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Abstract—The paper presents a comparative performance of the 
models developed to predict 28 days compressive strengths using 
neural network techniques for data taken from literature (ANN-I) and 
data developed experimentally for SCC containing bottom ash as 
partial replacement of fine aggregates (ANN-II). The data used in the 
models are arranged in the format of six and eight input parameters 
that cover the contents of cement, sand, coarse aggregate, fly ash as 
partial replacement of cement, bottom ash as partial replacement of 
sand, water and water/powder ratio, superplasticizer dosage and an 
output parameter that is 28-days compressive strength and 
compressive strengths at 7 days, 28 days, 90 days and 365 days, 
respectively for ANN-I and ANN-II. The importance of different 
input parameters is also given for predicting the strengths at various 
ages using neural network. The model developed from literature data 
could be easily extended to the experimental data, with bottom ash as 
partial replacement of sand with some modifications.  

 
Keywords—Self compacting concrete, bottom ash, strength, 

prediction, neural network, importance factor. 

I. INTRODUCTION 
ONCRETE is essentially a mixture of paste and aggregate. 
The paste, comprised of cement and water, binds the 

aggregate into a hard mass; the paste hardens because of the 
chemical reaction of the cement and water called hydration. In 
concrete mix design and quality control, the uniaxial 
compressive strength of concrete is considered as the most 
valuable property, which in turn is influenced by a number of 
factors. Various factors affect the concrete mix design like to 
designate a concrete as HPC, it should possesses, in addition 
to good strength, several other favorable qualities. The 
water/cement (w/c) ratio in the concrete is lower than normal 
concrete which requires special additives in the concrete, 
along with a superplasticizer to obtain good workability. 
Usually special cements are also required. The type of 
aggregate is important to obtain high strength. The grading of 
the aggregate influences the workability. The order in which 
the materials are mixed is also important for the workability of 
the concrete. Strength performance remains the most 
important property of structural concrete, from an engineering 
viewpoint. The strength of the concrete is determined by the 
characteristics of the mortar, coarse aggregate, and the 
interface. For the same quality mortar, different types of 
coarse aggregate with different shape, texture, mineralogy, 
and strength may result in different concrete strengths. The 
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tests for compressive strength are generally carried out at 
about 7 or 28 days from the date of placing the concrete. The 
testing at 28-days is standard and therefore essential and at 
other ages can be carried out if necessary. If due to some 
experimental error in designing the mix, the test results fall 
short of required strength, the entire process of concrete 
design has to be repeated which may be a costly and time 
consuming. The same applies to all types of concrete i.e. 
normal concrete, self-compacting concrete, ready mixed 
concrete etc. It is well recognized that prediction of concrete 
strength is important in modern concrete constructions and in 
engineering judgments. 

The successful development of self-compacting concrete 
(SCC), which  is defined as the type of high performance 
concrete, filling all corners of formwork without vibration, 
and having good deformability, high segregation resistance 
and no blocking around reinforcement, must ensure a good 
balance between deformability and stability. It requires 
manipulation of several mixture variables to ensure acceptable 
flowable behaviour and proper mechanical properties. Also, 
absence of theoretical relationships between mixture 
proportioning and measured engineering properties of SCC 
makes it more complex.  

Within last decade, researchers have explored the potential 
of artificial neural networks (ANNs), a nonlinear modeling 
approach, in predicting the compressive strength of the 
concrete, due to its ability to learn input-output relation for 
any complex problem in an efficient way. Artificial neural 
network (ANN) does not need specific equation form. Instead, 
it only needs sufficient input-output data. It can also 
continuously retrain new data to adapt new data conveniently. 
ANNs have been investigated to deal with the problems 
involving incomplete or imprecise information. The capability 
of artificial neural network to act as universal function 
approximators has been traditionally used to model problems 
in which the relation between dependent and independent 
variables is not clearly understood. When the number of 
components increases, the relationship between variables 
becomes usually complex and the use of a nonlinear 
modelling approach is required. In recent years, ANNs have 
been applied to many civil engineering applications with some 
degree of success. ANNs have been applied to geotechnical 
problem like prediction of settlement of shallow foundations 
[1]. Researchers have also used ANN in structural engineering 
[2]. Some researchers have recently proposed a new method 
of mix design and prediction of concrete strength using neural 
network [3, 4]. Also, several works were reported on the use 
of neural network based modelling approach in predicting the 
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concrete strength [5-14]. Some attempts have been made to 
describe the compressive strength properties using traditional 
regression analysis tools and statistical models [15-17]. 
However, the development of neural network models for 
predicting the strength of SCC has not been fully investigated. 
Thus, it was required to develop some suitable methodology 
to estimate the compressive strength of self-compacting 
concrete based on its constituents at the time of design.  

