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Abstract A handful of propagation textbooks that discuss radio 

frequency (RF) propagation models merely list out the models and 
perhaps discuss them rather briefly; this may well be frustrating for 

models could have been derived. This paper fundamentally provides 
an overture in modelling the radio channel. Explicitly, for the 
modelling practice discussed here, signal strength field measurements 
had to be conducted beforehand (this was done at 469 MHz); to be 
precise, this paper primarily concerns empirically/statistically 
modelling the radio channel, and thus provides results obtained from 
empirically modelling the environments in question. This paper, on 
the whole, proposes three propagation models, corresponding to three 
experimented environments. Perceptibly, the models have been 
derived by way of making the most use of statistical measures. 
Generally speaking, the first two models were derived via simple 
linear regression analysis, whereas the third have been originated 
using multiple regression analysis (with five various predictors). 
Additionally, as implied by the title of this paper, both indoor and 
outdoor environments have been experimented; however, (somewhat) 
two of the environments are neither entirely indoor nor entirely 
outdoor. The other environment, however, is completely indoor.     
 

Keywords RF propagation, radio channel modelling, statistical 
methods.     

I. INTRODUCTION 
ROPAGATION experts involved with wave propagation 
models, in terms of developing and/or using them, no 

doubt, discern the usefulness of such models, i.e., why they 
are somewhat indispensable in the wireless arena. Such 
practitioners will also have a handle on the intricacies behind 
the development of such models. However, folks new to this 
area might have doubts. This paper could help with these 
uncertainties. 

The DK Illustrated Oxford dictionary defines a model, 

mathematical) description of a system etc., to assist 
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propagation model (also referred to as path loss-, radio wave 
propagation-, radio frequency propagation-, or simply 
channel- model) is merely an equation (or set of equations) 

a specified environment.  
Contrary to wired communication channels with 

characteristics that are rather easily predictable, radio channels 
are enormously random, resulting in their analysis being quite 
challenging. The radio path between a transmitter and receiver 
can be at variance from a 
where there is direct unobstructed radio path between a 
transmitter and receiver) to one that is quite hampered by 
several possible objects, such as, buildings, walls, floors of 
multi-level buildings, vegetations, etc. 

By radio-channel modelling, what is meant is that the 
amount of propagation path-loss obtainable within a specified 
environment is estimated and put forward for (future) 
estimation/prediction purposes, in addition to characterising 

impulse response. 
It is a generally accepted fact that no one propagation model 

applies in every situation. Rather, there are multitudes of 
models out there, each serving as a benchmark for a particular 
kind of environment. Accordingly, a propagation model 
developed by some researcher(s) or industry practitioner(s), 

its formulator(s), but possibly also to other radio 
communications practitioners needful of such a model. In fact, 
this is why any such formulation would be referred to as a 

 
Customarily, [1], propagation models are concerned with 

predicting the expected path loss (or received signal strength) 
between a transmitter and a receiver, in addition to the 
variability of the strength of the signal in close proximity to a 
given position.  

Propagation modelling is no doubt a very essential aspect of 
radio system design. It, however, [1], has traditionally been 
one of the most exigent parts of the design phase of radio 
systems deployment, and is habitually done using statistical 
measures, anchored in field measurements carried out 
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particular for a projected communication system or spectrum 
allocation.  

The skill to accurately predict the behaviour of radio-
propagation for wireless systems is essentially critical to 
system design [2]. Moreover, given the infeasibility in 
carrying out site measurements over and over again (largely 
due to the costs and time consumption involved), propagation 
models are generally seen as a low-cost, convenient, and 
suitable alternative [2].  

The reader should note that RF propagation models are 
utilizable in virtually any sort of system involving the use of 
radio communication. They are particularly utilized 
(sometimes developed) during the planning and design phase 
of radio systems/networks. Examples of such systems include 
cellular networks, personal communications networks, ad hoc 
networks, sensor networks, WLANs, etc.  

The reader can try visualising the propagation modelling 
concept this way; before a radio system (or some temporary 
radio service) is put up, why not check to see what the 
performance of the system could be before actually going 
ahead to put it up; why not make a well-versed estimate of 
how much loss could be incurred for possible radio paths in 
the radio system.  

Case in point, the fact that a path loss model may be used to 
calculate, though approximately, the received signal level of a 
certain radio path in a given mobile communication system, 
does make it possible to envisage the signal-to-noise ratio of 
the system, which ultimately leads to being able to determine 
if the performance of the system will successfully meet service 
objectives and performance goals. If, at the end of the day, the 
performance (predicted by the propagation model) is 
inadequate, the system design would have to be modified 
accordingly, before eventually putting up the system.  

Needless to say, over some years now, RF/wireless 
engineers have been particularly led to a concerted interest in 
understanding and predicting the characteristics of radio 
propagation in various urban as well as suburban 
environments, and even within buildings. This is largely the 
result of the immense commercial success having been 
attained by wireless communication systems (e.g., cellular 
systems) in addition to the ever increasing need for 
dependable wireless communication service. Now, given that 
this is most certainly going to continue, it is indeed imperative 
for RF engineers to have the necessary skills to predict/model 

avoid having to repeatedly conduct propagation measurements 

consuming but quite costly. 
Typically, in developing a propagation model, the modeller 

studies the given environment, carries out relevant signal 
strength measurements within the specified environment (for 
empirical or site-specific modelling), followed by suitable 

 
Generally speaking, radio-channel modelling may be 

response. With mobile communications, for instance, the path 

loss, per se, is associated with designing base stations, given 
that this tells how much a transmitter ought to radiate to 
suitably service a specified region. On the other hand, channel 
characterisation deals with the dependability of the signal 
received at the receiver, and predominantly have to do with 
the make-up of he received waveform.  

II. THEORETICAL BACKGROUND 

A. Introduction 
This Theoretical Background contains information that is 

threefold: the first deals with EM wave propagation and the 
radio propagation channel; the second have to do with 
propagation models; and the third touches on some relevant 
statistical concepts. These aforementioned areas are quite 
broad in themselves, so only really relevant matters will be 
covered here.  

B. Propagation & the Radio Propagation Channel 
it on the subject of 

propagation; the propagated wave signal, in all circumstances, 
travels between two points, i.e., between the transmitter (that 
generates the wave signal) and the receiver (that receives it). 
These transmit and receive points are obviou

matters relating to propagation studies will, by and large, 
focus on that part between the transmitter and the receiver, 
i.e., the communication channel, and in so doing, provisionally 
leaving out matters at the end systems.  

Radio waves will generally propagate in one of four ways: 
1. In a straight line, from the transmitter to the receiver. 
2. In a curved line, where the curved line (i.e., the propagated 

s curvature. 
3. In longer distances, due to the radio wave being somewhat 

trapped in the atmosphere. 
4. In much longer (somewhat two-ray path) distances, where 

the radio wave is refracted back to the earth, off the 
ionosphere. 

 
Before proceeding, the reader shou

propagation is fundamentally only possible within that part of 
the electromagnetic spectrum that extends from roughly within 
30 kHz to 300 GHz.  

 

 
Fig. 1: Forms of radio propagation (Source: [3]) 
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The Four ways in which radio waves may radiate (listed out 
earlier), apparently, depend largely on the operating 
frequency. Radio waves propagating close to the surface of the 
earth are termed ground waves; those that propagate not so 
high up, but much higher than the ground wave area (i.e., the 
lower atmosphere area  the troposphere) are referred to as 
tropospheric waves; and those that propagate very high up, via 
the layers of the ionosphere are ionospheric or sky waves. 
Fig.1 clearly depicts that ground waves are further subdivided 

-
waves. The importance and usefulness of each of these wave 
types, in any given case, depends basically on the propagation 
path-length and on the operating frequency.         

Having talked about the various forms of radio propagation 
and the way in which radio waves may radiate, more emphasis 
will now be put on the propagation channel itself. This is due 
to the rationale that this paper fundamentally concerns the 
radio channel, and modelling it. And, talking about modelling 
the radio channel, a useful first step will be the estimation of 
path loss obtainable after having taken RSS field 
measurements for various transmitter-receiver separations 
with the stipulated environment.   

Apparently, path loss is the main constituent of a 
propagation channel [2]. It, basically, [2], is a measure of the 
average radio-wave attenuation experienced by a propagated 
signal when it reaches the receiver, after having navigated 
through a path of several wavelengths. Path loss is given by 
[2, 4]: 

                              = 10 log             (1) 
 
where  and  are the transmitted and received powers, 
correspondingly.  
 

In reality, there are a number of mechanisms that may bring 
about radio transmission path loss (i.e., radio signal 
attenuation) as the radio wave navigates through the radio 
channel. Though these mechanisms are quite diverse, they are 
generally characterised into three; reflection, diffraction and 
scattering. See Fig. 2.  

