International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

Efficient Hardware | mplementation of an Elliptic
Curve Cryptographic Processor over GF (2'%)

Massoud Masoumi, Hosseyn Mahdizadeh

Abstract—A new and highly efficient architecture for dliptic
curve scalar point multiplication which is optimized for a binary field
recommended by NIST and is well-suited for dliptic curve
cryptographic (ECC) applications is presented. To achieve the
maximum architectural and timing improvements we have
reorganized and reordered the critical path of the Lopez-Dahab scalar
point multiplication architecture such that logic structures are
implemented in parale and operations in the critica path are
diverted to noncritical paths. With G=41, the proposed design is
capable of performing a field multiplication over the extension field
with degree 163 in 11.92 us with the maximum achievable frequency
of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the
chip area is occupied, where G is the digit size of the underlying
digit-serial finite field multiplier.

Keywords—Elliptic Curve Cryptography, FPGA implementation,
Scalar point multiplication

|. INTRODUCTION

LLIPTIC CURVE CRYPTOGRAPHY (ECC) is a public

key cryptography system superior to the well-known RSA
cryptography: for the same key size, it gives a higher security
level than RSA [1, 2]. Intuitively, there are numerous
advantages of using field-programmable gate-array (FPGA)
technology to implement in hardware the computationaly
intensive operations needed for ECC. These advantages are
comprehensively studied and listed by Wollinger, et. a. in [3].
In particular, performance, cost efficiency, and the ability to
easily update the cryptographic algorithm in fielded devices
are very attractive for hardware implementations. Several
recent FPGA-based hardware implementations of ECC have
achieved high-performance throughput and efficiency. In this
work we present a new architecture as well as an efficient
ECC FPGA implementation over GF(2'®) that has
considerable advantages compared to other implementations
as regards to speed and area. The proposed architecture is
based on a modified Lopez-Dahab elliptic curve point
multiplication agorithm [4] in which we have reorganized and
reordered the data path carefully to achieve maximum
performance and efficiency. As we know, the efficiency of an
algorithm is measured by the scarce resources it consumes.
Typically the measure used is time, but sometimes other
measures such as space and number of processors are aso
considered. Our basic strategy for architectura timing
improvement is to reorganize the critical path such that logic
structures are implemented in parallel. Usudly, this technique
is used whenever a function that currently evaluates through a
seria string of logic can be broken up and evauated in
parallel.

M. M. and H. M. are with Islamshahr Islamic Azad University, Tehran,
Iran. (email:m_masoumi @eetd.kntu.ac.ir, m.mahdizade@yahoo.com)

By using a modified field multiplier and two squarer
modul es for separating the paths in which squaring is repeated
severa times we have designed an efficient architecture for
the Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) [5].
In the design of the ECC processor, we have separated
sequentialy executed operations into parallel operations and
have carefully reordered paths to divert operations in the
critica path to noncritical paths in order to minimize the
combinatoria delay of the critical path. The architecture of the
ECC processor has been designed in such a way that the
calculations of point addition are separated and are performed
independent of the key which in turn considerably reduces the
processing delay. The results we obtained show that by using
the mentioned opti mization techniques and by implementing a
modified G-bit digit serid finite-field multiplier, with G = 41
our proposed design is able to compute GF(2'%) elliptic curve
scalar point multiplication operations in 11.92 ps with the
maximum achievable frequency of 251 MHz on Xilinx Virtex-
4 (XC4VLX200) while 19606 dlices or 22% of the chip areais
occupied which makes the design suitable for high speed
applications. The organization of the article is as follows: In
Section 2, abrief introduction of the mathematical background
of ECC is presented. In Section 3, the agorithm optimization
decomposition in parallel and resource occupation for
implementation of the modular arithmetic logic unit and the
finite field arithmetic units in hardware are detailed. In Section
4 the proposed architecture for ECC processor isillustrated. In
section 5, the implementation results and performance
obtained are compared with those in other published works.
Finaly, in the conclusions we summarize the results of our
discussions.

I.MATHEMATICAL BACKGROUND

A. Mathematical Background

It has been turned out that the form of cubic equation
appropriate for eliptic curve cryptographic applications which
has been recommended by NIST is[1, 6]

y2+xy= x>+ ax? + b (mod P(x)))

where it is understood that the variables x and y and the
coefficients a and b are elements of GF(2™ and calculations
are performed in GF(2™). Let us consider the finite field
GF(2'%) generated using the irreducible polynomial
P(x)= x13 +x"+x+x3+1l. This is a NIST
recommended field for ECC applications. An édliptic curve
group over GF(2™) consists of the points on the corresponding
elliptic curve, together with a point at infinity, 0. The set of
points that satisfy the Eq. (1) together with the element O
forms an addition Abelian group with respect to the eliptic
point addition operation. 0 serves as the additive identity.