Therefore, the objective of the present study was to 
examine the potential of ANN for predicting the 28-day 
compressive strength of SCC mixtures, with data obtained 
from literature. These models were further applied to 
prediction of strength at 7, 28, 90 and 365 days to the data 
obtained experimentally. The complex relationship between 
mixture proportions and engineering properties of SCC was 
generated based on data obtained experimentally. It was 
observed that the neural network could effectively predict 
compressive strength in spite of intricate data and could be 
used as a tool to support decision making, by improving the 
efficiency of the process.  

II.  ARTIFICIAL NEURAL NETWORK  
Artificial neural network exhibit analogies to the way arrays 

of neuron function in biological learning and memory. The 
fundamental building blocks are units (‘nodes’) comparable to 
neurons, weighted connections that can be likened to synapses 
in biological systems. Nodes are simple information 
processing elements. The number of nodes in ANNs and the 
connection patterns of the nodes can vary. The total number of 
nodes in the input and output layers coincide with the number 
of input and output variables in the data set. The ideal number 
of nodes in the hidden layer has to be found through trial and 
error. It is known that more neurons give the ability to 
memorize and reduce the reasoning capability of the ANN. As 
a general rule, an ANN should contain the minimum number 
of neurons that are capable of simulating the training data. 
Each connection between nodes carries a weight representing 
some previous learning process. By varying these weights, the 
input-output relation can be simulated. The network has to be 
trained to reproduce this input-output relation, which is to find 
the optimal weights. 

Training consists of i) calculating outputs from input data, 
ii) comparing the measured and calculated outputs, and iii) 
adjusting the weights for each node to decrease the difference 
between the measured and calculated values. The accuracy of 
the predictions of a network was quantified by the root of the 
mean squared error difference (RMSE), between the measured 
and the predicted values, mean absolute error (MAE) and the 
multiple coefficient of determination, R2. 

2
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Where 
2)ˆ(∑ −= yySSE  and,

2)(∑ −= yySS y , y 

is the actual value, ŷ  is the predicted value of y, and y is the 
mean of the y values. 

Mean absolute error is the same as root mean square except 
using absolute differences instead of squared difference and is 
calculated in a similar way as root mean square error. 

The multiple coefficient of determination compares the 
accuracy of the model with the accuracy of a trivial 
benchmark model wherein the prediction is the mean of all 
samples. A perfect fit would result in an R2 of 1, and poor fit 
near 0. 

The design of an artificial neural network requires the 
determination of suitable architecture. A back propagation 
neural network based modelling algorithm requires setting up 
of different learning parameters (like learning rate, momentum 
etc), the optimal number of nodes in the hidden layer and the 
number of hidden layers so as to have a less complex network 
with a relatively better generalization capability. In most of 
the reported applications, selection of a number of hidden 
layers and the number of nodes in hidden layer is done by 
using a rule of thumb or trying several arbitrary architectures 
and selecting one that gives the best performance. Further, a 
suitable value of parameters like learning rate and momentum 
is also required for selected hidden layers and nodes.  

III. DATABASE  
The model’s success in predicting the behaviour of SCC 

mixtures depends on comprehensiveness of the training data. 
Availability of large variety of experimental data was required 
to develop the relationship between the mixture variables of 
SCC and its measured properties. The basic parameters 
considered in this study were cement content, sand content, 
coarse aggregate content, fly ash content, water-to-powder 
ratio and superplasticizer dosage. A database of 80 mixes 
from the literature was retrieved having mixture composition 
with comparable physical and chemical properties.  The 
exclusion of one or more of SCC properties in some studies 
and the ambiguity of mixture proportions and testing methods 
in others was responsible for setting the criteria for 
identification of data. The ANNs were designed using 80 pairs 
of input and output vectors for strength prediction, collected 
from various studies [16-21].The predicted results obtained 
from neural network were compared with the experimental 
values obtained experimentally. The training of ANNs was 
carried out using pair of input vector and output vector. Input 
vector consisted of mixture variables and an output vector of 
one element i.e. 28-day compressive strength in the ANN-I 
model. The complete list of data is given in Table I, where the 
name and the source of each specimen are referenced.  

