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Existence of Periodic Solutions in a Food Chain
Model with Holling–type II Functional Response

Zhaohui Wen

Abstract—In this paper, a food chain model with Holling type
II functional response on time scales is investigated. By using
the Mawhin’s continuation theorem in coincidence degree theory,
sufficient conditions for existence of periodic solutions are obtained.

Keywords—Periodic solutions; food chain model; coincidence de-
gree; time scales.

I. INTRODUCTION

IN recent years, dynamic equations on time scales have
received a lot of attention, such as [1–5] and the references

therein. The theory of time scales (measure chain) was first
proposed by Stefan Hilger in his PhD thesis (see [1]). This
theory unifies continuous and discrete analysis and the three
main features of the calculus on time scales are unification,
extension and discretization. To prove a result for a dynamic
equation on a time scale is not only related to the set of
real numbers or set of integers but also those pertaining to
more general time scales. So it is unnecessary to explore the
existence of periodic solutions of some continuous and discrete
population models in separate ways.

We consider the following dynamics equations on time
scales, ⎧⎪⎪⎨

⎪⎪⎩
uΔ

1 (t) = a1(t) − b1(t)e
u1(t) − c1(t)e

u2(t)

eu1(t)+1
,

uΔ
2 (t) = −a2(t) + c2(t)e

u1(t)

eu1(t)+1
− c3(t)e

u3(t)

eu2(t)+1
,

uΔ
3 (t) = −a3(t) + c4(t)e

u2(t)

eu2(t)+1
,

(1)

where a1(t), a2(t), a3(t), b1(t), c1(t), c2(t), c3(t) and c4(t) are
rd-continuous positive ω-periodic functions on time scales T.
Set yi(t) = eui(t), i = 1, 2, 3. If T = R, then system (1)
is equivalent to the following food chain model with Holling
type II functional response modeled by ordinary differential
equations,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẏ1(t) = y1(t)

(
a1(t) − b1(t)y1(t) − c1(t)y2(t)

y1(t)+1

)
,

ẏ2(t) = y2(t)
(
−a2(t) + c2(t)y1(t)

y1(t)+1 − c3(t)y3(t)
y2(t)+1

)
,

ẏ3(t) = y3(t)
(
−a3(t) + c4(t)y2(t)

y2(t)+1

)
,

(2)

where all coefficients are positive ω−periodic functions. But
on the other hand, if T = Z, then system (1) can be reduced

Zhaohui Wen is with the Institute of Applied Mathematics, School of Statis-
tics and Applied Mathematics, Anhui University of Finance and Economics,
Bengbu 233030, P.R.China, e-mail: wzh590624@sina.com

to the following difference equations,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1(n+ 1) = y1(n) exp
(
a1(n) − b1(n)y1(n) − c1(n)y2(n)

y1(n)+1

)
,

y2(n+ 1) = y2(n) exp
(
−a2(n) + c2(n)y1(n)

y1(n)+1 − c3(n)y3(n)
y2(n)+1

)
,

y3(n+ 1) = y3(n) exp
(
−a3(n) + c4(n)y2(n)

y2(n)+1

)
,

(3)
where all the coefficients are positive ω−periodic sequences
and system (3) can be used to describe the discrete three–
level food chain model. Existence of periodic solutions for
system (3) was investigated in [6] with the help of continuation
theorem. However, in the proof of the main theorem, I do not
think the second inequality of (2.7) in [6] can be obtained,
and it seems that the estimation of x3(ζ3) is contradictory to
the assumptions in Theorem 2.1 .

The primary aim of this paper is to unify the existence of
periodic solutions of food chain model governed by ordinary
differential equations and the corresponding discrete models
and to extend these results to more general time scales. The
approach based on the coincidence degree theory has been
widely applied to deal with the existence of periodic solutions
of differential equations and difference equations but rarely
applied to the dynamic equations on time scales[3–5].

The remainder of the paper is organized as follows. In the
following section, some preliminary results about calculus on
time scales and continuation theorem are stated. The existence
of periodic solution for system (1) is established in Section 3.