553

International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:5, 2012

Thus,0 = -0 and for any poinP onthe curveP + 0 = P and

P + (-P) = 0. It can be shown that a finite Abelian group can

be defined based on the #&in(a,b), provided thab # 0. The
rules for addition can be stated as follows. FbpaintsP, Q
€ E,m(a,b).

1H)P+0=P.

2) If P=(xp,yp), then —P + (xp,yp) = O. The point
(xp, xp+yp) is the negative aP, denoted ask

3) If P=(xpyp)and Q =(xq,y,) With P # Q and
P #—Q,thenR =P+ Q = (xg,yg)is

determined by the following rules:

xp= A+ A+ xp+ x4+ a
Yr=A(Xp + Xg) +Xgp + Yp

()

Yot yp

XQ+ xp

4) If P = (xp, yp) thenR = 2P = (xg,yz) is determined by
the following rules:

Xxp= A2+ A+a
Yr=xp+ (A + Dxg

whereld =

(3)

where
+7P
Xp

A=xp
B. Elliptic Curve Cryptography
It has been shown that the points on an elliptivewan be
represented using either two or three coordindtesffine-
coordinate representation, a finite point &{GF(2") is
specified by two coordinates y £ GF(2" satisfying Eq. (2)
and (3). We can make use of the concept of a pgregeplane

over the fieldGF(2") [2]. In this way, one can represent a

point using three rather than two coordinates. Thgven a
point P with affine-coordinate representatiany there exists
a corresponding projective-coordinate representatioy and
Z such thatP(x;y) = P(X;Y;Z).As a means of avoiding the
expensive field inversion operation, it is more \wamient to
work with Lopez-Dahab (LD) projective coordinatehigh is
highly attractive for hardware implementatiori$ie Lopez-
Dahab algorithm is shown in Fig. 1.

INPUT: k= (ke1, - - ., K, ko)2 with k-1= 1,P = (xp, yp) € E(F,™).
OUTPUT:kP.
1. Xy Xp, Z1+1, Xoe—xp +b, Zp—x%. {Compute P,2P)}
2. Fori fromt -2 downto 0 do
2.1 Ifk =1 then
T—Zs, Zy—(X1Zs + XoZ1)?, Xoe— Xp Zy + XiXoT Zo.
TeXo, Xoe—Xo* +b25%, Zpe—T 22,2
2.2 Else
Te—Zs, Zp—(X1Zs + XoZ1)?, Xo— Xp Zo+ X XoZi T .
Te—Xq, Xye=Xi* +b2%, ;T 22,2,
3. Xa—Xo/Z1.
4. ys—(%o BXIZ)[(Kat X Z)Xet X Zo)+ (BHY)(Z DI X
ZZ) " +ye.
5. Return X, ys)

Fig. 1 The Lopez-Dahab scalar point multiplicatawer GF(2™) [4]

I1l. HARDWARE ARCHITECTURESFOR FINITE FIELD
OPERATIONSOVER GF(2")

A.Finite Field Reduction

Assuming that we have already computed the product
polynomialD(x)= A(x)B(x)and we want to obtain the modular
product ofC (x) such that

C(x)=D(x) mod P(x) 4

Recall that the polynomial produ€t and the modular produc;
have2m-1landm; coordinates, respectively, i.e.,

D = [dym-2,dam-3, » Ams1, Ay oo, dq, dol;
C=lcm-1,Cm—2, - €1, Co; (5)
One of the most efficient approaches for hardware

implementation is reduction in finite fields usinfast
reduction algorithm corresponding to the field paignial.

Fig. 2 represents the implementation of the redacthodulo
P(x) used in this article. It has been assumed that the
maximum degree oD (x) is equal t0162+G in which the
sentences with degreg63 <i<162+G are mappedo the
sentences with degrée 163.

Input: D = [dy62+6) 16146 -+ » d1, dols
P(x) =x1%3 +x7 +x®+x3 + 1;

Output: = [c162) C1615 5 €1 Cal;
if G=0 then
C «—D;
else

[c162 s -, 6] < [di62-Gr) dol;

[C671 e

fori from 1 toG do

Ci-1 < Ci-1 XOT digzyi-1;

Capi-1 < C34i-1X0T dyg34i—1;

Cot+i-1 < Co+i—1 XOT dig3+i-1;

C74i—1 < C74i-1 XOT digzii—1;
Return C;

Fig. 2 Reduction algorithm fa(x) = D(x) mod P(x).