In general, a good training data set should include 
comprehensive information about the characteristics of the 
materials behavior, since that the trained neural network will 
contain sufficient information to qualify as material model. 
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ANN-II model included 31 SCC compressive strength 
results, generated experimentally by the authors. The response  

 

TABLE I 
DETAILS OF THE DATA RANGE FROM LITERATURE 

No. of 
data 

Cement 
(kg/m3) 

Fly ash 
(kg/m3) 

Water/ 
Powder 

 

SP Dosage 
 (%) 

Sand 
(kg/m3) 

Coarse 
 Agg 

(kg/m3) 

Strength 
MPa Researcher 

18 183-317 100-220 0.38-0.72 0.20-1.00 470-919 837 11-42.7 Sonebi  (2004) 
21 160-280 133-232 0.39-0.43 0.10-0.60 808-1024 900 31-52 Patel et al. (2004) 
09 161-247 155-250 0.35-0.45 0.0-0.40 842-866 843-864 26.2-48.3 Bouzoubaa & Lachemi (2001) 
14 275-430 90-250 0.48-0.77 0.09-0.43 768-988 620-900 51.5-73.5 Bui et al.  (2002) 
18 249-400 0-96 0.55-0.87 0.12-0.75 718-1080 850 13.3-41.2 Ghezal and Khayat  (2002) 

 
 
models were valid for mixes made with water/powder ratios of 
0.41 to 0.62 that contain from 90 to 200 kg/m3 of fly ash in 
total powder content of 550 kg/m3. Coarse aggregate content 
was fixed at 588.59 kg/m3. Further, the cement content in 
these mixes was partially replaced by fly ash in varying 
percentages of 15 to 35% and fine aggregate content was 
partially replaced by bottom ash in varying percentages of 0 to 
30% in the total content of 912.60 kg/m3 of fine aggregates. 
Bottom ash was used with fineness modulus of 1.60 and bulk 
densities (loose and compacted) were 776 and 948 kg/m3 and 
specific gravity as 1.93 conforming to IS: 3812-2003 [22]. 
The sand was observed to conform to grading zone III as per 
IS: 383-1970 [23] with fineness modulus as 2.20 and bulk 
densities (loose and compacted) as 1590 and 1780 kg/m3 and 
specific gravity as 2.67. The objective was to replace fine 
aggregates partially with bottom ash, a locally available 
material. No comparison regarding the grading of fine 
aggregate and bottom ash was carried out. In the research 
work emphasis was on the replacement of fine aggregate with 
bottom ash, a locally available waste material. The particle 
size distribution of bottom ash was measured, of the particles 
100% were smaller than 56µm and 38% were smaller than 
31.3µm with average diameter of the particle size distribution 
was 33.4µm with standard mean deviation of 8.1µm. 

The data ranges for data given in Table III along with the 
ranges of the data from literature are listed in Table II. 

 
 

TABLE II 
RANGE OF PARAMETERS IN DATA BASE FOR ANN-I  AND ANN-II 

Parameters Data base Range 
(ANN-I) 

Data base Range 
(ANN-II) 

Cement (kg/m3) 160-430 350-460 
Sand (kg/m3) 470-1080 635-915 
Coarse aggregate (kg/m3) 620-900 590 
Fly ash  (kg/m3) 0-250 90-200 
Water-powder ratio 0.33-0.87 0.41-0.62 
Superplasticizer dosage 0-1.0 (%) 7.4- 11.15(kg/m3) 
Bottom ash (kg/m3) - 0-275 
Water (kg/m3) - 225-345 

 
 
 
 
 
 

TABLE III 
DETAILS OF THE EXPERIMENTAL DATA 

Mix 
no. 