 

 
Fig. 2: A depiction of the three fundamental propagation 

mechanisms 

 On the whole, reflection results when a propagating EM 
wave comes in contact with an object that is enormously large 
in com
Reflection may take place from the surface of building walls, 
from the ground, and from furnishings. In addition to when 
reflection takes place, the EM wave may be (partially) 
refracted as well [2]. The operating frequency of the 
propagating wave, the polarisation of the wave, and the angle 
of incidence of the wave on the object upon which the 
reflection is to take place, all have a role to play on 
determining the coefficients of reflection (as well as 
refraction), which are generally functions of the material 
properties of the medium [2]. 

Diffraction results when the radio channel between Tx and 
-

diffracted waves are present all over space [2], as well as at 
the rear of the obstructing object, bringing about the bending 
of the EM waves in the region of the obstructing object, 
thereby allowing EM wave receptions at locations where 
direct line of sight transmission path between Tx and Rx is 
infeasible. Moreover, as with reflection, [2], at higher 
frequencies, diffraction depends upon the geometry of the 
impeding object, in addition to the polarisation, amplitude, and 
phase of the incident EM wave at the diffraction point.  

As for scattering, it occurs when the propagating medium of 
the EM wave comprise objects that are small in comparison to 
the wavelength, as well as where the number of impediments 
per unit volume is large [2]. Scattered waves are generated doe 
to some incident EM wave coming in contact with small 
objects, rough surfaces, or by other abnormalities in the 
channel. Entities that can induce scattering include 
vegetations, street signs, raindrops, stairs, lampposts, etc. 
Accurate prediction of scattered signal strength requires 
thorough knowledge of the physical details of the objects [2].  

Propagations can perceptibly be done in both indoor and 
outdoor environments. Indoor and outdoor radio channels 
differ largely in terms of the transmitter-receiver separation 
distance covered (which is usually much smaller for indoor 
environments) and the variability of the environment (which is 
usually greater for indoor environments) [1, 2]. Propagation in 
indoor environments have, somewhat, more complex 
multipath structure than in outdoor environments, largely due 
to the nature of the building structures used, the room layouts, 
and the type of materials used in the construction of the 
building [2].  

Outdoor environments are often categorised into three: 
urban, suburban, and rural. Outdoor terrain profiles, [2], need 
to be taken into consideration for any given outdoor 
environment, and may vary from a plain, curved earth to an 
immensely mountainous area. Possible propagation 
impediments such as trees, buildings, and moving vehicles 
also need to be taken into account when characterising RF 
propagation for outdoor environments [2].  

Generally speaking, there are various signal fading types. 
The type of fading suffered by a signal propagating via a radio 
channel depends both on the nature of the transmitted signal 
and on the channel characteristics. Different transmitted 
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signals will generally experience dissimilar fading types, in 
accordance with the relation amongst the signal parameters 
(e.g., the bandwidth, the path loss, the symbol period, etc.) and 
the channel parameters (e.g., the RMS delay and the Doppler 
spread) [2]. 

Signal fading is generally split into two main types: large-
scale and small-scale. Large-scale fading is impinged on, for 
the most part, by the presence of forests, buildings, hills, etc., 
lying between the transmitter and the receiver. The statistics of 
large-scale fading, [2], proffers a means to compute an 
estimate of the path loss as function of distance and other 
relevant factors. Small-scale fading, on the other hand, [5], is 
an attribute of RF propagation resulting from the presence of 
reflecting- and scattering- objects that cause multiple versions 
of the propagated signal to reach the receiver, each distorted in 
angle of arrival, amplitude, and phase.   

It ought to be noted that, [5], the wireless channel is a 
function of what is transmitted over it. And, [5], to verify 
whether communication over the wireless channel is 
influenced by fading, the symbol duration of data transmission 
over it must be compared with coherence time, and the 
bandwidth of the baseband signal (i.e., fast or slow fading) 
compared with the coherence bandwidth of the channel (i.e., 
flat or frequency-selective fading). Note that all of the 
aforementioned four fading types (i.e., frequency-selective, 
flat, fast, and slow fading) are of the small-scale type.  

It have got to also be apparent that, [5], specifying a channel 

fading channel. These 
classifications are independent in their own right [5]. Flat or 
frequency-selective fading plain have to do with whether the 
relationship between the signal bandwidth and frequency 
range of the fading behaviour of the channel is uniform. Fast 
and slow fading unambiguously have to do with the rate of 
change of time of the channel in respect of the transmitted 
signal. 

Apparently, a frequency-selective channel, [2], is one 
wherein the delay spread is larger than the symbol period, 
resultant each time the received multipath components of a 
symb
which, in turn, results in a sort of inter-symbol interference 
(ISI) referred to as channel-induced ISI. On the contrary, a flat 
fading channel is purely one wherein the delay spread is lesser 
than the symbol period, and yields no channel-induced ISI. 
However, for the flat fading channel, [2], there still can be 
some degradation in performance, due to the irresolvable 
phasor components that destructively add up to yield, at the 
receiver, a considerable drop in signal to noise ratio. 

As for fast and slow fading, they are perceptibly categorized 
based on how quickly the transmitted signal changes, in 

-
parameter [2]. Explicitly, a fast fading channel is one in which 

than the transmitted baseband signal, while a slow fading 

changes at a much slower rate than the transmitted baseband 
signal.  

It is useful to note that fast and slow fading generally have 
to do with situations where the transmitter and/or receiver 
moves or is moveable (i.e., not entirely stationary). As a result, 
the speed of the mobile unit or the speed of the objects 
utilising the channel, through which the transmitted signal 
propagates, determines if a signal will be experiencing fast 
fading or slow fading. The faster the rate of change of the 
location of the mobile unit, the more likely the channel will be 

  

C. Propagation Models 
Evidently, there are a number of existing propagation 

models. The most basic of all may well be the well-known 
Friis free space transmission equation/model, given by: 

 

                             , =
4

2

                       (2)    
 

 , = 10 log10 + 10 log10 + 10 log10 +

                           147.558 20 log10 20 log10                (3) 
 

 and  are apparently the transmitted and received powers, 
respectively.   and  are, correspondingly, the transmit- 
and receive- antenna gains. f is the specified operating 
frequency, d is the Tx-Rx separation distance, and the 
ex  (see linear form) connotes the rate at which the 
propagated signal deteriorates with increasing d, proportionate 
to free space propagation.  

The free space model is widely known to only be useful in 
scenarios where the radio channel has no attenuating 
impediments, other than mere distance increments (in free 
space). That is, the radio wave propagates in a straight line 
from the transmitter to the receiver (in unobstructed LOS 
fashion). Examples of practical free space propagation 
applications include satellite communications and certain 
microwave radio links.  

It should be noted that there are times when the system loss 
factor (not associated with propagation) is taken into account. 
In such situation, the Friis free space equation becomes: 

 

          =
4

2 1
 =  

4

2 1           (4) 
 
L represents the system loss factor (L  1).   refers to the 
wavelength (in meters). Clearly, as the system loss factor 
increases the received power diminishes accordingly.  

d 
practical. As a result, [2], more than a few propagation models 
make use of a different representation for the close-in 
distance, d0, referred to as the received-power reference 
distance. 

In general, when modelling a given environment, [1], it is 
important to choose a free space reference distance that is apt 
for the propagation environment under consideration. For 
large coverage cellular systems, a reference distance of 1km is 
ideal, whereas in microcellular systems, much smaller 
reference distance of roughly 1m or 100m is appropriate [1]. 
Additionally, a chosen reference distance ought to always be 
in the far-field (Fraunhofer) region of the antennas  
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especially noteworthy for indoor short range modelling  so as 
to avoid having near-field (Fresnel) region effects interfering 
with the reference received signal strength.  

for realistic radio channels, especially where the transmitter 
and/or receiver is movable. Path loss models will usually 
utilise a path loss exponent parameter, , to indicate the 
power-law relationship between the Tx-Rx separation distance 
and the received power. In view of that, path loss is expressed 
(in decibels) as: 

 
             = 0 + 10 log

0
+                (5) 

 
For eqn. (5),  = 2 clearly characterises free space path loss.  
will usually take on a higher value when obstructions are 
present.  symbolises a zero-mean Gaussian random variable 
of standard deviation , revealing, on average, the received 
power variation that naturally results when a path loss model 
of the type in eqn. (5) is used. Table I lists typical path loss 
exponent values for six different types of environments.  