B.Finite Field Multiplication

Field multiplication is by far the most costly drtetic
operation which directly affects the working frequg and
speed of the ECC processor [2]. One can make atdspea
trade-off by using a serial-parallel strategy, ifiet the
multiplication of two arbitrary field elements is@mplished
by using a procedure inspired in the well-known itdig
serial/parallel (LSD) finite field multipliers. Ithis work, we
have designed LSD multiplier directly at digit-lévBased on
[7], LSD multiplication algorithms are classifieds deast
significant digit (LSD) first and most significadtgit (MSD)
first algorithms. It has been shown that the LSBtfalgorithm
consumes fewer gates and has shorter critical gatipared
with the MSD first algorithm. Various approachewvé&deen
proposed for efficient implementation of the LSD Itiplier.
With digit sizeG, the total number of digits iGF (2™) will be

n ="/l | |
Assumed = Y70 a;a’ andB = Y7 bya’ such that

554

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

G-1
[Zbgﬂ-ﬂ-a}' 0<i<n-2
j=0

B; = m-1-G(n-1) (6)

Z bG*Hjaj i=n-—1

=0
C = A*Bmod P(x) = X5 ;a/

<BOA + By (Aa® mod f(x)) + B,(Aa® - a® mod P(x))

+B,_ (AaG*(n—z) - a® mod P(X))) mod P) (7)

The LSD agorithm is represented in Fig. 3.

Input: A,B € GF(2™)
Output: C e GF(2™), C= AB over GF(2")
Set: A®=a,09=0,n=["/]
for i from1tondo
1) AD = AGDg6 mod P(x),
2) DO = 4D, Bi_, + pi-1

Where
AD = Z;n:-01A]gi)aj
D =ymt6-24Pq) and
5, = Z?i&fjc*i+£al 0 ‘S isn-2
271:01 G+(n-1) bG*i+ja] i=n—1
end for

3) Return € = D™ mod P(x)

Fig. 3 The LSD multiplication algorithm [7]

Consider the two-step classical multiplication in GF(2™)
which involves in a polynomia multiplication and a
reduction modulo an irreducible polynomial. The product of
the polynomials A(X) and B(x), D(X)=A(X)xB(x), is a
polynomia with maximum degree 2m—2 and can be written
asfollows.

k
Z aibk_i; k=0,,m_1
i=0

D= 2m-2
Z, . Ak—i+(m-1)bi—(m-1); kK =m, - ,2m — 2
i=

®)

We implemented the above scheme in a matrix form. Thus,
we put A in a three-section multiplicand matrix. The upper
part is a lower triangular submatrix. The middle part is a
(m—-G+1)xG submatrix. The lower part is an upper
triangular submatrix.

a0 i i
iy oy L] n

I L9
fr Ua m L]
Ooj WGy w " o

by iy
ag L b L L]
i K i
Moi | lad, = Ko Mad | Ha L
r o) e (9)
1] (1 [, = [ST
il (1] [[v
.

[TR - 0 oaa

By converting Eq. (8) into matrix form Eq. (10), the G"
term of polynomia D(x), dg, can be expressed as Eq. (10).

dg = ag_1by + ag_1by + agbg_y (10)

where G is the digit size of the underlying LSD multiplier.
Asitisseenin Fig. 3, there are three steps for implementing
the LSD agorithm. Steps 1 and 2 of the LSD multiplier asis
represented in Eq. (11) can beimplemented in parallel.

AD = AED g6 mod P(x) ¢5))
D® = AG-D g, 4 pl-D

Step 1 of the LSD algorithm reduces n+ G bits to mbits and
step 2 shows the partid products. The fina result is obtained
in step 3 in which m+G-1 bits are reduced to m bits. The
implementation architecture for different stages of the LSD
multiplier is depicted in Fig. 4. Step 1 is performed by the |eft
side of Fig. 4, step 2 is performed by the multiplication
function and step 3 is performed by the right side of Fig. 4.