Cement 
(kg/m3) 

Fly ash
(kg/m3)

Coarse 
aggregate
(kg/m3)

Fine 
aggregate
(kg/m3) 

Bottom 
ash 

(kg/m3) 

Water 
(kg/m3)

S.P. 
(kg/m3) w/p

1 350 200 588.59 912.60 0.0 241.6 9.91 0.4
2 350 200 588.59 821.34 91.26 276.2 9.36 0.5
3 350 200 588.59 730.08 182.52 321.7 8.81 0.5
4 350 200 588.59 638.82 273.78 341.6 7.16 0.6
5 380 170 588.59 912.60 0.0 234.4 9.91 0.4
6 380 170 588.59 866.97 45.63 252.6 9.20 0.4
7 380 170 588.59 821.34 91.26 268.9 8.81 0.4
8 380 170 588.59 730.08 182.52 306.1 7.71 0.5
9 380 170 588.59 638.82 273.78 333.1 7.16 0.6
10 410 140 588.59 912.60 0.0 233.3 9.91 0.4
11 410 140 588.59 866.97 45.63 247.5 9.10 0.4
12 410 140 588.59 821.34 91.60 265.9 8.23 0.4
13 410 140 588.59 775.71 136.89 280.4 7.97 0.5
14 410 140 588.59 730.08 182.52 298.3 7.70 0.5
15 410 140 588.59 684.45 228.15 301.5 7.42 0.5
16 410 140 588.59 638.82 273.78 312.6 7.16 0.5
17 425 125 588.59 912.60 0.0 229.1 11.14 0.4
18 425 125 588.59 866.97 45.63 247.4 9.57 0.4
19 425 125 588.59 821.34 91.26 264.5 7.99 0.4
20 425 125 588.59 775.71 136.89 274.5 8.50 0.5
21 425 125 588.59 730.08 182.52 289.4 9.36 0.5
22 425 125 588.59 684.45 228.15 297.0 10.19 0.5
23 425 125 588.59 638.82 273.78 311.7 11.01 0.5
24 440 110 588.59 912.60 0.0 228.6 11.01 0.4
25 440 110 588.59 821.34 91.26 263.1 9.91 0.4
26 440 110 588.59 730.08 182.52 283.8 8.26 0.5
27 440 110 588.59 638.82 273.78 303.9 7.43 0.5
28 460 90 588.59 912.60 0.0 227.7 10.73 0.4
29 460 90 588.59 821.34 91.26 260.9 10.19 0.4
39 460 90 588.59 730.08 182.52 281.4 10.46 0.5
31 460 90 588.59 638.82 273.78 300.5 10.34 0.5
 

A. The Six Major Variables Used for ANN-I  
Cement content 
Fly ash content  
Fine aggregate (sand)  content  
Coarse aggregate content 
Water-powder ratio 
Superplasticizer dosage  

B. The Eight Major Variables Used for ANN-II  
Cement content 
Fly ash content 
Fine aggregate (sand) content 
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Bottom ash (as partial replacement of fine aggregate) 
content 
 
Coarse aggregate content 
Water-powder ratio 
Water content 
Superplasticizer dosage  
 

In other words, the input layer of the neural network ANN-I 
consisted of six processing units representing these six 
variables, and the output layer included one neuron 
representing 28-day strength and eight processing units 
representing these eight variables, and the output layer 
included one neuron representing strength either at 7 days, 28 
days, 90 days or 365 days, for ANN-II.  

IV. TRAINING AND TESTING OF NEURAL NETWORKS  
Training means to present the network with the 

experimental data and have it learn, or modify its weights, 
such that it correctly reproduces the strength behaviour of 
mix. However, training the network successfully requires 
many choices and training experiences. After a number of 
trials, the values of the network parameters considered by this 
study are as given in Table IV. 

TABLE IV  
SUMMARY OF NETWORK PARAMETERS 

Network parameters 
ANN-I ANN-II 

28 
days 

7 
days 

28 
days 

90 
days 

365 
days 

No. of hidden layers 1 1 1 1 1 
Number of hidden 
neurons 8 8 8 8 8 

Learning rate 0.04 .6 0.04 0.5 0.2 
Momentum 0.1 .3 0.1 0.2 0.1 
Iterations 500 500 500 1000 1300 

V.  RESULTS AND ANALYSIS  
The acceptance / rejection of the model developed is 

determined by its ability to predict the strength of SCC. Also, 
a successfully trained model is characterized by its ability to 
predict strength values for the data it was trained on. A 10-
fold cross validation is used to predict the strength for the data 
set used in this study. The cross validation is the method of 
accuracy of a classification or regression model. The input 
data set is divided into several parts (a number defined by the 
user), with each part intern used to test a model fitted to the 
remaining part. The correlation coefficient, root mean square 
error (RMSE), and mean absolute error is used to judge the 
performance of the neural network approach in predicting the 
strength. 

