has four fields. Originally, a
node in Tang et. al.’s list [10] had only three fields; however,
we have added one more field, namely flag, in order to make
it suitable for error-free operation of the linked list in our
algorithm. The fields are described below:
1. left : It is a pointer that contains the address of the left node

in the list.
2. right: It is a pointer that contains the address of the right

node in the list.
3. lock: This field can assume any value from the set {0, 1, 2}.

Value 0 indicates that the node is being deleted; value 2
indicates that the node is presently locked by another
process, and value 1 represents the unlocked state of the
node.

4. flag: A node can set its flag when the node has to be deleted
by the process either exiting from CS or aborting. When a
node’s flag is set the node cannot be locked by any other
process. Also, if a node is already locked by some other

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

273

process and subsequently the node sets its flag, then no
process can lock it further.

Fig. 3 Structure of the node

Fig. 4 The Doubly Linked Concurrent List

Fig. 4 shows a doubly linked concurrent list. Head is the
pointer to first node of the list and tail is the pointer to last
node of the list.

The lock is a synchronization variable used for coordinating
the deletion of adjacent nodes. Each lock has three states:
unlocked (lock = l), locked (lock = 2), and closed (lock = 0).
The initial state is unlock (lock = l). The flag represents the
state of the node whether it is being deleted by the process. It
can be set only by the process that owns the node and when
set, it cannot be locked by any other node. The operations that
are supported by the list (append, delete, search, and check)
are explained below.

A. The Append Procedure
The Append procedure appends a new node after the last

node of the linked list and splices the pointers accordingly.
Multiple processors can append their new nodes concurrently.
The procedure ensures that these concurrent operations always
yield a well connected linked list. Also, append can execute in
parallel with delete operation. However, deletion of the last
node and appending of a new node are mutually exclusive
operations. Each new node is initialized (right = null, lock = 1
(unlocked), and flag = 0) before it is appended to the list.
When a processor appends a new node to the list, it needs the
following steps:

Lock the last node of the linked list by changing its lock
from 1 to 2. If its lock is not 1, repeat this step again.

Set the left of the new node. Accordingly, change the right
of the last node. Also, change the tail pointer of the linked list.

Unlock the last node (original) by changing its lock from 2
to 1.

procedure append(p)

begin
do
x = tail; //fetch address of last node
if (x ≠ null) then //check if there is any node in the list
if(x = tail & x → flag = 0) //if the tail has not changed since

fetching its address
{x → lock = l; increment}; //lock the last node
 endif
 else //if no node is present in the list
if (x = tail) then //if the tail has not changed since

fetching its add.
 {HL = l; increment}; //lock the head node
 endif
 endif

while (failure); //repeat until the last node or head node is locked
tail = p; //tail pointer now points to the new appending

node
p → left = x; //left pointer of new node points to original last

node
if (x ≠ null) then //if the original last node is present and not null
x → right = p; //right pointer of original last node points to the

new node
else //if no node is there in the list
head = p; //the head points to the new appending node
endif
if (x ≠ null) then //if the original last node is present and not null
{x → lock ; decrement}; //unlock the original last node
else //if no node is there in the list
 {HL; decrement}; //unlock the head node
endif
end

In this paper, we use the syntax p → lock, similar to the

language C, to denote the lock field of the node pointed by p.
Other fields of the node are denoted similarly.

B. The Delete Procedure
The delete procedure allows multiple processors to delete

different, non-adjacent, nodes simultaneously. In order to
have proper splicing of pointers, the deletions of adjacent
nodes should be mutually exclusive. When a processor deletes
a node, it executes the following steps:

Set the flag and close the node to be deleted (i.e. the node
pointed by p) by changing its lock from 1 to 0. If the lock is
not 1, busy wait at this step until it becomes 1.

Lock the left node by changing its lock from 1 to 2. If its
lock is not 1 or its flag is set, re-fetch the address of the left
node and repeat this step.

Proceed to delete the node by changing the right of the left
node and the left of the right node.