II. PRELIMINARIES

For convenience, we shall first present some basic defini-
tions and lemmas about time scales, more details can be found
in [2, 7, 8]. A time scale T is an arbitrary nonempty closed
subset of real numbers R. Throughout this paper, we assume
that the time scale T is unbounded above and below, such
as R, Z and

⋃
k∈Z

[2k, 2k + 1]. The following definitions and
lemmas about time scales are from [2].
Definition 2.1. The forward jump operator σ : T → T, the
backward jump operator ρ : T → T, and the graininess μ :
T → R

+ = [0,+∞) are defined, respectively, by σ(t) :=
inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) =
σ(t) − t. If σ(t) = t, then t is called right-dense (otherwise:
right-scattered), and if ρ(t) = t, then t is called left-dense
(otherwise: left-scattered).
Definition 2.2. Assume f : T → R is a function and let
t ∈ T. Then we define fΔ(t) to be the number (provided
it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|f(σ(t))−f(s)−fΔ(t)(σ(t)−s)| ≤ ε|σ(t)−s| for all s ∈ U.
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In this case, fΔ(t) is called the delta (or Hilger) derivative of
f at t. Moreover, f is said to be delta or Hilger differentiable
on T if fΔ(t) exists for all t ∈ T. A function F : T → R is
called an antiderivative of f : T → R provided FΔ(t) = f(t)
for all t ∈ T. Then we define∫ s

r

f(t)Δt = F (s) − F (r) for r, s ∈ T.

Definition 2.3. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and
its left-sided limits exist(finite) at left-dense points in T. The
set of rd-continuous functions f : T → R will be denoted by
Crd(T).
Lemma 2.4. Every rd-continuous function has an antideriva-
tive.
Lemma 2.5. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then
(a)

∫ b

a
[αf(t) + βg(t)]Δt = α

∫ b

a
f(t)Δt+ β

∫ b

a
g(t)Δt;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)Δt ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then
| ∫ b

a
f(t)Δt| ≤ ∫ b

a
g(t)Δt.

Lemma 2.6 ([7]). Let t1, t2 ∈ Iω and t ∈ T. If g : T →
R ∈ Crd(T) is ω−periodic, then

g(t) ≤ g(t1) +
1

2

∫ k+ω

k

|gΔ(s)|Δs

and

g(t) ≥ g(t2) − 1

2

∫ k+ω

k

|gΔ(s)|Δs,

the constant factor 1/2 is the best possible.
For simplicity, we use the following notations throughout

this paper. Let T be ω-periodic, that is t ∈ T implies t+ω ∈ T,

k = min{R
+ ∩ T}, Iω = [k, k + ω] ∩ T,

ḡ =
1

ω

∫
Iω

g(s)Δs =
1

ω

∫ k+ω

k

g(s)Δs,

where g ∈ Crd(T) is an ω-periodic real function, i.e., g(t +
ω) = g(t) for all t ∈ T.

Next, we introduce some concepts and a useful result from
[8].

Let X,Z be normed vector spaces, L : DomL ⊂ X → Z
be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimkerL = codim ImL < +∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such that
ImP = kerL, ImL = kerQ = Im(I − Q), then it follows
that L|DomL ∩ kerP : (I − P )X → ImL is invertible.
We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact
on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact. Since ImQ is isomorphic to kerL, there exists an
isomorphism J : ImQ→ kerL.
Lemma 2.7 (Continuation Theorem). Let L be a Fredholm
mapping of index zero and N be L-compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is

such that u /∈ ∂Ω;

(b) QNu 	= 0 for each u ∈ ∂Ω ∩ kerL and the Brouwer
degree deg{JQN,Ω ∩ kerL, 0} 	= 0.

Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 3.1. If the following assumptions hold,
(a) c̄4 > ā3,
(b) c̄2 > ā2,
(c) ā1 >

c̄1ā3
c̄4−ā3

e2ā2ω .
Then system (1) has at least one ω−periodic solution.
Proof. Let X = Z =

{
(u1, u2, u3)

T ∈ C(T,R3) :
ui(t + ω) = ui(t), i = 1, 2, 3, ∀t ∈ T

}
, ‖(u1, u2, u3)

T ‖ =∑3
i=1 maxt∈Iω |ui(t)|, (u1, u2, u3)

T ∈ X (or in Z).
Then X and Z are both Banach spaces when they are endowed
with the above norm ‖ · ‖. Let

N

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣N1

N2

N3

⎤
⎦ =

⎡
⎢⎢⎣
a1(t) − b1(t)e

u1(t) − c1(t)e
u2(t)

eu1(t)+1

−a2(t) + c2(t)e
u1(t)

eu1(t)+1
− c3(t)e

u3(t)

eu2(t)+1

−a3(t) + c4(t)e
u2(t)

eu2(t)+1

⎤
⎥⎥⎦ ,

L

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣uΔ

1

uΔ
2

uΔ
3

⎤
⎦ , P

⎡
⎣u1

u2

u3

⎤
⎦ = Q

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎢⎣

1
ω

∫ k+ω

k
u1(t)Δt

1
ω

∫ k+ω

k
u2(t)Δt

1
ω

∫ k+ω

k
u3(t)Δt

⎤
⎥⎦ .

Obviously, kerL =
{
(u1, u2, u3)

T ∈ X :
(u1(t), u2(t), u3(t))

T = (h1, h2, h3)
T ∈ R

3, t ∈ T
}
, ImL ={

(u1, u2, u3)
T ∈ Z : ū1 = ū2 = ū3 = 0, t ∈ T

}
, dimkerL =

3 = codim ImL. Since ImL is closed in Z, then L is a
Fredholm mapping of index zero. It is easy to show that P
and Q are continuous projections such that ImP = kerL and
ImL = kerQ = Im(I − Q). Furthermore, the generalized
inverse (of L) KP : ImL → kerP ∩ DomL exists and is
given by

KP

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎢⎣

∫ t

k
u1(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u1(s)ΔsΔt∫ t

k
u2(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u2(s)ΔsΔt∫ t

k
u3(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u3(s)ΔsΔt

⎤
⎥⎦ .

Thus

QN

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎢⎢⎢⎣

1
ω

∫ k+ω

k

(
a1(t) − b1(t)e

u1(t) − c1(t)e
u2(t)

eu1(t)+1

)
Δt

1
ω

∫ k+ω

k

(
−a2(t) + c2(t)e

u1(t)

eu1(t)+1
− c3(t)e

u3(t)

eu2(t)+1

)
Δt

1
ω

∫ k+ω

k

(
−a3(t) + c4(t)e

u2(t)

eu2(t)+1

)
Δt

⎤
⎥⎥⎥⎦ ,

and

KP (I −Q)N

⎡
⎣u1

u2

u3

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

k
u1(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u1(s)ΔsΔt

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)Δt

)
ū1∫ t

k
u2(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u2(s)ΔsΔt

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)Δt

)
ū2∫ t

k
u3(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u3(s)ΔsΔt

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)Δt

)
ū3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Clearly, QN and KP (I −Q)N are continuous. According to
Arzela–Ascoli theorem, it is not difficulty to show that KP (I−
Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X and
QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset
Ω for the application of the continuation theorem, Lemma 2.7.
For the operator equation Lu = λNu, where λ ∈ (0, 1), we
have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
uΔ

1 (t) = λ
(
a1(t) − b1(t)e

u1(t) − c1(t)e
u2(t)

eu1(t)+1

)
,

uΔ
2 (t) = λ

(
−a2(t) + c2(t)e

u1(t)

eu1(t)+1
− c3(t)e

u3(t)

eu2(t)+1

)
,

uΔ
3 (t) = λ

(
−a3(t) + c4(t)e

u2(t)

eu2(t)+1

)
.