C.Finite-Field Multiplicative Inversion

Based on Fermat's Little Theorem (FLT) and using an
ingenious rearrangement of the required field operations, the
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was
presented in [5]. The main advantage of ITMIA algorithm in
comparison with the Extended Euclidian Algorithm is that it
does not require a separate inversion module. When
computing the multiplicative inverse using ITIMA algorithm,
81 sguaring must be iteratively performed in the algorithm’'s
addition chain. These iterative computations are done
sequentialy and therefore further parallelism is not possible
[2]. Now, to design an efficient multiplicative inversion block
based on the ITMIA, it is necessary to think how to reduce its
critical path. In other word, the critical path of the multiplier
and the critical path of the inversion block should be aong
each other. If we use only one squarer modulein theinversion

555

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

A'(m-1:0)

3

A(m-1:0)

| /& inic

Y
[m-bit register |

D-1 Y

y

Y

B{m-1:0)

! ~— shift_right |D—bil shift regiswEl:

B (D-1:0)

inie
shift_right

Y

AN m-1:0)

¥ v

Multiplier Function|

Reduction Function

Citm+D-2:ﬂ)

T

Y

/

0

| m+D-1 bit register |

C N m+D-2:0)

inic

shift_right

D-2

L

Y

Reduction Function

'

Z (m-1:0)

Fig. 4 Block diagram of the LSD multiplier implented in this work

D.Finite-Field Multiplicative Inversion

Based on Fermat's Little Theorem (FLT) and using an

ingenious rearrangement of the required field dparg, the
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA was
presented in [5]. The main advantage of ITMIA altfon in
comparison with the Extended Euclidian Algorithmthsit it
does not require a separate
computing the multiplicative inverse using ITIMAgalrithm,
81 squaring must be iteratively performed in thgoathm’s
addition chain. These iterative computations arenedo
sequentially and therefore further parallelism @ possible
[2]. Now, to design an efficient multiplicative iaxsion block
based on the ITMIA, it is necessary to think howeduce its
critical path. In other word, the critical path thie multiplier
and the critical path of the inversion block shoblg along
each other. If we use only one squarer moduleérirthersion
block, this module should accomplish squaring ffar input of
the inversion block, output of the multiplier andaits own
output (for consecutive squaring) and therefore avweeforced
to use a 3 to 1 multiplexer at the input of theasgu Output
of this squarer together with a number of comboratl gates
such as AND, OR, and NOT gates are connected tinfhe
of the multiplier. As a result of such architectutiee critical
path will place on the squarer which will creatbaitleneck
for reducing the clock cycle time. We can breals ttiitical
path by changing the architecture so that a 2 naultiplexer
is used in place of a 3 to 1 multiplexer at thet afsadding
another squarer in the inverter architecture. Tis¢ $quarer is
used for squaring at stages 1, 3, and 8 and alsthéofinal
stage squaring, while the other required squaiimgsable | is
accomplished with the second squarer, since atdges 1, 3,

0

inversion module. When

and 8,u, = 1 and only one squaring need to be performed

while at the other stages several squaring areopeed (see
appendix for more details). The schematics of thsighed
architecture for multiplicative inversion over fiai field
GF(2'%) is shown in Fig. 5.

u; rule
1 R
2 2u,
4 2u,
5 uytu,
10 2uy
20 2uy
40 2ug
80 2Us
81 uytu,
162 2ug
In_sq re_sq
v
e o
8 bit counter [reset
f

counter

TABLE |
B,(A) COEFFICIENTGENERATION FOR M1=162[2]

[, @] B, @

[Bug @]
(B @]
(B, @]
[us@]”"
B, @]
[y @]

[Bu (@]
By, @]
By (@]

2u6

2%

2us

* Buy (@)
* B, (@
* Bu, (@
*Bus (@)
*Bu, (@
* Pus (@)
*Bug(@)
* Pu, (@)
*Bus (@

Bu (@) = a®"?

Buy(@) = a?' ™
B (@) = a7
Bu,(@) = a?'™
Buy(@) = a7
Bu,(@) = a®’~
Bus(a@) = a?**1
Bug(@) = a?*~
Bu, (@) = a?*~
Bug(a) = "7

Buy (@) = a7

Inversion_in

Inversion_in

r2

Squarer

rsq
mull_sq

Squarerl

Inversion_out

in_sq
mult_sq

Multiplier

1

done

[start
= resel
[=clk

Fig. 5 Schematic of the designed architectureifareffield
multiplicative inversion