 
Path loss models can, in general, be classified into two main 

groups [2]:  
1. Statistical models (also referred to as empirical models) 
2. Site-specific models (also known as deterministic models) 

Empirical models are generally characterised as [2]: 
a. Based on statistical characterisation of the received signal,  
b. Require less computational effort  
c. Less sensitive to the geometry of the environment 
d. Easier to implement.  

Conversely, site-specific models [2]: 
a. Have a certain physical basis 
b. Require an immense amount of data pertaining to 

geometry, locations of building and of furniture in 
buildings, terrain profile, etc.  

c. Require more computations 
d. More accurate 

The empirical modelling approach generally tends to 
reorganize a set of measured data by fitting curves or 
analytical expressions to the data. This (empirical) approach, 
no doubt, [1],  has the benefit of unreservedly taking into 
consideration all factors of propagation, whether known or 
unknown, by way of real field measurements.  

The reliability of an empirical model at operating 
frequencies and environments differing from those with which 
the models were originally developed can be made certain by 
means of additional data gathered through new field 
measurements within the differing environment, at the 
required operating frequency.   

 
Table I: Typical path loss exponents for different environments (Source: [1]) 
# Environment Type  
1 Free Space 2 
2 Urban area cellular radio 2.7 to 3.5 
3 Shadowed area cellular radio 3 to 5  
4 In building line-of-sight 1.6 to 1.8 
5 Obstructed in building 4 to 6 
6 Obstructed in factories 2 to 3 

Table II: Comparing between some of the main path loss models 
(Source: [2]) 

 
As already accentuated, there are a number of existing path 

models. Discussing all of them here will only make this report 
bulky. Fortunately, they are well treated in the literature. 
These models will generally be used in indoor and/or outdoor 
environments. To give an idea, some of the most used path 
loss models have been listed out in Table II. It can be seen 
from the Table that the modelling approach taken proffers an 
incredibly different trade-off between complexity and 
accuracy. Of the models listed out in the Table, the Okumura, 
Hata, COST-231, and Dual-Slope models are empirically 
derived models, whereas the Ray-Tracing, Finite-Difference 
Time-Domain (FDTD), Method of Moments (MoM), and 
Artificial Neural Network (ANN) models are site-specific. 
Apparently, the empirical models are simple, i.e., no 
environmental information is used, besides the choice of the 
parameters [2]. Moreover, although these empirical models are 

Site-specific models, on the other hand, appear to be 
considerably more accurate than their empirically derived 

-
information on the environment under consideration (at the 
very least, [2], the locations of all of the objects in the 
environment, and conceivably the locations of large objects). 

Given that this paper precisely concerns statistically 
modelling field measured data, a little more emphasis will be 
put on this. Some discussions have already been done on the 
four types of signal fading over a propagation channel (i.e., 
frequency-selective, flat fading, fast fading and slow fading). 
Here, flat fading and slow fading will be described a little 
further, in comparison with the standard empirical path loss 
model.  

Model 
Name 

Suitable 
Environ-

ment 

Com-
plexity 

Experi 
mental 
Data 

Details of 
Accuracy 

Accuracy
(Time) 

Okumura 
Model 

Macro-
cell 

Simple Based 
 on 

experi-
ments 

No Good 
(Little) 

Hata 
Model 

Macro-
cell 

(early 
cellular) 

Simple No No Good 
(Little) 

COST- 
231 

Microcell 
(outdoor) 

Simple No No Good 
(Little)  

Dual- 
Slope 

Microcell 
and 

picocell 
(LOS 

region) 

Simple No No Good 
(Little) 

Ray- 
Tracing 

Outdoor 
and 

indoor 

Com-
plex 

No Yes Very 
Good 
(Very 
Much) 

FDTD Indoor 
(small) 

Com-
plex 

No Every 
detail 

Best 
(Very 
Much) 

MoM Indoor 
(small) 

Com-
plex 

No Every 
detail 

Best 
(Very 
Much) 

ANN Outdoor 
and 

indoor 

Com-
plex 

Yes Detail Very 
Good 
(Very 
Much)  
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Slow and fast fading may be described as follows [6]: 
- 

site-specific properties of the propagation path   
- Fast fading: Fading caused by interference between signals 

propagating over many paths from the transmitter to the 
receiver 

Fig. 3 presents a depiction of the typical behaviours of the 
slow and fast fading propagation mechanisms. Note that the 
abscissa here is range, i.e., Tx-Rx separation distance, in km. 
However, [6], these curves may well be inferred as versus 
time (i.e., the abscissa = time) for a mobile user, with 
increasing range. A typical prediction from an empirical path 
loss model is described in Fig. 3 (a), portraying a smooth and 
slowly increasing estimated path loss versus range. It should, 
however, be expected that variations caused by the obstacles 
encountered by the radio wave on a particular path, as range is 
increased certainly induce variations in the path loss [6]. This 
is particularly the phenomenon of slow fading, and is 
illustrated in Fig. 3 (b). Fig. 3 (c) clearly illustrates the rapid 
signal power variations that occur when fast fading is 
included. From the Figure, it is perceptible that empirical path 
loss is merely some straight line, which gradually increases, 
generally, with such a mannerism. Slow and fast fading 
channels will also have a generally increasing path loss. The 
rate of change of the path loss is then what determines if 
slow fading or fast fading channel. The slow and fast fading 
models will also generally be the result of including, i.e., 
adding, slow or fast fading effects to the empirical path loss 
model, respectively.      

In order to have a handle on how the slow or fast fading 
effects can be obtained, a little probability theory is given 
here. The statistics behind how the empirical (straight line) 
model is obtained is discussed soon after.  

Probability theory is generally applied in situations where 
experiments taken have unknown consequences. For 
propagation modelling, the theory is applied to model path 
loss (or the total received power) when slow or fast fading is 
included on the propagation path at a specific time.  
 

 
Fig. 3: Depiction of classic path loss behaviours; (a) Expected path 

loss w.r.t. an empirical model, (b) path loss behaviour with slow 
fading effects included, (c) path loss behaviour with the effects of fast 

fading additionally included  (Source: [6]) 

 the lack of absolute 
knowledge of the environment, as well as the complicatedness 
of performing accurate calculations even when such 
information is accessible.  

The slow fading loss has been assumed here for the 
measurements carried out for the models to be presented later, 
given that the rate of change of the various Tx-Rx separation 

involvement of fast fading effects. In fact, for each 
measurement, both the transmitter and receiver were rather 
fixed. Accordingly, only the slow fading loss will be discussed 
henceforth.  

The path loss due to slow fading (Ls), [6], is represented in 
decibels, and adds to the empirical path loss (LE) to represent 
the total unknown path loss (LT) in a given measurement. The 
slow fading loss (the fast fading loss, as well) is a continuous 
random variable (r.v.), seeing that the path loss on a particular 
path can take on a continuous range of values.  

Probability theory states that, [6], absolute knowledge of a 
single r.v. is provided through knowledge of its PDF. The PDF 
gives a picture of the percent of time that the measured fading 
loss is likely to fall within a small range  of a stipulated 
value ls [6]. The probability density function (PDF), ( ), of 
the slow fading loss, Ls, can be given by [6]: 

 
                         < = ( )                    (6) 
 
where P( ) is the probability of obtaining the experiment 
outcome < . It should be noted that 0    P( )   
1, where P( ) = 0 signifies that the outcome never occurs and 
P( ) = 1 implies the outcome always occurs. I.e., higher values 
of P( )  indicate a more likely event.  

The cumulative distribution function (CDF) of slow fading 
loss, Ls, describes the probability that  . Given the PDF 
definition, the slow fading CDF, ( ), can be defined as [6]:  

 
                 = =                   (7) 
 

The generalised PDF of a Gaussian distributed r.v. X is 
given by: 

                                 =
1

2

( )2

2 2                        (8) 
 
where  and 2 are the expected value and variance of X, 
respectively.  

If the local attenuations in a given slow fading channel are 
modelled as random variables, every one of them having 
identical PDF to the others, as the path is traversed; the slow 
fading loss   is then a sum of independent and identically 
distributed (i.i.d.) random variables [6]. It is therefore logical 
to model the slow fading loss (in decibels) as a Gaussian PDF 
r.v., given by [6]: 

                                 =
1

2

2

2 2

                          (9) 

 
where a 0 dB mean have been assumed for the slow fading 
loss  , due to the necessary separation of   from the 
empirical average path loss term LE.  That is,  is a zero-mean 
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Gaussian variable with standard deviation .   is the 
stipulated value.  

D. Some Statistics Background 
The mean (µ), standard deviation ( ) and variance ( 2) are 

especially useful terms that will always come up in the 
modelling of a given set of data. So, they certainly deserve 
some quick talk.  