Unlock the left node by changing its lock from 2 to 1.

procedure delete(p)
begin
p → flag = 1; //set the flag to indicate that the node is

going to be deleted
do
{p → lock = 1; decrement}; //change the lock of the node to zero
while (failure); //repeat until the lock is set to 0
y = p → right; //y points to the right node
do
 x = p → left; //x points to the left node
if (x ≠ null) then //if the current node is not the first node in

the list
 if (x → flag = 0 & x = p → right) then //if left node is not going to

delete and left node has not changed yet
{x → lock = 1; increment}; //lock the left node
 endif
 if (!failure) then //if left node has been locked
x → right = y; //right pointer of left node points to the right

node
 endif
 else //if the current node is the first node in the list
 head = y; //head node points to the right node
 endif
while (failure); //repeat until right node’s right pointer or head

points to right node
if (y ≠ null) then //if current node is not the last node in the list
y → left = x; /right node’s left pointer points to the left node

left lock flag right

head tail

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

274

else //if current node is the last node in the list
 tail = x; //tail node points to the left node
endif
if (x ≠ null) then //if left node is present and deleting

node is not the first node
 {x → lock; decrement}; //unlock the left node
endif
end

First of all, the flag of the currently deleting node is set

such that no other node can lock it later. Then the process tries
to lock its own node. Some other node might have already
locked it, so it loops until it succeeds in locking its node. After
this, it fetches the address of its left node and tries to lock it. If
the deleting node is not the first node in the list then the left
node belongs to some other process. Before locking the left
node its flag is checked, if it is unset then only proceed to lock
it. The address of the left node is again checked to verify if it
has not changed in the meantime. After locking the left node
change its right to point to the right node of the currently
deleting node. However, if the currently deleting node is the
first node in the list, then change only the head pointer to
point to the right node of the currently deleting node. The
process loops until it succeeds in changing the right of the left
node or the head pointer.

Now, the left of the right node is changed to point to the left
node if the right node is not null, i.e., currently deleting node
is not the last node in the list. If it is the last node in the list,
then change the tail pointer to point to the left node of
currently deleting node. In the end, release the lock of the left
node that was locked earlier by the currently deleting node.

If the left node’s flag is set or it is locked then the deleting
node has to wait until the left node is deleted. If all the left
nodes are willing to delete them, i.e., their flags are all set,
then deletion starts from the left most node and continues
towards right until it reaches the currently deleting node.

C. The Search Procedure
The job of search procedure is as follows:

1. Starting from the first node, traverse the linked list; search
for the first node that is eligible to enter the critical section,
i.e., the first node which is not closed and whose flag is
unset.

2. If no such node is found return null.
procedure search()

beign
q = head; //q points to the first node of the list
while (!check(q)) //if check procedure returns false
 q = q → right; //q points to right node
endwhile //repeat until check returns true
return q; //return value of q
end
Initially, a temporary variable q is pointed to the head node

of the list. This pointer is used to traverse through the list.
Until the check procedure returns true, q moves rightwards.
The check procedure is explained below.

D. The Check Procedure
The job of check procedure is to return true if the node p is

not null and its flag is unset, i.e., node p is eligible to enter the

critical section, else false is returned.
procedure check(p)

begin
if (p ≠ null || p → flag = 0) then //if node p is not null and its flag is unset
 return true; //return true to the calling procedure
else //if node p is null or flag is set or both
 return false; //return false to the calling procedure
endif
end

IV. THE MODIFIED ALGORITHM
Now, we present the modified mutual exclusion algorithm.

Out of four shared variables, used by Jayanti, counter C and
priority process-queue Q have been taken off, as they are no
more required. However, Wait[p] and CSowner have been
used for the same purpose as they were used, originally, in
Jayanti’s algorithm. The modified mutual exclusion algorithm,
using doubly linked concurrent list, is as follows:

Shared variables
CSowner takes on a value from, { } {0,1,..., 1}n⊥ ∪ − , initially ⊥; supports LL,
SC, read and write operations.