556

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

IV. THE PROPOSEDARCHITECTURE FOR THEECCPROCESSOR

As was mentioned, the most
architectural timing improvements is to reorgaranel reorder
the critical path such that logic structures arplemented in
parallel and to divert operations in the criticatlp to a
noncritical path. This technique should be usednegher a
function that currently evaluates through a sesfng of
logic can be broken up and evaluated in paralléiis
assumption can dramatically speed up the implertientaf a
large design. For the design of architecture foICEStalar
multiplier, two different parts are considered; flist part that
involves in calculations in the affine coordinaystem and the
other part that involves in the calculations fomweerting
projective coordinate to affine coordinates. Fobjgctive
calculations, parts 1 and 2 of the LD algorithm @rasidered.
In the design of this part of the processor, thenloer of
computational units is chosen in such a way th&wal
parallel computations to be performed. Henee, use three
field multipliers to implement the main loop of thégorithm
in which point addition and doubling are carriedt.o80,
according to section 2.1 of the LD algorithm, at first stage,
the three multiplicationsX,Z,, X,Z, TZ, (T— X;) are
performed in parallel by using three multipliersi@sshown in
Fig. 6, and then, the three other multiplicatiors Z1,

X:X,T Z, (T—2y), bZ5 are accomplished in parallel at the

second stage. Hence, the delay of each iteratiaedaced
from six field multiplication delay to two field nftiplications.
For this part of the process@computations in the projective
coordinates) we have used five squarers and tweradeds is
shown in Fig. 6. Four squarers are used for comguf, X;*,
Z,* andX,* while the fifth squarer is used f6X;Z,+X,Z,)>. In
addition, It is essential after the first field riplication to
save the result afX;Z,+X»Z,)? and &*+bZ,"%) in the registers

t; and t, respectively for the later calculations. The mos,

important modules in the design of the scalar pointtiplier

processor are field multiplication, field inversiand field

squaring. The key point here is that the criticahpmust be
placed on the longest path among these modulese Sire
inverter module was designed such that its critigath is
coincided with the multiplier's critical path andnee the
multiplier's path is larger than the squarer’s pdtte critical
path need to be placed on the multiplier. Pleaseadhat if

resource sharing is used in implementing the fejdarer, the
number of required computational elements will dase;
however, sincdor squaring of different values we aferced

to use multiplexers at the input of this computaaiounit that
are controlled with conditional statements, theical path
length will increase. To avoid long critical patlhe

architecture should be designed synchronous andising

combinational logic. In addition, in the design tfie

projective calculations, separate calculations hawe been
performed for using the initial values of part 1 tbie LD

algorithm, since if further computational modules designed
for these calculations, the complexity of the catipath and
the amount of required area will increase. We caaida
additional or unnecessary calculations by usingutations of
part 2 of the algorithm for obtaining the resutis part 1.

In the proposed design, calculations of part 1 nieede

important strategy sdperformed whenever the most significant bit of key is 1.

So, whenk; = 1, if the values of Eq. (12) are used in the
calculations of part 2.1, then the required initialues of the
LD algorithm are obtained in accordance with paof the LD
algorithm.

X1, Z10, Xoe— Xp, Zo1 (12)

The results of the calculation in section 2.1 oé thD
algorithm are obtained as Eq. (13) by using theieslof
Eqg. (13).

Xy Xp, Zy—1, Xoe— Xo™+b, Zpe— X5 (13)

As itis seen in Fig. 7, whenever the key bit isado 1, the
values of ‘1, ‘0’, andxp are entered into the multiplexers to
connect to the appropriate inputs to make the tesmEq.
(13). After designing the computational units fawojpctive
coordinates, its input and output ports should benected
together based on the key bits to complete thatiter in the
LD algorithm. When designing the architecture for
calculations in the projective coordinate systenpant 2.1 of
the LD algorithm, to set up part 2.2 of the aldurit which
works with zero bits of the key, it is enough tcagiX; andZ;
with X, andZ, respectively when the key bits change. So, we
need to use a 2 to 1 multiplexer that is controliéith the key
bits. Therefore, in order to avoid long criticaltipaanother
strategy should be considered. As it is seen frdra t
architecture of Fig. 7, in order to prevent furtitemplexity
when swappingX; and Z; with X, and Z,, the input-output
paths of point addition and doubling have been rs¢pd from
each other. The idea behind this subject is to ecnthe
outputs of point addition and doubling to the irpuatf the
dder, independent of the values of the key.bits example,
if we consider the following point addition opemti for
ki =1, inputs to this operation akg, X,, Z; andZ, and outputs
are saved iX; andZ;.

T2y, Zy— (XaZo+XoZy)?, X XoZy+ %X T2, (14)

When a key bit changes frokn =1 to k = 0, this change
will lead to change in the term¥;Z,+X,Z; and X;X;TZ.
However, since whenever the value of any key bénges
only X; and Z; are swapped withX, and Z,, the terms
X1Z,+X5Z; and Xy X,TZ, will remain unchanged. So, the point
addition operation can be repeated in the itergtia of the
algorithm without involvements of the key bits amly after
the end of the loop, the registers are swapped &dtth other.
The point doubling operation fok; = 1 is performed in
accordance with Eq. (15).