Fig. 4 presents a diagrammatic illustration of the mean 
value. The Figure is rather self explanatory. At this point, it is 
worth mentioning that different people have changed names 
for the term mean, all however, referring to exactly the same 
thing. Some refer to it simply as the average. Statisticians 
refer to it as the mean, while engineers often refer to it as the 
expectation. They all mean precisely the same thing; i.e., the 

 
Fig. 5 clearly illustrates the standard deviation 

phenomenon, expressly bringing up the Gaussian/normal kind 
of distribution of data. The Gaussian (also called, normal) 
distribution is, in point of fact, the most important type of 
distribution (of data) in all of probability and statistics [7], and 
that which is used throughout this project. As portrayed in Fig. 
5, the standard deviation simpl
data distribution, i.e., how far the values, in the data set, are 
from the centre (i.e., the mean). The distribution is wider when 
the numbers, in the data set, are farther away from the mean-
value of the data set. Thus, the further away the numbers are 
from the mean, the wider the distribution, and consequently, 
the larger the standard deviation. 

Crucial to analysing data are scatterplots. They use a series 
of points to represent a set of data, on a two-dimensional 
coordinate system. Fig. 6 presents four possible forms. In 
analysing scatterplots, [8], the first thing to consider is the 
presence of association (i.e., a definite pattern in the 
scatterplot), after which the type of association should be 
looked at; i.e., whether the association is linear (whether the 
pattern follows a line) or nonlinear.  

 

 
Fig. 4: Diagrammatic illustration of the mean value 

 

 
Fig. 5: Diagrammatic illustration of the standard deviation 

phenomenon 

 
Fig. 6: Analysing scatterplots based on presence / type of association. 

(a) positive linear association, (b) negative linear association, (c) 
nonlinear association, (d) no association. (Source: [8]) 

 
Linear association is generally twofold; positive or 

negative. For nonlinear association, there are various possible 
forms. Furthermore, after acknowledging the type of 
association, another thing to check is the strength of the 
association [8]. A linear association is strongest when all data 
points stretch out on a thin straight line. The strength of the 
association perceptibly becomes weaker and weaker as the 
data points turn out more and more scattered all over the place 
(as in Fig. 6 (d)). 

Regression analysis is a statistical concept pertinent in the 
modelling of a given set of data. For path loss modelling, in 
particular, it is one of the most used techniques (see, for 
example, [9-14]). This is plainly because, [7], it brings about 
the exploration of the association between two or more 
variables related in a nondeterministic manner; 
nondeterministic in the sense that, even though the variables 

specified just by knowing the other(s). That is, a certain level 
of uncertainty exists. Say y = 2 + x; then in this case, y is a 
random variable. That is, the values of variable y may turn out 
to be anything at any fixed value of variable x. Furthermore, 
with the regression analysis methodology, previously 
acknowledged values of x (say, data from signal strength 
measurements) are quite helpful in predicting what signal 
strength (or, path loss) observations could turn out in the 
future (under similar environment settings, of course). 

Regression analysis may be applied to obtain, [7], the 
simple linear regression (SLR) model, the nonlinear model, or 
the multiple regression model. The SLR model will usually be 
used to explain variation in a linearly associated data. When 
the proportion of observed variation explained by the SLR 
model is inappropriate  i.e., some point(s) in the data set 
is/are too spread out, making data association not linear 
enough for the SLR model to be used  an analyst will 
habitually seek out for a substitute model (either a nonlinear or 
multiple regression model), which may more effectively 
explain the variations in the overall observed data.  

The SLR model is given by [7]:  
 

                                        = 0 + 1 +                          (10)  
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where 0 is the y-intercept, 1 is the slope of a straight line 
determined by the set of pairs (x, y),  is the random deviation 
(else referred to as the random error term) assumed to be 
normally distributed with mean = 0 and variance = 2. 
Apparently, the parameters 0, 1 and 2 are such that, for a 
specified value of the independent variable x, the dependent 
variable y is related to x by way of eqn. (10).   

Generally, [7], the value of x in eqn. (10) is one that is fixed 
by the experimenter, referred to as the predictor, independent, 
or explanatory variable, while the value of y is random, and 
generally referred to as the dependent or response variable. 

The dependent (r.v.) variable will be denoted here by Y, 
while y would be used to denote its observed (measured) 
value. For instance, say the RSS for a Tx-Rx separation 
distance of 40m is -36dBW, then y = -36dBW is the observed 
value of Y correlated with setting x = 40m. Now, let the 
predictor variable for which observations are made be denoted 
by x1, x2, ... , xn, and let the r.v. and observed value correlated 
with xi be denoted by Yi and yi, respectively. Thus, the 
(bivariate) data consists of n pairs; (x1, y1), (x2, y2), ... , (xn, yn).  

It can be seen that without  in eqn. (10), any observed pair 
(x, y) will symbolize a point falling precisely on the straight 
line slope  = 0 + 1 , known as the true (or population) 
regression line.  

the true regression line (sometimes curve)  see Figure 2.8. 
From the Figure it can be seen that the appropriateness of the 
SLR model here may be advocated by theoretical deliberation 

two variables, w.r.t. ).   
 

 
Fig. 7: Depiction of the true regression line inserted in a scatterplot 

of observations from the SLR model (Source: [7]) 
 

 
Fig. 8: Distribution of r.v. Y for different x values (Source: [7]) 

 

A few useful points ought to be noted from Fig. 8. First, [7], 
the slope 1 of the true regression line has a possible 
interpretation as the expected change in Y associated with an 
increase (by 1-unit) in the x value. Second, [7], the amount of 
variability in the distribution of the values of Y is the same at 
every different x value (homogeneity of variance). 
Additionally, take the path loss measurement scenario, for 
example; it can be then gathered from the Figure that average 
path loss changes linearly with Tx-Rx separation distance, and 
that the amount of variability in path loss at any given Tx-Rx 
separation distance is the same as at any other Tx-Rx 
separation distance. To grasp this point, each Tx-Rx 
separation distance should be treated separately. Now, note 
that a series of path loss measurement trials are usually 
undertaken for each Tx-Rx separation distance. Accordingly, 
what the Figure implies is that the amount at which those 
various measurement trials vary at a particular Tx-Rx 
separation distance is somewhat the same as the way 
measurement trials would vary at any other particular Tx-Rx 
separation distance. Third, [7], for a particular value of x, Y is 
the sum of a constant ( 0 + 1 ) and a normally distributed 
r.v. ; as a result, Y itself is normally distributed.  

Some useful statistical concepts have been presented, with 
most emphasis on the SLR model, though. Other relevant 
matters will be conferred later while discussing the models.  

III. MEASUREMENT DEVICES AND ENVIRONMENTS 

 
Fig. 9: Emmanuel Ojakominor carries out preliminary checks on 

transmit and receive devices before commencing actual 
measurements. Notice the transmit device (walkie-talkie, model T-

388, with output power approximately 0.5W) and the receive 
equipment (Tektronix 2711 spectrum analyser along with a simple 

telescopic antenna) 
 

         
Fig. 10: Receiver position for environment I 
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Fig. 11: Emmanuel Ojakominor takes measurements in environment 
I. Notice the make-up of the environment, having a number of (glass) 

windows at both walls, as well as objects such as metallic lockers 
located at adjacent positions along the passageway. 

  

 
Fig. 12: Emmanuel Ojakominor at the (stationary) receiver location 

corresponding to measurement settings for models II and III                                         
 

 
Fig. 13: A depiction virtually covering measurement surroundings for 

both models II and III. Notice the passageway for model II, which 
continues to the left looking straight up through the passage. This 

passage is approximately 64.008m long (measuring from the receiver 
location to the extreme of the passage, looking right up).  

 
Fig. 14: A depiction of the ground and surrounding area 

corresponding to model III. Notice the foliage, which may well have 
shadowing effects on radio paths between a transmit spot on the 
ground area and the receiver located up at level four of building.  

 

 
Fig. 15: Additional depiction of the ground and surrounding area to 
Fig. 14 The circles give an indication of the several transmit points, 
while the arrow points to the direction of increase in distance from 

the fixed receiver (i.e., the stationary receiver positioned up at level 4 
of building from where this picture was taken).  

IV. RESULTS AND DISCUSSIONS 

A. Preliminary Analyses (of Measured Data) 
As earlier emphasized, a very effective way to begin 

looking at a set of data is to produce graphical representations 
of the data. In this Preliminary Analyses section, the measured 
data will be reviewed graphically in both the mean-RSS and -
path loss forms. 