{0,1,..., 1},p n∀ ∈ − Wait[p] is a boolean, arbitrarily initialized; supports LL,
SC, read and write operations.
procedure Entry(p)

1. Wait[p] = true //Wait[p] is set true so that p busywaits on it
2. Append(p) //append the node of the process to the doubly linked

concurrent list
3. promote() //call promote() to put the next process in CS
4. promote() //again promote() to prevent livelock
5. wait till Wait[p] = false //busywait on Wait[p] until it gets into CS or

aborts
procedure Exit(p)

6. delete(p) //remove node from the linked list
7. CSowner = ⊥ //set CSowner to null indicating no process in CS now
8. promote() //call promote() to put the next process in CS

procedure Abort(p)
9. delete(p) //remove node from the linked list
10. promote() //call promote() to put the next process in CS
11. if CSowner = p then //if CSowner is set to p by some other process
12. CSowner = ⊥ //set CSowner to null
13. promote() //again call promote() to put next process in CS

procedure promote()
14. if LL(CSowner) ≠ ⊥ then return //if some process is in CS then return
15. q = Search() //Search() returns the first node in list eligible for CS
16. if check(q) then LL(Wait[q]) //perform LL on Wait[q] if q is still

eligible for CS
17. if SC(CSowner, q) then //if SC operation on CSowner is successful
18. if check(q) then SC(Wait[q],false) //if q is still eligible for CS set

Wait[q] to false

V. THE PROOF OF CORRECTNESS
We also need some definitions, similar as used by Jayanti

[1], to carry out the description of various proofs. The system
state (or configuration), is determined by the values of the
shared variables, local variables, and program counters of all n
processes. The configuration C changes when a process
executes some step s. In the initial configuration, we assume
that all n processes are in the Remainder Section and the
shared variables are initialized. A run R is a (finite or infinite)
sequence C0, s1, C1, s2, C2, ... of alternating configurations and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

275

steps such that C0 is the initial configuration and, for all i > 0,
the step si is enabled in Ci-1 and causes the configuration to
change from Ci-1 to Ci. In addition, we also follow the
following notations used in Jayanti’s paper [1]:
• An attempt by process p refers to each execution by p of the

Entry Section followed by either the Exit or the Abort
Section.

• Line(p, k, m) denotes the step in which process p executes
Line m of the algorithm in its kth attempt.

• Line(p, k, 5[last]) is the step corresponding to the final
iteration of process p’s busywait loop on Line 5, during the
kth attempt by p, in which p reads false in Wait[p] and
moves into the Critical Section.

• If π is an execution of promote() by some process, π(m)
denotes the step of π corresponding to the execution of Line
m. (For example, π(14) is the execution of Line 14 by π.)

• We call an execution of promote() successful if it executes
Line 17 and its SC operation on Line 17 succeeds.
In the algorithm, a step is a call to promote, that is, the

execution of Lines 3, 4, 8 and 10 by a process. The execution
of iteration, of Line 5 that consists of reading Wait[p] and
comparing it with false, is also a step. A process p, while
busywaiting at Line 5, nondeterministically, chooses either to
execute an iteration of Line 5 or to jump at Line 9 in order to
execute the Abort Section.

The critical section (CS) has been modeled as Line
5′ (although it is not shown in the pseudo code of the
algorithm). When p executes an iteration of Line 5, if p reads
false in Wait[p], then p enters the CS, i.e., p’s program counter
becomes 5′ . If p takes a step from CS, its program counter
changes from 5′ to 6.

The Remainder Section has been modeled as Line 0 (this is
also not shown in the pseudo code of the algorithm). If p takes
a step from the Remainder Section, its program counter
becomes 1. When p completes the Exit Section or the Abort
Section, it enters the Remainder Section.

A. Mutual Exclusion
Lemma 1 is that successful executions of promote() do not

overlap, an observation that follows immediately from the
semantics of LL and SC operations.

Lemma 1. If π and π' are distinct successful executions of
promote(), then either π (17) < π'(14) or π'(17) < π(14).

Lemma 2. If process p enters the CS during its kth attempt,
then there is an execution π of promote() such that π(17)
writes p into CSowner, and Line(p, k, 1) < π(17) < Line(p, k,
5[last]).

Lemma 3. We state this lemma in two parts:
1. Consider any step s in which some process executes a

successful SC operation on Line 17. CSowner has the value ⊥
in the configuration immediately preceding step s.

2. Consider any step s in which a process p executes either
Line 7 or Line 12. CSowner has the value p in the
configuration immediately preceding step s.

Lemma 4. If a process p is in the CS in a configuration C,
then the value of CSowner in C is p.

