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Heuristic method for judging the computational
stability of the difference schemes of the

Biharmonic equation
Guang Zeng, Jin Huang, Zicai Li

Abstract—In this paper, we research the standard 13−point differ-
ence schemes for solving the biharmonic equation. Heuristic method
is applied to judging the stability of multi-level difference schemes
of the biharmonic equation. It is showed that the standard 13−point
difference schemes are stable.
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I. INTRODUCTION

THE computational stability of finite-difference equations
has been studied for many years. It is so important in

many subdisciplines, for example, computational mechanics,
numerical weather prediction, computational physics, etc. To
solve these problem, there are energy method, Von Neumann
method, Fourier method and Heuristic[5], [6] method. The
Heuristic method is our main concern, which is a method
of approximate analysis. The biharmonic equation[1], [2], [3]

which is one of the most important partial differential equa-
tions is applied in all subject areas of fundamental importance
to the engineering sciences such as the theory of elasticity,
mechanics of elastic plates and fracture mechanics. In general,
the above problem can be solved by either a finite difference
method[3], [4] or a finite element method. The finite difference
method always seems to be the best choice not only for regular
regions but also for more complex regions when appropriate
extrapolation techniques are applied to the boundaries. In this
paper, we research the standard 13−point difference schemes
for solving the biharmonic equation and discuss how to use
Heuristic method to analyze correctly the stability of multi-
level difference schemes.

II. THE STANDARD 13-POINT DIFFERENCE SCHEMES

In this section, we consider the biharmonic equation on the
unit square [0,1]2 with the mixed type of the clamped and the
support boundary conditions,

uxxxx + 2uxxyy + uyyyy = f, in S, (1)

u = g, on Γ, (2)
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∂u

∂n
= g∗on ΓD,

∂2u

∂n2
= g∗∗on ΓN , (3)

where Γ = ∂S = AB∪BC∪CD∪DA, ΓD = AB∪CD∪DA
and ΓN = BC. The functions in (1)-(3) are supposed to be
bounded

||f ||0,S ≤ C, ||g||0,Γ ≤ C, ||g∗||0,ΓD
≤ C, ||g∗∗||0,ΓN

≤ C,
(4)

where C is a bounded constant, and

||f ||0,S =

√∫ ∫
s

f2ds, ||g||0,Γ =

√∫
Γ

g2dl. (5)

Divide S by the uniform difference grids xi = ih, yj = jh,
where h = 1/N . We use the standard 13-point finite difference
equations (FDEs) to solve (1)-(3). The interior difference
equations can be easily obtained as

20ui,j − 8[ui+1,j + ui−1,j + ui,j+1 + ui,j−1]

+2[ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1]

+ui+2,j +ui−2,j +ui,j+2 +ui,j−2 = h4fi,j,3 ≤ i, j ≤ N −3.
(6)

For the boundary of FDEs at i = 2, N − 2 or j = 2, N − 2,
some values in (2) are known, to give a nontrivial contribution
of the vector b. Take (N − 2, j) for example, we have the
boundary of FDEs at (N − 2, j),

2[uN−1,j+1 + uN−1,j−1 + uN−3,j+1 + uN−3,j−1]

+20uN−2,j + uN−4,j + uN−2,j+2 + uN−2,j−2

−8[uN−1,j + uN−3,j + uN−2,j+1 + uN−2,j−1]

= h4fN−2,j − gN,j , 3 ≤ j ≤ N − 3, (7)

where gi,j = g(ih, jh). For the boundary of FDEs at i =
1, N − 1 or j = 1, N − 1, we have to use the boundary
conditions in (3). Take (N − 1, j) for example. From (3), we
have the approximation

uN+1,j = uN−1,j + 2hg∗N,j . (8)

Then for (N−1, j) we obtain the boundary of FDEs from (6)
and (8),

2[uN−2,j+1 + uN−2,j−1] + uN−3,j + uN−1,j+2 + uN−1,j−2

+21uN−1,j − 8[uN−2,j + uN−1,j + uN−1,j+1]

= h4fN−1,j+8gN,j−2[gN,j+1+gN,j−1]−2hg∗N,j , 3 ≤ j ≤ N−3.
(9)
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The FDEs at (1, j) and (i, 1) can be obtained similarly.
Nextly, consider the boundary of FDEs at BC. An approx-

imation is obtained from (3)

ui,N+1 − 2ui,N + ui,N−1 = h2g∗∗i,N , (10)

to give
ui,N+1 = 2gi,N − ui,N−1 + h2g∗∗i,N . (11)

Hence the boundary of FDEs at (i,N − 1) are obtained from
(6) and (11)

19ui,N−1 − 8[ui+1,N−1 + ui−1,N−1 + ui,N−2]

+2[ui+1,N−2 + ui−1,N−2] + ui+2,N−1 + ui−2,N−1 + ui,N−3

= h4fi,N−1+6gi,N−2[gi+1,N+gi−1,N ]−h2g∗i,N , 3 ≤ i ≤ N−3.
(12)

For the (i, j) near the corners, we may obtain difference
equations similarly. Take the corner (N − 1, N − 1) for
example. We obtain the boundary of FDEs at (N − 1, N − 1)
from (6), (8) and (11),

20uN−1,N−1 − 8[uN−2,N−1 + uN−1,N−2]

+2uN−2,N−2 + uN−3,N−1 + uN−1,N−3

= h4fN−1,N−1 + 6gN−1,N − 2hg∗N,N−1 − h2g∗∗N−1,N

+8gN,N−1 − 2(gN,N + gN,N−2 + gN−2,N ). (13)