At this point, it should be noted that, usually, after the 
effects of system losses and antenna gains have been 
controlled for, path loss may be delineated simply as the ratio 
between transmitter-output-power and the receiver-received-
power. Consequently, for each measured RSS, path loss has 
been estimated using the following simple relationship: 

 
                PL [dB] = PTx [dBm]  PRx, Measured [dBm]   
                               PTx [dB]  PRx, Measured [dB]               (11) 

 
Where PL [dB] is the estimated path loss (in decibels), PTx 
[dB] is RF output power generated by transmit antenna (in 
decibels), and PRx, Measured [dBm] is the measured RSS (in 
decibel-milli-Watts). 

Apparently, eqn. (11) basically says; (1) this is what was 
transmitted, (2) this is what has been received, and so, (3) the 
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path loss is the difference between the two (in dB). Path loss 
will normally encompass distance dissipation in addition to 
other channel losses such as multipath effects, penetrations, 
shadowing, etc.  

Table III summarises field measurement results for model-I. 
Note that the path loss values stated there  as well as those in 
the rest of the other data index tables  have been obtained via 
conversion from RSS values, using eqn. (11). Also note that 
these values are mean values. The individual measurement 
findings from which the mean RSS values have been 
estimated .      

Evidently, the scatterplots of Fig. 16 and Fig. 17 each 
advocate the suitability of the SLR model; i.e., the association 
of data for either case appears to be substantially linear.  
 

Table III: Data index corresponding to model-I 
PTx = 0.5 W = [10log10(0.5)] dBW = -3.0103 dBW  

Obs. Tx-Rx Separation Mean RSS Mean Path Loss 
# [ft] [m] [dB] [dB] 
1 10 3.048 -6.021 3.0107 
2 20 6.096 -15.041 12.0307 
3 30 9.144 -33.152 30.1417 
4 40 12.192 -46.061 43.0507 
5 50 15.24 -50.034 47.0237 
6 60 18.288 -39.172 36.1617 
7 70 21.336 -43.060 40.0497 
8 80 24.384 -62.075 59.0647 
9 90 27.432 -58.892 55.8817 

10 100 30.48 -69.069 66.0587 
11 110 33.528 -72.041 69.0307 

 

 
Fig. 16: Scatterplot of mean RSS vs Tx-Rx separation for model-I 

 

 
Fig. 17: Scatterplot of mean path loss vs Tx-Rx separation (model-I) 

It follows that there is a rather strong predilection for RSS 
to reduce as Tx-Rx separation increases, and for path loss to 
increase as Tx-Rx separation increases. That is, larger values 
of RSS appear to be associated with smaller values of Tx-Rx 
separation (i.e., negative relationship between the variables), 
while larger values of path loss appear to be in line with larger 
values of Tx-Rx separation (i.e., positive relationship).     

Table IV summarises findings for model-II. Apparently, as 
with observed-data for model-I, the field measured data for 
model-II also appears rather linear. That is, there is a generally 
decreasing trend for mean RSS, and a generally increasing 
pattern for mean path loss. Fig. 18 and Fig. 19 provide 
graphical depictions for data corresponding to mean RSS and 
mean path loss, respectively.    

Unlike model-I and model-II, model-III incorporates some 
fair amount outdoor involvement. And, to get things clearer 
with the environment/condition which model-III symbolises, 
extra depictions are given in Fig. 20 and Fig. 21.    
 

 Table IV: Data index corresponding to model-II 
PTx = 0.5 W = [10log10(0.5)] dBW = -3.0103 dBW  

Obs. Tx-Rx Separation Mean RSS Mean Path Loss 
# [ft] [m] [dB] [dB] 
1 10 3.048 -12.007 8.9967 
2 20 6.096 -20.000 16.9897 
3 30 9.144 -29.897 26.8867 
4 40 12.192 -34.895 31.8847 
5 50 15.24 -18.862 15.8517 
6 60 18.288 -49.119 46.1087 
7 70 21.336 -60.915 57.9047 
8 80 24.384 -56.930 53.9197 
9 90 27.432 -56.149 53.1387 
10 100 30.480 -68.995 65.9847 
11 110 33.528 -67.959 64.9487 
12 120 36.576 -69.119 66.1087 
13 130 39.624 -70.229 67.2187 
14 140 42.672 -73.639 70.6287 
15 150 45.720 -82.939 79.9287 
16 160 48.768 -81.463 78.4527 
17 170 51.816 -83.098 80.0877 
18 180 54.864 -80.172 77.1617 
19 190 57.912 -90.020 87.0097 
20 200 60.960 -89.191 86.1807 
21 210 64.008 -79.062 76.0517 

 
 

 
Fig. 18: Scatterplot of mean RSS vs Tx-Rx separation for model-II 
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Fig. 19: Scatterplot of mean path loss vs Tx-Rx separation (model-II) 

 

 
Fig. 20: 3D depiction of measurement setup/scenario for model III 

 

 
Fig. 21: 2D depiction of measurement setup/scenario for model III 

Table V: Data index corresponding to model-III 
PTx = 0.5 W = [10log10(0.5)] dBW = -3.0103 dBW 

Obs. 
# 

Tx-Rx 
Separation 

[m] 

Tx-building 
separation 

[m] 

Mean RSS 
[dB] 

 

Mean Path Loss 
[dB] 

1 12.552 6.096 -82.938 79.9277 
2 16.401 12.192 -72.995 69.9847 
3 21.327 18.288 -64.013 61.0027 
4 26.740 24.384 -76.138 73.1277 
5 32.394 30.480 -63.876 60.8657 
6 38.185 36.576 -73.979 70.9687 
7 44.059 42.672 -81.110 78.0997 
8 49.987 48.768 -72.956 69.9457 
9 55.949 54.864 -84.098 81.0877 

10 61.938 60.960 -82.914 79.9037 
11 67.949 67.056 -82.270 79.2597 
12 73.969 73.152 -84.098 81.0877 
13 80.004 79.248 -79.016 76.0057 

 

 
Fig. 23: Scatterplot of mean RSS [dB] vs Tx-Rx separation for 

model-III 

 
Figure 24: Scatterplot of mean RSS [dB] vs Tx-Building separation, 

for model-III 

 
Fig. 25: Scatterplot of mean RSS [dB] vs Tx-Rx separation for 

model-III 
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Fig. 26: Scatterplot of mean RSS [dB] vs Tx-Building separation [m] 

for model-III 
 

Clearly, the scatterplots of Fig. 23 to Fig. 26 do not depict a 
very linear relationship between the data. More emphasis on 
this is given in the next section.  

B. Modelling Procedures 

set of data consisting of n observed path loss pairs (Tx-Rx1, 
PL1), (Tx-Rx2, PL2), ... , (Tx-Rxn, PLn), from which a 
constructive educated-guess on the model parameters 0, 1, 

2, and thus, the true regression line, are obtained.  
The path loss variable, here, is perceptibly an r.v. PLi, 

where:  
 

       PLi = 0 + 1 + i              (12) 
    

i   are the n independent random deviations 1, 2, 3, ... , n.  
Looking at Fig. 27, it can be seen that the least squares line 

truly provides a reasonably good fit to the observed path loss 
data of model-I, since the deviations (i.e., the vertical 
distances) from the observed points to the line (from above or 
below) are rather the least possible, putting together a strong 
likelihood of it being the best-fit line.    

 

 
Fig. 27: Scatterplot of mean path loss [dB] vs Tx-Rx separation [m];                      

with least squares line superimposed (model-I) 

Least squares estimates (LSEs) of the true regression line 
(TRL) are given by [7]: 
 
  1 =

2
=

/
2 2/

  

             = LSE of the slope coefficient 1 of the TRL 
 
                 0 = 1 = 1   
                      = LSE of the intercept 0 of the TRL 
 

Referring to Table III, where y = path loss, x = Tx-Rx 
separation and n = number of observations = 11, the LSEs 1 
and 0 for the ERL of model-I are thus as follows: 
 

1 =
10416.6 201.168 461.505 /11

4700.89 201.168 2/11
=

1976.59656

1021.929616
 

     = 1.93418072  1.934 
 

0 = 41.9550 1.93418072 18.288  
     = 6.582702993 6.583 
 

Hence, results show that an estimate of the expected change 
in path loss with respect to a 1-meter increase in Tx-Rx 
separation is approximately 1.934 dB, with 0  6.583.  

Thus, the equation of the estimated least squares line (LSL) 
(regression line) of Fig. 27 is: 
 
                         [dB] = 6.583 + 1.934 Tx-Rxi                 (13) 
 

Statistically, this equation can be used to make point 
predictions for random variable PL that falls exactly on the 
LSL, however strictly for Tx-Rx separations within same 
range as specified here.    
 