Lemma 5. (Mutual Exclusion): At most one process is in the
CS in any configuration.

Jayanti has verified the mutual exclusion property by
proving above five lemmas. However, the proof of mutual
exclusion, in our case, is simple and given as follows:

Proof. For any process p to be in CS, there must be some
execution of π(15), where search() returns p and some
execution of π(17), that successfully writes p in CSowner. The
search() procedure returns the first node, eligible for CS, in
the linked list. For two or more processes to be in CS at the
same time, search() must return more than one different
processes which is not possible. Hence, there can be only one
process in CS at a time.

B. Deadlock Freedom
Following four conditions [11, 12] are necessary for a

deadlock to occur:
1. Mutual Exclusion: each process has exclusive use of its

resources.
2. Nonpreemption: a process never releases the resources it

holds, until it is through using them.
3. Resource waiting: each process holds resources while

waiting for other processes to release theirs.
4. Cycle of waiting processes: each process in the cycle waits

for resources that the next process owns and will not
relinquish.
If any of the above mentioned four conditions does not hold

then deadlock cannot occur. Consider the fourth condition. In
our algorithm, a resource refers to the lock of a node.
Consider a situation where all the nodes have acquired their
own lock and are waiting to lock their respective left nodes.
Thus, each process is waiting for the resource that is locked by
its left node. However, deadlock will not occur because this is
not the case for the first node in the linked list. As, the first
node has to acquire the head lock and the head cannot be
locked by any node other than the first node in the list; hence,
there is no cycle of waiting processes. Therefore, the fourth
condition does not hold and deadlock cannot occur.

C. Lockout Freedom
Lockout freedom property states that if a process initiates

an attempt and does not abort that attempt, then it eventually
enters the CS in that attempt. Let p be a process, which
initiated an attempt and would not abort that attempt. There
are two ways in which p can be deleted from the list: either by
aborting or by exiting. As it is interested in CS, abort cannot
take place; hence the only way for a node to delete itself is
through exit. Since deadlock is not possible, therefore, a
process cannot be in the list forever. Now, for p to delete itself
through the exit section, it has to enter the CS first. Hence, p
eventually enters the CS.

D. Local Spin
Line 5 of our algorithm corresponds to busy-wait of each

process p on a Boolean variable Wait[p] in order to get into
the critical section. As, Wait[p] is mapped into the processor’s
local memory module or cache, while waiting, the process

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

276

accesses only its local variable. Thus, the algorithm is local
spin.

E. FCFS
Lemma 6. Let R be any finite run such that in the

configuration C at the end of R, CSowner has a non-⊥ value p.
Then, there exists 1k ≥ such that the following statement is
true: Let π be the latest execution of promote() such that π(17)
is in R and π(17) writes p into CSowner (by a successful SC
operation). Such a π exists and satisfies Line(p, k, 2) < π(15).
(Note that this implies that R includes the step Line(p, k, 2).)

Proof. Let π be the latest execution of promote() such that
π(17) is in R and π(17) writes p into CSowner by a successful
SC operation (such a π exists because CSowner has the value
p ≠⊥ in C). This implies that search() of π(15) returns p. It is

possible only if p is already present in the list, i.e., p inserts its
node into the list on Line 2 (in some attempt) and does not
remove its node from the list in that attempt (by Line 6 or 9),
before execution of π(15). Thus, there exists an attempt 1k ≥
(of p) such that the following statement is true: Line(p, k, 2) <
π(15). This fact establishes the lemma.

Lemma 7. In any run R, if Line(p, k, 2) < Line(q, m, 1) and
p does not abort its kth attempt, then q does not enter the CS
in its mth attempt before p enters the CS in its kth attempt.

Proof. If Line(p, k, 2) and Line(q, m, 2) append p and q,
respectively, in the list, then p’s node is ahead of q’s node in
the linked list. Let us assume that the Lemma is false and
consider that q gets into CS in its mth attempt before p. Thus,
by Lemma 4, CSowner has value q in configuration C. Lemma
6 implies that there exists an execution π of promote() such
that π(15) executes search() after Line(q, m, 2), and π(17)
writes q in CSowner. This is possible if π(15) receives q from
search(). But search() returns the first, eligible for CS, process
in the linked list. As, p is ahead of q in the linked list and also
eligible for CS (since its not going to abort in the kth attempt),
hence, search() would return q if and only if p is trying to
abort or is in the process of deletion, which is not the case.
Therefore, our assumption is false and the Lemma holds.