Te—Xo, Xo=Xo* +02Z5*, Zpe—T °Z;7 (15)

557

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

AddinX, | Add in-Z, Add inXy{ Add in-Z,

Xp

selt) fse

Dob in-Z Dob in-X,

" st
done| Multiplier! iy dond Multiplier2 = one] Multiplier3 et et
- [l g™ | 1 e clk
A
1= (0,0...0,1) Xp 0= (0,0...0) 1= (0,0...0,1)
by |
initial \1;1/4 initial Wiuinm initial
Add outZ; Add out-X» Dob outZ Dob out-X;
Fig. 6 The architecture designed for the computatiopoint addition and point doubling in proje&igoordinates of the LD
algorithm
This operation fork, = 0 is done by swappin, and Z, ”“";“""v TN G5EZ. ARdenEksl AddoneZ; X &

with X; and Z; respectively. Therefore, output registers are [rese < | : ol J [j < : < | * <"
swapped in order to provide proper inputs for thanp | '
doubling operation based on the key bits in thexitee part of
the LD algorithm. In order to realize that when ftinéial e
values are entered into the calculations and alé®taware of Architecture designed in Fig . 10 D
the iterations of the LD algorithm based on the kéy, it is : -

necessary to combine the module designed in RigtiBa key 1_ Add bue X g |Pobent, L Adout s DeboutZs
shift register in a new structure. The aim of thisrk is that

the inputs and outputs of the architecture of Bigre properly Ml\ okl "R L “.x e O B i
connected to each other when all values of the &y
scanned. The new design is shown in Fig. 7. Thergkpart

of the processor involves in calculations that @whv

projective coordinates to affine coordinates. Iblwious from

the LD algorithm that parts 3 and 4 of this alguritrequire 4 7 architecture of point addition and doubliteration based on
many calculations to be implemented. In additionstof the the key bits

calculations are performed in a sequential mankgrossible

sequence of the instructions from standard Prejedt affine As was mentioned, in order to keep the criticahpan the
coordinates is proposed in [2] in which only oneeirsion unit multiplier, we need to design this part of the aipon with

is used for converting projective coordinates tdinaf combinational logic as much as possible. Anothesr@gch
coordinates. As it is seen form the LD algorithmy bfor the implementation is based on step 4 of thealdbrithm
calculating &Z;Z,)™, another inversion,X,/Z;, can be asitis seen in Eg. (16).

calculated using xezle)*(xpzlzz)‘ . In this approach, the

number of field inverters is reduced with the coSincrease y3<_ (o Xa/ Z0)[(Xa+XZe) (Kot XeZo) +(X ™+Yp) (Zs Z2)]

in the number of field multipliers. However, consithg the (x.2,2,)™ +yp (16)
sequence of the algorithm and due to repeatedraéfeto

these multipliers, if we use several field muligpé the length There are two field inversions and five field mplitations
of the critical path will increase. For implemerfirthis in Eq. (17). One way to implement the above funci®oto use
algorithm, ten field multiplications should be pmrhed. In two field inverter and three parallel field muligal units.

addition, for performing twelfth to seventeenthpst;ewe need However, this causes that these multipliers to iermaused
to wait for the calculation ofxsZ;Z,)™" and therefore a long in other stages since the results of multiplicatiom the next
computational delay will be inevitable. As it isesefrom the steps are dependent to the results of the prewiteps. This
second part of the scalar multiplier processor Wlire/olves subject will cause an unbreakable delay which (itsi
in converting projective coordinates to affine atinates, further speed up. Another design that leads to reffieient

there are many computations that should be doneeséally.

Add in-X,; Add in-Z, Add in-X; |Addin-Z; Dob in-X; Dob in-Z,

558

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

implementation is to enteiZ,Z,) " in the square brackets of
Eq. (16). This will result in Eq. (17).

¥ (Xp PXUZ)[(X/ Zy+ %) (Kol Zo+ Xo)+(Xp 2+Y)] (><p)’1(+1 %

Therefore, first we calculat® ™, Z,"* andxe ~* using three
parallel field inverters concurrently and then iewpkent five
required multiplications of Eqg. (17) by using twaultipliers
that are implemented in parallel in three stagdso Afor this
part of calculations we also need five adder unitse final

calculations for converting projective coordinatmes affine

coordinates. In order to decide how efficient aigiess, we
Mbit
- ..) Though; —)
utilize the efficiency defined aso:g—m(#) as a figure of
re

slices .
where defined as

merit, Throughput is
working frequency XNumber of Bits
g [requency / and hardware area can be

Number of Cycles
defined as number of four inputs LUTs as well aBGlices.