(4)

Assume that (u1, u2, u3)
T ∈ X is a solution of system (4) for

a certain λ ∈ (0, 1). Integrating (4) on both sides from k to
k + ω, we obtain⎧⎪⎪⎨

⎪⎪⎩
ā1ω =

∫ k+ω

k
b1(t)e

u1(t)Δt+
∫ k+ω

k
c1(t)e

u2(t)

eu1(t)+1
Δt,∫ k+ω

k
c2(t)e

u1(t)

eu1(t)+1
Δt = ā2ω +

∫ k+ω

k
c3(t)e

u3(t)

eu2(t)+1
Δt,

ā3ω =
∫ k+ω

k
c4(t)e

u2(t)

eu2(t)+1
Δt.

(5)

Since (u1, u2, u3)
T ∈ X , there exist ξi, ηi ∈ Iω , i = 1, 2, 3,

such that

ui(ξi) = min
t∈Iω

{ui(t)}, ui(ηi) = max
t∈Iω

{ui(t)}. (6)

From (4) and (5), we have∫ k+ω

k

∣∣uΔ
1 (t)

∣∣ Δt < ā1ω +

∫ k+ω

k

b1(t)e
u1(t)Δt

+

∫ k+ω

k

c1(t)e
u2(t)

eu1(t) + 1
Δt

= 2ā1ω,

∫ k+ω

k

∣∣uΔ
2 (t)

∣∣ Δt <

∫ k+ω

k

c2(t)e
u1(t)

eu1(t) + 1
Δt+ ā2ω

+

∫ k+ω

k

c3(t)e
u3(t)

eu2(t) + 1
Δt

< 2c̄2ω,

∫ k+ω

k

∣∣uΔ
3 (t)

∣∣ Δt < ā3ω +

∫ k+ω

k

c4(t)e
u2(t)

eu2(t) + 1
Δt

= 2ā3ω.

By the first equation of (5) and (6), ā1ω ≥ b̄1ωe
u1(ξ1), so

u1(ξ1) ≤ ln(ā1/b̄1). By Lemma 2.6, we have

u1(t) ≤ u1(ξ1) +

∫ k+ω

k

∣∣uΔ
1 (t)

∣∣ Δt < ln
ā1

b̄1
+ 2ā1ω := M1.

From the third equation of (5) and (6), in view of the
monotonicity of x

x+1 , we can obtain

ā3ω ≥
∫ k+ω

k

c4(t)e
u2(ξ2)

eu2(ξ2) + 1
Δt.

Thus, u2(ξ2) ≤ ln ā3
c̄4−ā3

and

u2(t) ≤ u2(ξ2)+

∫ k+ω

k

∣∣uΔ
2 (t)

∣∣ Δt < ln
ā3

c̄4 − ā3
+2ā2ω := M2.

From the second equation of (5) and (6), we have

ā2ω ≤ c̄2ω − c̄3ω
eu3(ξ3)

eM2 + 1
,

this reduces to

u3(ξ3) ≤ ln
(c̄2 − ā2)(e

M2 + 1)

c̄3
,

and

u3(t) ≤ u3(ξ3) +

∫ k+ω

k

∣∣uΔ
3 (t)

∣∣ Δt

< ln
(c̄2 − ā2)(e

M2 + 1)

c̄3
+ 2ā3ω := M3.

On the other hand, by the third equation of (5) and (6), we
have u2(η2) > ln ā3

c̄4
, and

u2(t) ≥ u2(η2) −
∫ k+ω

k

∣∣uΔ
2 (t)

∣∣ Δt > ln
ā3

c̄4
− 2c̄2ω := M5.

By the first equation of (5) and (6), we get

b̄1ωe
u1(η1) ≥ ā1ω − c̄1ω

ā3

c̄4 − ā3
e2ā2ω,

then

u1(η1) ≥ ln
ā1 − c̄1ā3

c̄4−ā3
e2ā2ω

b̄1
:= N1,

and

u1(t) ≥ u1(η1) −
∫ k+ω

k

∣∣uΔ
1 (t)

∣∣ Δt > N1 − 2ā1ω := M4.