Table VI: MINITAB output for regression of data corresponding to model-I 
The regression equation is 
Mean Path Loss [dB] = 6.58 + 1.93 Tx-Rx Separation Distance [m] 
 
Predictor                                        Coef    SE Coef       T         P 
Constant                                        6.583        5.251  1.25  0.242 
Tx-Rx Separation Distance [m]  1.9342      0.2540  7.61  0.000 
 
S = 8.12062   R-Sq = 86.6%   R-Sq(adj) = 85.1% 
 
Analysis of Variance 
Source               DF            SS         MS          F         P 
Regression           1     3823.0    3823.0    57.97  0.000 
Residual Error      9      593.5         65.9 
Total                   10   4416.5 
 
                   Tx-Rx 
            Separation      Mean Path 
Obs   Distance [m]     Loss  [dB]         Fit    SE Fit  Residual    St Resid 
  1                     3.0               3.01     12.48      4.58         -9.47        -1.41 
  2                     6.1             12.03     18.37      3.95         -6.34        -0.89 
  3                     9.1             30.14     24.27      3.37          5.87         0.80 
  4                   12.2             43.05     30.16      2.90        12.89         1.70 
  5                   15.2             47.02     36.06      2.57        10.96         1.42 
  6                   18.3             36.16     41.95      2.45         -5.79       -0.75 
  7                   21.3             40.05     47.85      2.57         -7.80       -1.01 
  8                   24.4             59.06     53.75      2.90          5.32         0.70 
  9                   27.4             55.88     59.64      3.37         -3.76       -0.51 
 10                  30.5             66.06     65.54      3.95          0.52         0.07 
 11                  33.5             69.03     71.43      4.58         -2.40       -0.36 
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Fig. 28: Plot of standardised residuals vs. fitted PL values for model-I 

 

 
Fig. 29: Plot of standardised residuals vs. Tx-Rx separation distance 

for model-I 
 

 
Fig. 30: Plot of fitted PL values vs. MPL for model-I  

 
Habitually, provided a model is accurate, neither of the 

residual plots of Fig. 28 and Fig. 29 should exhibit distinct 
patterns. And, they each ought to be randomly distributed 
about 0 in accordance with a normal distribution, so all but 
very few standardised residuals should lie within 2 standard 
deviations of their expected value 0.  

 
Fig.31: Normal probability plot of standardised residuals for model-I 
 

Clearly, the plots of Fig. 28 and Fig. 29 show no distinct 
patterns, and the standardised residuals for either of them are 

-mean value, i.e., within -2 and 
+2. The plot of Fig. 30 yields points that are quite close to the 
(almost) 45° line, thereby suggesting the model effectiveness 
in making predictions. The straightness of the plot of Fig. 31 
brings about the plausibility of the assumption that  is 
Gaussian distributed.   

Now, the next thing to consider is the amount of variability 
(i.e., the variance, 2, and thus the S.D., ) inherent in the 
already-obtained regression model of eqn. (13). In other 
words, to get hold of an estimate of how distant the observed 
(Tx-Rxi, PLi)s are from the TRL of Fig. 27. Positive residuals 
in Table VI obviously correspond to (Tx-Rxi, PLi)s above the 
LSL, while negative ones to those lying below the line. And, 
note that the residuals are the differences between each 
observed PLi and the corresponding fitted i. (I.e., residual = 
PLi  i).  

The estimate of  2 in regression analysis (denoted by s2) is 
given by [7]: 

2 = 2 =
2

=
2

2
=

[ ( 0 + 1 )]2

2

=
2

0 1

2
 

Thus, the corresponding variance estimate here is given by: 

2 =
[ ]  [ ]

2

11 2

=
[ ] 2

0 [ ] 1 [ ]

9
 

where  = Tx-Rx separation. 
 
Table VII lists data corresponding to the following summary 
quantities.   

0 = 6.582702993, 1 =1.93418072, [ ]  = 
461.505, [ ] 2 = 23779.0, [ ]  = 10416.58                     
 

2 =
23779.0 6.582702993 461.505 1.93418072 10416.58

9
  

 

      =
593.50

9
= 65.94460566 
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Table VII: Reference data index for calculating  2 for model-I 
Obs.  [m]  [dB] [ ]  ( [ ]) 

1 3.048 3.0107 9.06 9.18 
2 6.096 12.0307 144.74 73.34 
3 9.144 30.1417 908.52 275.62 
4 12.192 43.0507 1853.36 524.87 
5 15.24 47.0237 2211.23 716.64 
6 18.288 36.1617 1307.67 661.33 
7 21.336 40.0497 1603.98 854.50 
8 24.384 59.0647 3488.64 1440.23 
9 27.432 55.8817 3122.76 1532.95 

10 30.48 66.0587 4363.75 2013.47 
11 33.528 69.0307 4765.24 2314.46 

  
Consequently, the corresponding estimate of the standard 
deviation of PL for model-I is: 

= = 65.94460566 = 8.120628403 8.121 
  
The next thing to consider is the coefficient of determination, 
given by: 
                                        2 = 1          (14) 
 

= 2 = 2 2/   
 

[ ] 2 = 23779.0,     [ ]  = 461.505,   n = 11, 
SSE = 593.50.  
 
Thus,  

= 23779.0
461.505 2

11
= 4416.558 

2 = 1
593.50

4416.558
= 1 0.1344 = 0.8656 0.866 

 
Note that the coefficient of determination 2 is a number 
between 0 and 1, i.e.: 
 
                           0 < 2 < 1                      (15) 

 
It therefore follows that the SLR model chosen here for 

model-I is plausibly useful in explaining variation in the 
observed path loss data. The obtained value of 2 connotes 
that roughly 86.6% of variation in the observed path loss data 
is attributable to the estimated linear relationship between path 
loss and unit Tx-Rx separation, which, obviously, is quite an 
imposing outcome. Table VI affirms these results. 

Another useful aspect to consider is the confidence interval 
(CI) for  1. Note, a 100(1   

 
                                     1 ±

2
, 2 1

                       (16) 
 
 

1
=

2 2/

,     2 = 4700.893824, 

2 = (201.168)2 = 40468.56422,  s = 8.121,  n = 11 
 

1
=

8.121

4700.894 40468.564/11
=

8.121

31.968
= 0.254 

 
With a 95% confidence level, the t critical value is 

0.05

2
,(11 2)

= 0.025,9 = 2.262. Thus, the confidence interval is:  

                        1.934 ± (2.262 × 0.254) 
                    = 1.934 ± 0.575 = (2.509, 1.359)        (17) 

 
Accordingly, with some degree of confidence, it can be said 

that the average increase in path loss between 1.359 dB to 
2.509 dB is associated with a 1 meter increase in Tx-Rx 
separation, at least with respect to the environment conditions 
considered here, with Tx-Rx separation roughly between 3m 
to 36m.  The estimated CI is rather narrow, stipulating that the 
slope has been accurately estimated. And, the fact that the CI 
contains only positive values creates the confidence that path 
loss will generally increase with increasing Tx-Rx separation. 

The subsequent test to be conducted is the model utility test, 
which brings about ascertaining that H0 is rejected, thereby 
authenticating further inferences on future value predictions. 
This test demands H0 be rejected for a duly small significance 

 
Null Hypothesis:   H0: 1 = 10  
Test statistic value:  = 1 10

1

 

The model utility test: test of H0: 1 = 0 versus Ha:  1 0 
where the test statistic value is then t = 1/

1
.  

For Ha:  1 0, rejection region: 
2

, 2
  or  

2
, 2

 

with (Ha:  1 0), (H0: 1 = 0) will be rejected if t = 1/
1
 

satisfies either 
2

, 2
= 0.005,9 = 3.250 or 3.250.  

 

t =
1.9341

0.254
= 7.614566929 7.615 

 
Evidently, 7.615 > 3.250, so H0 is utterly rejected. These 

results can also be found in the MINITAB regression output 
presented earlier in Table VI.   

Now, since the model utility test has resulted in the 
rejection of H0 
SLR model is indeed appropriate here for further inferences 
concerning the estimation of the expected or true average 
values of path loss, or the prediction of future path loss values 
that will result from observations made when Tx-Rx 
separation falls within the range considered here (and, of 
course, same conditions too). 

 

 
Fig. 32: Scatterplot with CIs and PIs for model-I 
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Table VIII: Numerical elucidation of the (95%) CIs and PIs for model-I 
Predicted Values for New Observations 
 
New 
Obs       Fit   SE Fit        95% CI            95% PI 
  1    12.48      4.58   ( 2.12, 22.84)   (-8.61, 33.57) 
  2    18.37      3.95   ( 9.44, 27.30)   (-2.05, 38.80) 
  3    24.27      3.37   (16.63, 31.90)   ( 4.38, 44.16) 
  4    30.16      2.90   (23.61, 36.72)   (10.66, 49.67) 
  5    36.06      2.57   (30.25, 41.87)   (16.79, 55.33) 
  6    41.95      2.45   (36.42, 47.49)   (22.77, 61.14) 
  7    47.85      2.57   (42.04, 53.66)   (28.58, 67.12) 
  8    53.75      2.90   (47.19, 60.30)   (34.24, 73.25) 
  9    59.64      3.37   (52.01, 67.28)   (39.75, 79.53) 
 10   65.54      3.95   (56.61, 74.47)   (45.11, 85.96) 
 11   71.43      4.58   (61.07, 81.79)   (50.34, 92.52) 

 
Apparently, point estimates and predictions given by eqn. 