Table 1
multiplier. The last column in this table shows #igorithmic
efficiency defined as throughput/area. It would bwre

value of variablex in affine coordinate system in accordanceccurate to use throughput/#slices, but slice cowdre not

with part 2 of the LD algorithm ig;=X;/Z; for which we have

reported by the authors of some other designs.€efbrer, we

to calculatez,™ by using an inverter and then multiply thehave used throughput/#LUTs. In Table Ill, a numbEhigh

result byX;. SinceX;*Z,* is used for the next multiplication,

speed elliptic curve processors (ECP) are compaitdthe

(Xo/Zi+xp)* (Xl Za+xp), it is necessary to save the result offroposed one. As it is seen from table I, theppsed design

X.*Z,"%. However, saving this value in a register and gisin
in next clock cycles will increase the critical lpaffo avoid
this, this register should be eliminated. Sincéhimconversion
of coordinates, implementation of the multipliemva been
done in a parallel combinational manner (i.e.,
multiplications are performed in three stages using
multipliers), in the second stage of multiplicatitre result of
first multiplication will be lost. However, in thinird stage of
multiplication one of the multipliers is unused acould be
used for calculating*Z,™*. So, the multiplicatio®*Z,™* is
repeated in the third stage to eliminate the needdving data
in this section of the processor. Finally, one lté tmportant
steps that must be considered in the design odsoalltiplier

is to select the word lengtks). Due to iterative calculations in
the projective coordinate system (part 2 of thedl§orithm),
fast performing of calculations is very importantthe design
of an efficient ECC processor. So, choosing lagealues for
the multipliers used in the design of the firsttpaf the
processor (i.e., the multipliers in Fig. 7 or poijee
calculations) will be more appropriate. The worddths that
were used in this part of the processor@s= 41. Since
calculations of the third and fourth part of the BEyorithm
are used only once at the end of the algorithmthark is no
iteration as part 2 of the algorithm, there is m®d to select
large values folG. Instead, since there are relatively a larg
number of computational units in this part of thegessor, a

relatively small value foiG should be chosen to reduce the

required implementation area. The word’s lengthdusethis
part of the processor G,=11.

V. IMPLEMENTATION RESULTS

is more efficient than the other designs reportedhe open
literature expect one of the proposed schemestegpor [15].
Please note that although that design utilizes #ir@2s less
LUT compared with our design, it is almost 4 tinsswer

fivéghan our design wittG = 41. The design proposed by Kim

et.al. in [19] is almost 15% faster than our deskgrt in
consumes 25% more resources than our implementation

The ECC processor was implemented using synthdsizat

VHDL codes on Xilinx XC4VLX200. Performance of the
proposed scalar multiplication for is shown in &all. The
proposed design completes one scalar point muiifdin in
326 * ([m/G,1)+12 = (Jm/G,])+1509 cycles. The number of
required clock cycles for ECC point multiplicatiowith
G; = 41 andG, =11 is 2993 cycles. The tern{nt/G,]”
indicates the number of cycles required to perféinite field
multiplication in part 2 of the LD algorithm or callations in
the projective coordinate system. The ternfim/G,]"
indicates the number of cycles required to perféinite field
multiplication in parts 3 and 4 of the LD algorithor

TABLE I
PERFORMANCE OF THE PROPOSED SCALAR MULTIPLIER
Freq. Time No. of Area Area ..
G & (MHz) (us) cCycles (Slices) (LuT) Ereiency
41 11 251.054 11.92 2993 19604 36727 372.1
TABLE Il
PERFORMANCE OF THESCALAR MULTIPLIERS
Freq. Time Area Area -
Ref. FPGA (MHz) (us) (Slices) (LUT) Efficiency
[8] XCV400E 76.7 210 - 3002 265
[9] XCV2000E 66.4 144 - 20068 56
Vinexl|
[10] V8000 90.2 106 18079 - 44
18314
[11] XCV2600E 46.5 63 +24 -
RAMs
[12] XC2Vv60(-4 54 6C - -
e Virtex Il)
[13] pro 30 100 280 8450
Virtex-4
[14] VLX200 153.9 1955 16209 26364 316
[15] XC2Vv2000 100 46.5 3416 7559 532
[16] XC2v6000 93.3 34.11 13376 2812 340
Virtex
[17] >000E 66 75 - 10017 70
[18] Stratix Il - 49 - -
[19] XC4VLX80 143 10 24,363 -