F. Bounded Exit
Lemma 8. If a process wants to acquire its own node’s lock

and some process has locked its node, then it would take a
constant amount of time to acquire the lock.

Proof. Let p be the process that wants to acquire its own
node’s lock and some other process q has locked it. There are
two possibilities to consider: (i) q is deleting its node from the
linked list or (ii) q is appending its node to the linked list. If q
is deleting its node then q must be the right node of p. In the
delete operation, the only step that takes O(k) time (where k is
the number of contending processes in the linked list) is the
locking of the left node and remaining steps require constant
amount of time. As, q has already locked its left node, i.e., p’s
node; hence, q would release the lock of p’s node after
constant amount of time. Also, p has already set its flag to 1
before trying to acquire its node’s lock, thus, no other process
can further lock p’s node. Consequently, p would acquire its

node’s lock next, after q releases it. Hence the lemma holds.
Lemma 9. If two adjacent nodes are attempting to delete

simultaneously, then the node, which is ahead in the list, is
deleted first.

Proof. Let two neighboring nodes p and q, where p is ahead
of q in the linked list, try to delete simultaneously. While
attempting to delete simultaneously, say, both nodes have set
their respective flag 1, simultaneously. Assume that the
Lemma is false and q is deleted before p. In order to delete
itself, a node has to lock its left node. This implies that q had
been able to lock node p even after p’s flag was set to 1. This
results in a contradiction as a node cannot be locked while its
flag is set to 1. Hence, our assumption is false and the lemma
is true.

Lemma 10. The delete(p) operation takes at most O(k)
remote steps.

Proof. Let, the node performing the delete operation be p
and its left node be q. There are three possibilities:

(i) Best Case: Node q’s flag is not set to 1 and node p is
also not locked. In this case, p takes total O(1) time to set its
own lock to 0 and q’s lock to 2. So, the time complexity of
delete(p) operation would be O(1).

(ii) Average Case: Node q’s flag is not set to 1 and node p
is locked. From Lemma 8, we observe that acquiring the lock
of node p would take constant amount of time. Furhtermore,
locking node q and remaining operations also take constant
time. Therefore, in this case also, the time complexity of
delete(p) operation would be O(1).

(iii) Worst Case: Node q’s flag is set to 1 and node p is also
not locked. Now, node p can set its lock to 0 in constant time.
However, node p cannot lock node q as its flag is set to 1. In
the worst case, all nodes, ahead of node p in the linked list,
may be attempting to delete themselves, simultaneously. We
conclude, from Lemma 9, if two adjacent nodes are trying to
delete themselves simultaneously, then deletion starts from the
node ahead in the linked list. Thus, only the head node can be
locked. Consequently, the first node in the linked list would be
deleted earliest, afterwards, the second node and so on. If k be
the number of contending processes in the list, there would be
(k-1) nodes ahead of p. Hence, in order to delete itself, p
would take O(k) time before it can lock the node ahead of it.
Therefore, in the worst case, the time complexity of operation
delete(p) would be O(k).

Jointly, from lemma 8, 9, and 10, we conclude that the Exit
section completes in at most O(k) steps. As, k is some
bounded integer, the algorithm ensures bounded exit property.

G. Bounded Abort
The time complexity of abort action would be O(k), as all

steps of abort section of the algorithm take O(k) time. The
complete proof follows directly from the proof of bounded
exit.

H. Adaptivity
Lemma 11. The search() operation takes at most O(k)

remote steps.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

277

Proof. The search() operation returns the address of some
node p that is the first node, eligible for CS, in the linked list.
The criterion for eligibility is that the node should not be in
the process of deletion, that is, its flag must be set to 0. The
search() starts traversing the linked list from the first node and
then moves rightward. In the worst case, out of k nodes ahead
of p in the linked list none is eligible for CS. The search()
would have to traverse k nodes in order to return address of p.
Therefore, O(k) remote accesses are required for completion
of search() procedure.