(13) single-handedly give no precise information as to how 
path loss has been predicted. This can be offset by means of 
formulating a CI for the least squares fit line, and a PI for each 
predicted path loss value. Fig. 32 (and Table VIII) depicts the 
CI and PI for model-I. Note that the CI obtained earlier (eqn. 
(17)) was for the slope coefficient, 1, alone, and was based 
upon the properties of the distribution of 1. The CI here is 
based upon properties of the distribution of  0 + 1 , and is 
obtained using the following formulation (for each CI): 

 
                 0 + 1 ±

2
, 2 0+ 1

                      (18) 
 

where  
0+ 1

=
1

+
2

2 2/
, and ( 0 + 1 ) has a 

normal distribution.  
Whereas, the PI for future path loss observations (made 

under similar settings and distance range) is obtained using the 
formulation: 

                                              

0 + 1 ±
2

, 2
1 +

1
+

2

2 2/
                (19) 

 
The 1  to the left of  

1
  in the square root for the PI 

formulation makes the PI wider than the CI, although they are 
clearly both centred at  0 + 1 . Table VIII has presented 
both the CIs and PIs for each Tx-Rx separation, along with 
Fig. 32 clearly providing a graphical depiction of the 

remains fixed, which results from the fact that even with 
perfect information on the values of 0 and 1, some ambiguity 
will still be present in prediction.  

Now that an empirical path loss equation has been obtained 
(and proven suitable), the next step is to obtain the slow fading 
loss, which will subsequently be added to the already obtained 
empirical path loss, to then attain the total path loss obtainable 
here.  

As earlier emphasized, the slow fading loss is a continuous 
r.v., with a CDF that describes the probability that the slow 
fading loss is lesser than or equal to some stipulated value. 
Also recall that probability theory affirms that absolute 
knowledge of a single r.v. is made available through 
knowledge of its PDF.  

Let  = Total (unknown) path loss within the given 
environment. 
                         [dB] = [dB] + [dB]                    (20) 
 

[dB] = Empirical path loss [in decibels] 
[dB] = Path loss resulting from slow fading and shadowing  

 
( ), the PDF for the r.v. , is given by: 

 
                   < = ( )                      (21) 

 
Note from Table III that the least mean path loss observed 

for model-I is 3.0107dB (Tx-Rx separation = 3.048m), and the 
largest is 69.0307dB (at Tx-Rx separation = 33.528m). 
Accordingly,  is an r.v. corresponding to the probability that 
the slow fading path loss is between 3.0107dB and 
69.0307dB.  

One useful point to note is that the already obtained  has 
a mean value of 0 dB, and so to have  suitably added to , 
to then obtain ,  ought to also have a mean of 0 dB. This 
can be achieved by means of standardising .      

Note that if a non-standard r.v. X has a normal distribution 
with mean  and S.D. , then  

 
                                           =                                      (22) 
 
has a standard Gaussian normal distribution. With  denoting 
the slow fading path loss here, standardising  results in the 
following:  

3.0107 69.0307 
 
iff,  

3.0107 41.9550

8.121

41.9550

8.121

69.0307 41.9550

8.121
 

 
3.0107 69.0307       

          = 3.0107 41.9550

8.121

69.0307 41.9550

8.121
 

= 4.80 3.33 = 3.33 ( 4.80) 
          = 0.9996 0.00000029 = 0.99959971 0.9996 
 

Thus, the stipulated value  for the slow fading loss , a 
loss understood to be within a small range , is 
approximately the 99.96th percentile of the normal 
distribution with  = 41.9550 and  = 8.121. A little 
illustration of this is given in Fig. 33.  

 

 
Fig. 33: Transforming from non-zero- to zero-mean for MPL 

distribution of model-I 
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In Fig. 33, note that the shaded areas under the curves are 
the same, except that the Gaussian normal r.v., Ls, has had its 
original mean value shifted to zero, through the standardising 
procedure elucidated earlier. Using a table of the standard 
normal curve areas, it can be shown that the 99.96th 
percentile of the standard Gaussian normal distribution is 3.38. 

Thus, the stipulated value, , which is deemed greater than 
or equal to the slow fading loss  (i.e., ), is obtained as 
follows: 

= 0.9960 = + = 41.9550 + 3.38 8.121  
 = 69.40398 69.4  

 
Thus, the slow fading loss (in dB), modelled here as a (zero-

mean) PDF Gaussian r.v., is: 

=
1

2

2

2 2

=
1

2 8.121

69.4 2

2 65.95  

 
 = 6.8067 × 10 18   

 
Thus the total path loss obtainable (i.e., model-I) is given 

by: 
                   = 6.583 + 1.934 Tx-Rx-separation  
                                       + 6.8067 × 10 18   [dB]               (23) 
 

The total loss for the second environment (i.e., model-II) 
has been obtained using similar steps to that of the preceding 
model-I, so the derivative steps for model-II will not be given 
here. The corresponding equation for model-II is as follows: 

 
 = 17.62 + 1.195 Tx-Rx-separation 

                                        + 1.656 × 10 21   [dB]                (24) 
 
Note that the slow fading loss of 6.8067 × 10 18  dB 

implies a very minimal loss. I.e., almost entirely no effect 
from objects present during measurement. The powers -18 and 
-21, respectively, clearly suggest that the slow fading loss for 
either of the environment is almost 0dB.  

Moreover, i
some distance power  (i.e., the path loss exponent, also 

-Rx 
separation distance (which will be replaced here with d for 
easy denotation). The path loss exponent is essentially useful 
as it reveals how fast the signal strength, for the given 
environment, deteriorates with increasing distance (d). Larger 

, a 
quicker increasing path loss) with distance, d.  

The mean path loss for some d in conjunction with  is 
given by [1]:  

 
            = 0 [ ] + 10 10

0
          (25) 

 
where 0 -
measurements close to the transmitter [1]. Now, while a 
reference distance of 1m or 100m is prescribed in [1] as 
suitable reference distances for short-ranged systems, an 
obvious reference distance of 10ft (3.048m) has been used for 

model-I, which corresponds to the mean path loss 0  = 
6.583dB. Recall that for model-II the reference distance is also 
10ft. Apparently, the 3.048m distance is obviously in the far 
field of the antennas, so effects resulting from the antennas 
being in the near-field region are out of the question. 
Rearranging eqn. (4.14) yields: 
 
             = 10 10

0
+ 0 [ ]        (26) 

 
which literally has the form of the generalised linear equation: 
 
              = +            (27) 
 
wherein m (equal to  here) is the slope of the line and c is the 
y-axis-intercept ( 0 ).    

Clearly, the slope m corresponds to the path loss exponent, 
and so it follows that environments of the sort considered for 
models I and II have approximate path loss exponents equal to 
1.934 and 1.195, respectively. Model-I reveals that the 
corresponding environment has path loss exponent almost 
equal to that of free space (having  = 2). Model-II reveals 
much slower declining path loss as distance between 
transmitter and receiver is increased. In general, results show 
that the obstructions in the environment considered here had 
little effect (not much) on radio signals. This may well be as a 
result of the way in which the measurements have been taken; 
precisely, during the measurements, the transmit and receive 
antennas were, more often than not, in direct sight. 