VI. CONCLUSIONS

A high-performance ECC processor was implementetjus
FPGA technology. We used a careful parallel impletaigon

presents performance of the proposed scala

559

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

strategy to reduce the critical path of the Itohjii’'s Finite-
Field Inversion. In addition, in the design of tHeCC
processor, by using three parallel multiplier uaitsl reducing

the

number of unused cycles in each stage we rddie

processor delay which is mainly related to the Wations in
the projective coordinate system. Separation afitpdoubling
path from point addition path and using approprigiéal
values for the initial setup of the processor rediuche
complexity of the processor. The results show tha
designed architecture can be well suited to thdiagjons
that require high performance.

(1]
(2]
(3]

[4]
(5]

(6]
(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

D. Hankerson, A. Menezes, S. Vanstone, Guide tiptiell curve
cryptography, Springer, 2004.

Rodriguez-Henriquez etal, Cryptographic Algorithms on
Reconfigurable Hardware, Springer, 2006.

T. Wollinger, J. Guajardo, and C. Paar, “Securityli®GAs: State-of-
the-art and Implementations Attacks,” ACM Trans. &mbedded
Computing Sys., 3(3):534- 574, 2004.

J. Lopez and R. Dahab, “Fast multiplication onpgiti curves over
GF(2m) without precomputation,”, CHES, MA, USA, 299

T. Itoh and S. Tsujii, “A Fast Algorithm for Compuog Multiplicative
Inverses in GF(2m) Using Normal Basis,” Informatiamd Computing,
78:171-177, 1988.

W. Stallings, Cryptography and Network Securityh 4&d., Prentice-
Hall, 2006.

S. Kummar, T. Wollinger, and C. Paar, “Optimum Digerial GF(2m)
Multipliers for Curve Based Cryptography,” IEEE fsa Comp., vol.
55, no 10. 2006

G. Orlando and C. Paar., “A high-performance reigoméble elliptic
curve processor for GF(2m),” CHES, MA, USA, 2000.

N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. &upt Finchelstein, E.
Goupy, and D. Stebila, “An end-to-end systems aggoto elliptic
curve cryptography,” CHES, CA, USA, 2002.

K. Jarvinen, M. Tommiska, and J. Skytta, “A scadahrchitecture for
elliptic curve point multiplication,” ICFPT, Brislo@, Australia, 2004.

F. Rodriguez-Henriquez, N. A. Sagib, and A. DiazeRe “A fast
parallel implementation of elliptic curve point mplication over
GF(2m),” Microprocessors Microsyst., vol. 28, p@93339, 2004.

R. C. C. Cheung, N. J. Telle, W. Luk, and P. Y. &heung,
“Customizable elliptic curve cryptosystems,” IEEEams. Very Large
Scale Integr. (VLSI) Syst.”, vol. 13, no. 9, pp4B3-1059, Sep. 2005.
K. Sakiyama, L. Batina, B. Preneel, and |. Verbaeaé “Superscalar
coprocessor for high-speed curve-based cryptograpfGHES,
Yokohama, Japan, 2006

W.N. Chelton and M. Benaissa, “Fast elliptic cumryptography on
FPGA, "IEEE Trans. on Very Large Scale Integra(ghSI) Systems,”
vol. 16, no. 2, Feb. 2008, pp. 198-205.

B. Ansari and a. Hasan, “High-Performance Architextof Elliptic
Curve Scalar multiplication”, IEEE Trans. on Comgal. 57, No. 11,
pp. 1443-1453, Nov. 2008.

Yong-ping Dan et. al., “High-performance hardwarehéecture of
elliptic curve cryptography processor over GF(2163)Zhejiang Univ.
Sci., A 2009 10(2):301-310

J. Lutz and Hasan, A., “High performance FPGA baslkidtic curve
cryptographic coprocessor,” ITCC, Las Vegas, USfr.5-7, vol. 2,
pp. 486-492, 2004,

K. Jarvinen and J. Skytta, “On parallelization @fHispeed processors
for elliptic curve cryptography,” IEEE Trans. on ielLarge Scale
Integration (VLSI) Systems, 16 (9) (2008) 1162-1175

C. H. Kim, S. Kwon, C. P. Hong, “FPGA implementati@f high
performance elliptic curve cryptographic processeer GF(2163),” J.
of Sys. Architecture, 54 (10) (2008) 893—-900

560