After entering in the linked list at Line 2 of the algorithm,
each process makes at most O(k) remote memory accesses
(both delete(p) and search() operations take O(k) time
according to Lemma 10 and Lemma 11). Thus, the time
complexity of our algorithm is a function of k, where k is the
number of contending processes, i.e., the number of nodes in
the linked list. Hence, the algorithm is adaptive.

I. Time Complexity Analysis
In worst case, the number of remote memory accesses

required for a process to enter the critical section is O(k),
where k is the number of contending process. Thus, the time
complexity of our algorithm is O(k). The algorithm has O(n)
space complexity, where n is the total number of processes in
the system.

VI. CONCLUSION
The tree data structure (or its any variant) works well when

the nodes are inserted in a random order. It performs poorly
on the sequences of operations, such as inserting the nodes in
order. Hence, mostly for such applications, implementers
generally agree that linked data structures are better options.
Moreover, they are significantly easier to implement than any
other data structure including tree and its variants. Therefore,
we have used a suitable variant of linked data structure,
namely doubly linked concurrent list, as underlying data
structure. In our approach, by making small change in the
pseudo code of Jayanti’s algorithm, the use of token number
has been completely eliminated. Although, we had to
compromise in worst case time complexity, nevertheless, no
important property has been sacrificed. Moreover, the proofs
of various properties are straightforward and less complex
than their counterparts in Jayanti’s paper. The space
complexity is same; nonetheless, the data structure used in
Jayanti’s algorithm, namely f-array, needs more complicated
memory management mechanism than the linked data
structures [13], which have been used by us. An inherent
characteristic of linked data structures is the structural
flexibility possible by manipulating pointers. Methods using
arrays in programs may improve the execution efficiency but
lack the structural flexibility [14]. On the basis of complexity
analysis, we conclude that our algorithm under perform only
when the rate of abortion is very high. However, the abortion
rate is often quite low in most practical scenarios.

REFERENCES
[1] P. Jayanti, “Adaptive and efficient abortable mutual exclusion,” in Proc.

22nd ACM Annual Symposium on Principles of Distributed Computing,
July 13-16, 2003, pp. 295–304.

[2] P. Jayanti, “Efficient and practical constructions of LL/SC variables,” in
Proc. 22nd ACM Annual Symposium on Principles of Distributed
Computing PODC 2003, July 13-16, 2003, pp. 285–294.

[3] D. L. Weaver and T. Germond, The SPARC Architecture Manual.
Version 9, SPARC International, Inc.

[4] Intel Corporation. Intel Itanium Architecture Software Developer's
Manual, Volume 1: Application Architecture Revision 2.1, Oct. 2002.

[5] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, IBM e-
server POWER4 System Microarchitecture, IBM, Oct. 2001.

[6] MIPS Computer Systems, MIPS64 Architecture for Programmers.
Volume II: The MIPS64 Instruction Set, Aug. 2002.

[7] R. Site, Alpha Architecture Reference Manual. Digital equipment
Corporation, 1992.

[8] P. Jayanti, “f-arrays: Implementation and applications,” in Proc. 21st
ACM Annual Symposium on Principles of Distributed Computing PODC
2002, July 21-24, 2002, pp. 270–279.

[9] L. Lamport, “Time, clocks and the ordering of events in a distributed
system,” Communications of the ACM, 1978, 21(7): 558–565.

[10] P. Tang, P.-C. Yew, and C.-Q. Zhu, “A parallel linked list for shared-
memory multiprocessors,” in Proc. 13th IEEE Annual International
Conference on Computer Software and Applications COMPSAC’89,
Sep. 20-22, 1989, pp. 130–135.

[11] M. J. Quinn, Parallel Computing: Theory and Practice. 2/e, McGraw-
Hill Companies, Inc., 1994.

[12] E. G. Jr. Coffman and P. J. Denning, Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, NJ, 1973.

[13] V. J. Marathe, M. Moir, and N. Shavit, “Composite abortable locks,” in
Proc. 20th IEEE International Parallel and Distributed Processing
Symposium IPDPS’06, April 25-29, 2006, pp. 1–10.

[14] H. Maegawa, “Memory organization and management for linked data
structures,” in Proc. 19th ACM Annual Conference on Computer Science,
April 1991, pp. 105–112.