Neural networks can be effective for analyzing a system 
containing a number of variables, to establish patterns and 
characteristics not previously known. In addition, it can 
generalize correct responses that only broadly resemble the 
data in the training set. Illustration of quantitative information 
is given in Table V related to the prediction models ANN-I 
and ANN-II is incorporated into the model. During training, 
irrelevant input variables are assigned low connection 

weights. These variables can then be omitted from the model. 
The values when compared from Table VI and VII show 
slight variations, on omission of variables with low 
connection weights. Since the neural networks are trained on 
actual test data, they are trained to deal with inherent noisy or 
imprecise data. As new data become available, the neural 
network model can be readily updated by retraining with 
patterns which include these new data.  

TABLE V 
IMPORTANCE FACTORS OF VARIOUS INPUTS IN ANN-I AND ANN-II 

ANN 
-I 

Age 
days Cement Fly 

ash 
Coars
e  
Agg

Fine 
aggregate W/P SP 

28 26.11 21.6
1

9.45 20.62 13.53 8.69 

ANN 
-II 

Age 
days Cement Fly 

ash  
Coars

e 
Agg

Fine  
Agg. 

Bottom  
ash Water W/P SP 

7 18.78 18.4
8

0.85 13.6
8

15.02 15.05 9.09 9.05 

28 15.48 17.3
5

4.85 21.0
7

18.62 9.46 6.96 6.21 

90 10.61 7.94 0.91 16.7
3

14.81 11.81 11.1
3

26.0
7

365 20.89 19.6
7

1.34 14.4
4

13.77 9.47 8.31 12.1
1

 

TABLE VI 
SUMMARY OF COEFFICIENTS FOR NEURAL NETWORK MODELS 

Neural network 
model Strength Correlation  

Coefficient 

Mean  
Absolute  

Error 

Root Mean  
Square Error 

ANN-I 28 days 0.9188 4.4381 5.557 

ANN-II 

7 days 0.9677 0.6337 0.7575 
28 days 0.9584 0.8984 1.1711 
90 days 0.9348 1.8837 2.6308 
365days 0.9691 0.9801 1.3644 

 

TABLE VII 
SUMMARY OF COEFFICIENTS FOR NEURAL NETWORK MODELS 
(LEAST IMPORTANCE FACTOR INPUT PARAMETER REMOVED) 

Neural 
Network  
Model 

Strengh Correlation  
Coefficient 

Mean  
Absolute  

Error 

Root Mean  
Square Error 

ANN-I 28 days 0.9187 4.4395 5.570 

ANN-II 

7 days 0.9692 0.6137 0.739 
28 days 0.9587 0.8939 1.167 
90 days 0.9482 1.7409 2.448 
365days 0.9689 0.9605 1.367 

 
The procedure for partitioning the connection weights to 

determine the relative importance of the various inputs is 
adopted using the method proposed by Garson [24]. The 
method essentially involves partitioning the hidden output 
connection weights of each hidden neuron into components 
associated with each input neuron. The minimum importance 
factor of 0.85 to 4.85 in ANN-II was observed for coarse 
aggregate content as it was kept constant throughout the study. 
The maximum importance factor was observed for 
cementitious materials (cement + fly ash) in both ANN-I and 
ANN-II models. Keeping in view the importance of various 
parameters, the input parameter can be varied to achieve the 
output parameter with desired results. The importance of 
various input parameters for output prediction of strengths as 
determined by using neural network technique is given in 
Table V. 
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Table VI provides the correlation coefficient (R2) and 
RMSE obtained with this data to predict various strengths. To 
compare the performance of models, graphs between actual 
and predicted strength are plotted. The performance of ANN-I 
model in predicting the compressive strength is shown in 
Fig.1. Results suggest that most of the points are lying within 
± 20% of the line of perfect agreement, which suggest that 
neural network, can effectively be used to predict the strength 
for self-compacting concrete data. A correlation coefficient of 
0.919 (RMSE = 5.570) was achieved.  
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Fig.1 Actual v/s predicted value for 28day strength (MPa) for ANN-I 
 