For other corner nodes such as (1, 1), (1, N−1) and (N−1, 1),
we can obtain the similar boundary of FDEs easily. From (6),
(7), (9) and (12), we can also obtain all the FDEs for the other
special nodes: (2, 2), (2, N − 2), (N − 2, 2), (N − 2, N − 2),
(1, 2), (2, 1), (1, N − 2), (N − 2, 1), (2, N − 1), (N − 1, 2),
(N − 2, N − 1) and (N − 1, N − 2). In summary, we may
write all those FDEs as the forms in matrix and vectors,

Ax = b, (14)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 F I
F E2 F I
I F E2 F I

. . . . . . . . . . . . . . .
I F E2 F I

I F E2 F
I F E1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

E1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 −8 1
−8 21 −8 1
1 −8 21 −8 1

. . . . . . . . . . . . . . .
1 −8 21 −8 1

1 −8 21 −8
1 −8 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

19 −8 1
−8 20 −8 1
1 −8 20 −8 1

. . . . . . . . . . . . . . .
1 −8 20 −8 1

1 −8 20 −8
1 −8 19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A ∈ R(N−1)2×(N−1)2 , E1, E2, I ∈ R(N−1)×(N−1) and I
be the identity matrix, F is a tridiagonal (N − 1) × (N − 1)
matrix with defined recursively(using Matlab notation) as

F = diag(a1, 0) + diag(b1,−1) + diag(c1, 1),

where a1 = −8 ∗ ones(N − 1, 1), b1 = 2 ∗ ones(N −
2, 1) and c1 = 2 ∗ ones(N − 2, 1). The unknown vec-
tor x = (u1,1, · · · , u1,N−1, · · · · · · , uN−1,1, · · · , uN−1,N−1)T .
The vector b has been known.

The biharmonic equation can be equivalent to the following
difference operator equation

Δ2
hu(xi, yj) =

1
h4

(δ4xui,j + 2δ2xδ
2
yui,j + δ4yui,j) (15)

where δ4x = δ2x(δ2x), δ4y = δ2y(δ2y), δ2x = u(xi+1, yj) −
2u(xi, yj) + u(xi−1, yj), δ2y = u(xi, yj+1) − 2u(xi, yj) +
u(xi, yj−1).

III. THE STABILITY OF THE FINITE DIFFERENCE SCHEMES

In this section we discuss how to use Heuristic stability
analysis method to analyze correctly the stability of the finite
difference schemes. This method can be used to judge the
stabilities of difference schemes by deleting the high order
error and lefting the lowest error item in the Taylor series
expansion of the finite-difference schemes in some fixed point.

Theorem 3.1 For the above finite difference schemes, they
are of absolute stability.

Proof. We consider the biharmonic equation (1), i.e.

Δ2u(x, y) =
∂

4
u

∂x4
+ 2

∂
4
u

∂x2∂y2
+
∂

4
u

∂y4
= 0. (16)

Its corresponding finite difference schemes is

1
h2

{[ ∂
2

∂x2
u(xi+1, yj) − 2

∂2

∂x2
u(xi, yj) +

∂2

∂x2
u(xi−1, yj)]

+2 × [
∂2

∂y2
u(xi+1, yj) − 2

∂2

∂y2
u(xi, yj) +

∂2

∂y2
u(xi−1, yj)]

+[
∂2

∂y2
u(xi, yj+1) − 2

∂2

∂y2
u(xi, yj) +

∂2

∂y2
u(xi, yj−1)]} = 0.

(17)
Using Taylor series expansion at point (xi, yj), we have

∂2

∂x2u(xi+1, yj) − 2 ∂2

∂x2u(xi, yj) + ∂2

∂x2u(xi−1, yj)
h2

= [
∂4

∂x4
u(xi, yj)]

j
i +

h2

6
[
∂6

∂x6
u(xi, yj)]

j
i +O(h2) (18)
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∂2

∂y2u(xi, yj+1) − 2 ∂2

∂y2u(xi, yj) + ∂2

∂y2u(xi, yj−1)

h2

= [
∂4

∂y4
u(xi, yj)]

j
i +

h2

6
[
∂6

∂y6
u(xi, yj)]

j
i +O(h2) (19)

∂2

∂y2u(xi+1, yj) − 2 ∂2

∂y2u(xi, yj) + ∂2

∂y2u(xi−1, yj)

h2

= [
∂4u(xi, yj)
∂x2∂y2

]ji +
h2

12
[
∂6u(xi, yj)
∂x2∂y4

+
∂6u(xi, yj)
∂x4∂y2

]ji +O(h2).

(20)
Because of

∂
4
u

∂x4
+
∂

4
u

∂y4
= −2

∂
4
u

∂x2∂y2

and (17)-(20), we obtain

∂
4
u

∂x4
+2

∂
4
u

∂x2∂y2
+
∂

4
u

∂y4
= −h

2

6
(
∂6u

∂x6
+
∂6u

∂y6
+

∂6u

∂x2∂y4
+

∂6u

∂x4∂y2
)

= −h
2

6
[
∂2

∂x2
(
∂

4
u

∂x4
+
∂

4
u

∂y4
) +

∂2

∂y2
(
∂

4
u

∂x4
+
∂

4
u

∂y4
)]

=
h2

3
[
∂

6
u

∂x2∂y4
+

∂
6
u

∂x4∂y2
] +O(h2). (21)

After deleting the high order error item, we have

∂
4
u

∂x4
+ 2

∂
4
u

∂x2∂y2
+
∂

4
u

∂y4
=
h2

3
[
∂

6
u

∂x2∂y4
+

∂
6
u

∂x4∂y2
]. (22)

Since h2/3 > 0, the above finite difference schemes are of
absolute stability. The proof of Theorem 3.1 is completed.

The heuristic analysis method is proved to be effective for
the computational stability analysis of the difference schemes
for the biharmonic equation.
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