By the second equation of (5) and (6), we have

eu3(η3)

eM2 + 1
c̄3ω ≤ c̄2ω,

and

u3(η3) ≤ ln
c̄2(e

M2 + 1)

c̄3
:= M6.

So, we have

max
t∈[k,k+ω]

|u1(t)| ≤ max{|M1|, |M4|} := R1,

max
t∈[k,k+ω]

|u2(t)| ≤ max{|M2|, |M5|} := R2,

max
t∈[k,k+ω]

|u3(t)| ≤ max{|M3|, |M6|} := R3.

Clearly, R1, R2 and R3 are independent of λ. Let R = R1 +
R2 +R3 +R0, where R0 is taken sufficiently large such that
for for the following algebraic equations:⎧⎪⎨

⎪⎩
ā1 − b̄1e

x − c̄1ey

ex+1 = 0,

ā2 − c̄2ex

ex+1 + c̄3ez

ey+1 = 0,

ā3 − c̄4ey

ey+1 = 0,

(7)

every solution (x∗, y∗, z∗)T of (7) satisfies ‖(x∗, y∗, z∗)T ‖ <
R. Now, we define Ω = {(u1, u2, u3)

T ∈ X :
‖(u1, u2, u3)

T ‖ < R}. Then it is clear that Ω verifies the
requirement (a) of Lemma 2.7. If (u1, u2, u3)

T ∈ ∂Ω∩kerL =
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∂Ω ∩ R
3, then (u1, u2, u3)

T is a constant vector in R
3 with

‖(u1, u2, u3)
T ‖ = |u1| + |u2| + |u3| = R, so we have

QN

⎡
⎣u1

u2

u3

⎤
⎦ 	=

⎡
⎣0

0
0

⎤
⎦ .

Moreover, define

φ(u1, u2, u3, μ) =

⎡
⎣ ā1 − b̄1e

x

ā2 + c̄3ez

ey+1

− c̄4ey

ey+1

⎤
⎦ + μ

⎡
⎣− c̄1ey

ex+1

− c̄2ex

ex+1

ā3

⎤
⎦ ,

where μ ∈ [0, 1] is a parameter. If (u1, u2, u3)
T ∈ ∂Ω ∩

kerL, then φ(u1, u2, u3, μ) 	= 0. In addition, we can easily see
that the algebraic equation φ(u1, u2, u3, 0) = 0 has a unique
solution in R

3. Thus the invariance of homotopy produces

deg(JQN,Ω ∩ kerL, 0) = deg(QN,Ω ∩ kerL, 0)

= deg(φ(u1, u2, u3, 1),Ω ∩ kerL, 0)

= deg(φ(u1, u2, u3, 0),Ω ∩ kerL, 0)

= −1 	= 0.

By now, we have verified that Ω fulfills all requirements of
Lemma 2.7; therefore, system (1) has at least one ω−periodic
solution in DomL ∩ Ω̄. The proof is complete.
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[3] Martin Bohner, Meng Fan, Jiming Zhang. Existence of periodic solutions
in predator–prey and competition dynamic systems. Nonl. Anal. RWA,
7(2006), 1193–1204.

[4] Yongkun Li, Hongtao Zhang. Existence of periodic solutions for a peri-
odic mutualism model on time scales. J. Math. Anal. Appl., 343(2008),
818-825.

[5] Kejun Zhuang. Periodicity for a semi–ratio–dependent predator–prey
system with delays on time scales. Int. J. Comput. Math. Sci., 4(2010),
44–47.

[6] Y.G. Sun, S.H. Saker. Positive periodic solutions of discrete three–level
food–chain model of Holling type II. Appl. Math. Comput., 180(2006),
353–365.

[7] Bingbing Zhang, Meng Fan. A remark on the application of coincidence
degree to periodicity of dynamic equtions on time scales. J. Northeast
Normal University(Natural Science Edition), 39(2007), 1–3.(in Chinese)

[8] R E Gaines, J L Mawhin. Coincidence Degree and Nonlinear Differential
Equations. Lecture Notes in Mathematics, Berlin: Springer–Verlag, 1977.