Figs.2-5 shows the plot between the actual and predicted 
values of strengths for 7-d, 28-d, 90-d and 365-d (ANN-II). 
Results suggested a better performance for this data set also, 
in strength prediction for all ages. Most of the points are again 
lying within ± 10% of the line of perfect agreement (Fig.2, 3, 
4 and 5). ANN-II is observed to be better than ANN-I as the 
data for ANN-II is less it is giving good results. Also, number 
of input parameters is more in ANN-II and it could be used to 
predict the strengths at various ages whereas ANN-I is limited 
to 28-days strength. 
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Fig.2 Actual v/s predicted value for 7day strength (MPa) for ANN-II 
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Fig.3 Actual v/s predicted value for 28day strength(MPa) for ANN-II 
 

90 Days Compressive Strength

+10% Line

-10% Line

20

25

30

35

40

45

50

20 25 30 35 40 45 50
Actual Strength(MPa)

Pr
ed

ic
te

d 
St

re
ng

th
(M

Pa
)

Neural Network

 
Fig.4 Actual v/s predicted value for 90day strength(MPa) for ANN-II 
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Fig.5Actual v/s predicted value for 365day strength(MPa)for ANN-II 
 

Correlation coefficient, mean absolute error and RMSE 
achieved using neural network modelling approach for 
strength in ANN-II model are given in Table VI. Further, 
Table VII shows the variation in the results of the network if 
the input parameters with minimum importance factor are not 
taken into consideration. Also, the results on comparison show 
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slight variation in prediction values of RMSE, Correlation 
coefficient and MAE on removal of the input parameter with 
minimum importance factor, thus the models can also be 
developed without these parameters. 

The general trend observed was the maximum importance 
factor for cement + fly-ash), however samples aged at 90 day 
showed exception in all importance factors with SP and fine 
aggregates having  higher importance factors. If strength 
models are taken in isolation i.e only 7-days strength ANN-II 
or 28-days strength ANN-II, then importance factors of 
various parameters have more relevance as compared to when 
taken together for all ages in ANN-II.  

VI. CONCLUSIONS  
Artificial neural networks are viable computational models 

for a wide variety of problems including prediction problems. 
The neural network can be used for a particular problem when 
deviation in the available data is expected and accepted and 
also when a defined methodology is not available as in the 
case of present study.  

1) This study presents the application of neural network to 
predict the compressive strength of SCC based on several 
parameters. SCC is different from conventional concrete such 
that it contains more fines. Also, mix can be designated as 
SCC only if satisfies various fresh properties like Slump flow, 
U-box, L-box, JRing etc. The amount of water required for 
SCC mix is also more as compared to conventional concrete, 
thus the prediction of SCC strength differ from conventional 
concrete. Also, it demonstrates the feasibility of using neural 
networks for capturing nonlinear interactions between various 
parameters in complex civil engineering systems.  

2) A simple back-propagation neural network was used to 
model two problems involving nonlinear variables. Actual 
field data were used. After learning from a set of selected 
patterns, the neural network models were able to produce 
reasonably accurate predictions.    

3) The modeling using artificial neural network was carried 
out for the data from literature for compressive strength at 28 
days, in ANN-I with a correlation coefficient above 0.9. 

4) The models developed were extended to the prediction of 
compressive strength at various ages (ANN-II) and the results 
in the form of correlation coefficient, mean absolute error and 
RMSE values were found to be better at all ages for the data 
obtained experimentally. 

5) In ANN-I, the maximum effect was observed for Powder 
content (cement + fly ash) and in ANN-II the same was 
observed with exception of ANN-II for 90-day strength. The 
importance factor in ANN-I was observed to be 20 for fine 
aggregates as fine aggregate is not replaced with any other 
type of aggregates. For ANN-II, it is between 30-40 for fine 
aggregates (sand + bottom ash), taking into consideration 
effect of bottom ash. Coarse aggregates showed minimum 
importance factor in all models of ANN-II. 
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