Moving on to deriving model-III; looking at the scatterplots 
of Fig. 23 to Fig. 26, the data points appear rather scattered all 
over the place (i.e., the association of data is t exactly linear). 
However, by visualising the first two data points (w.r.t. the 
abscissa) as being off the plots, the association of data then 
seems fairly linear. These first two points clearly depict high 
path loss despite the shorter Tx-Rx separation, i.e., in 
comparison with the other observations with longer Tx-Rx 
separations. The remedy applied here is the utilisation of the 
multiple linear regression methodology, with two fundamental 
predictors, wherein Tx-Rx separation is one of the predictors, 
while Tx-Building separation is the other. The Tx-Building-
separation predictor is incorporated here because, clearly, the 
closeness of a transmit point to the building surely has some 
effect on the received signal strength, and thus, the path loss. 
Referring to depictions provided earlier in Fig. 20 and Fig. 21, 
it can be seen that propagations closer to the building have to 
propagate through the multi-level building floors, and the 
nearer the transmit point is to the building the more floors the 
propagated signal have to penetrate through. This clearly 
affirms the height at which floors of a multi-level building 
does have on radio signals. Also, by referring to Fig. 20 and 
Fig. 21, it can be seen that some radio signals propagated 
further away from the building had to propagate through tree 
foliage. This is believed to be an additional reason for the 
randomness of the data association of Fig. 23 to Fig. 26. That 
is, depending on the separation distance, data points indicating 
high path loss ought to have resulted due to propagation 
through foliage (i.e., at the latter Tx-Building separations). 
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Table IX: MINITAB regression output for model-III 
The regression equation is 
Mean Path Loss [dB] = 687 + 20.4 Tx-Rx Separation [m] 
                                      - 17.9 Tx-Building Separation [m] 
                                      - 6.8 Tx-Rx Separation Squared 
                                      + 5.0 Tx-Building Separation Squared 
                                 + 1.83 Tx-Rx Separation times Tx-Building Building 
 
Predictor                                           Coef     SE Coef          T         P 
Constant                                              687          1918     0.36   0.731 
Tx-Rx Separation [m]                      20.37         27.73     0.73   0.486 
Tx-Building Separation [m]           -17.92         25.77    -0.70   0.509 
Tx-Rx Separation Squared               -6.85         15.64    -0.44   0.675 
Tx-Building Separation Squared       5.01         16.25     0.31   0.767 
Tx-Rx times Tx-Building               1.827          4.730     0.39   0.711 
 
S = 5.25946   R-Sq = 67.9%   R-Sq(adj) = 44.9% 
 
Analysis of Variance 
Source               DF         SS     MS       F        P 
Regression           5  409.23  81.85  2.96  0.095 
Residual Error     7  193.63  27.66 
Total                  12  602.87 
 
Source                                           DF   Seq SS 
Tx-Rx Separation [m]                     1    160.88 
Tx-Building Separation [m]            1    138.31 
Tx-Rx Separation Squared              1    100.82 
Tx-Building Separation Squared    1        5.09 
Tx-Rx times Tx-Building                1        4.13 
 
                  Tx-Rx 
           Separation    Mean Path 
Obs                [m]      Loss [dB]          Fit    SE Fit   Residual  St Resid 
  1                 12.6              79.93    79.93       5.24           0.00        0.00 X 
  2                 16.4              69.98    69.41       4.60           0.57        0.22 
  3                 21.3              61.00    64.95       3.05          -3.95       -0.92 
  4                 26.7              73.13    64.69       3.13           8.43        1.99 
  5                 32.4              60.87    67.45       2.88          -6.59      -1.50 
  6                 38.2              70.97    70.69       2.62           0.28        0.06 
  7                 44.1              78.10    73.68       2.34           4.42        0.94 
  8                50.0               69.95    75.85       2.76          -5.90      -1.32 
  9                55.9               81.09    78.76       2.78           2.33        0.52 
 10               61.9               79.90    80.24       3.04          -0.33      -0.08 
 11               67.9               79.26    78.48       4.62           0.78        0.31 
 12               74.0               81.09    79.96       3.56           1.12        0.29 
 13               80.0               76.01    77.17       4.36          -1.17      -0.40 
X denotes an observation whose X value gives it large leverage. 
 
Using Tx-Rx-separation and Tx-Building-separation as the 

two fundamental predictors, the MINITAB software package 
has been fully utilised here to carry out the regression analysis. 
And, after a number of diagnostic fitting of several possible 
multiple regression functions to the data, the complete second 
order (full quadratic) model was found to produce the best fit 
to the data, i.e., with the largest coefficient of multiple 
determination. Table IX presents the regression output 
referred to here.   

From Table IX, clearly, the least squares equation for model 
III is:   

 
         = 687 + 20.37 1 17.92 2 
                         6.85 1

2 + 5.01 2
2 + 1.827 1 2               (28)      

 
where  d1 = Tx-Rx Separation Distance [in meters]  
 d2 = Tx-Building Separation Distance [in meters]  
Evidently, 0 = 687, 1 = 20.37, 2 = -17.92, 3 = -6.85, 4 = 
5.01, and 5 = 1.827.  

Notice that three additional predictors have been used to 
complement the two fundamental predictors, d1 and d2. These 
additional predictors are obviously mathematical functions of 
d1 and/or d2. Eqn. (28) will usually imply that 20.37dB is the 
average change in path loss associated with a 1-meter increase 
in Tx-Rx separation, while values of the other predictors (i.e., 

2, 1
2, 2

2, and 1 2) are held fixed. However, it is obviously 
not feasible to increase the value of Tx-Rx separation, while, 
say, Tx-Building separation is held fixed. I.e., every increase 
in either of these predictor variables perceptibly results in the 

interpretation of the estimated regression coefficients will be 
used here.  

 

 
Fig. 34: Adjusted residual plot: [residuals from  

regression of mean-path-loss against 2, 1
2, 2

2, and 1 2] vs 
[residuals from regression of d1 against  2, 1

2, 2
2, and 1 2] 

 
The adjusted residual plot of Fig. 34 is given here in line 

with trying to obtain a suitable interpretation for the slope 1 
of model III. The residuals from the regression of mean-path-
loss (MPL) against 2, 1

2, 2
2, and 1 2 represent variation in 

MPL after adjusting for or removing the effects of  2, 1
2, 2

2, 
and 1 2. Same interpretation applies for the residuals from 
regression of Tx-Rx-separation (i.e., d1) against 2, 1

2, 2
2, 

and 1 2, wherein the residuals represent variation in Tx-Rx-
separation after the adjusting for or removing the effects of 
 2, 1

2, 2
2, and 1 2. Fig. 35 provides a plot wherein a 

regression fit is superimposed on Fig. 34.       
The slope of the regression fit line of Fig. 35 is actually 

exactly 1, [7], i.e., the residuals from this fit line are precisely 
the residuals obtainable from directly applying multiple 
regression of MPL against d1, 2, 1

2, 2
2, and 1 2.  Table X 

provides the regression output on this.  It follows  that  1  can  
be interpreted as the estimated changes in MPL associated 
with a 1-meter increase in 1 after adjusting for or removing 
the effects of any of the other predictor variables  2, 1

2, 2
2, 

and 1 2. The point here is that given that the slope, 1, of 
model III is exactly same as that of the corresponding adjusted 
residual plot, then slope 1 of model-III can be aptly 
interpreted as the estimated changes in MPL associated with a 
1-meter increase in MPL after adjusting for the effects of  2, 
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1
2, 2

2, and 1 2; rather than interpreting as after  2, 1
2, 2

2, 
and 1 2 are held fixed.  

The next obvious course of action would be the model 
utility test. Unlike in the cases of model-I and model-II; with 
multivariate data, there generally 
allied to a scatterplot to point out if a particular multiple 
regression model will be judged useful. R2, the coefficient of 
multiple regression, tells quite a lot in terms of preliminary 
assessments.   
  

 
Fig. 35: Regression fit line superimposed on Fig. 34 

 
Table X: Regression output for the regression fitting of Fig. 35 

The regression equation is 
[Residuals from Regression of MPL against 2, 1

2, 2
2, and 1 2] =  

- 0.001 + 20.35 [Residuals from Regression of d1 against  2, 1
2, 2

2, 
and 1 2] 
 
 
Predictor                         Coef  SE Coef      T      P 
Constant                        -0.001    1.163  -0.00  0.999 
Tx-Rx regs vs other predictors   20.35    22.12   0.92  0.377 
 
S = 4.19485   R-Sq = 7.1%   R-Sq(adj) = 0.0% 
 
Analysis of Variance 
Source                DF         SS       MS       F         P 
Regression            1    14.89    14.89   0.85   0.377 
Residual Error    11   193.56   17.60 
Total                   12   208.45 
 
 
          Residuals                   Residuals from    
           from Regression        Regression of       
           of d1 against               MPL against       
Obs    2, 1

2, 2
2, and 1 2    2, 1

2, 2
2,and 1 2      Fit    SE Fit  Residual  St Resid    

  1                      -0.038                      -0.78    -0.78     1.44        -0.00      -0.00 
  2                       0.116                        2.93    2.36     2.82          0.57       0.18 
  3                       0.010                       -3.75    0.19     1.18         -3.94     -0.98 
  4                      -0.049                        7.43   -1.00     1.59         8.43      2.17R 
  5                      -0.069                      -7.99    -1.40     1.91       -6.59     -1.77 
  6                      -0.051                      -0.75    -1.03     1.61         0.28      0.07 
  7                      -0.015                       4.12    -0.30     1.21         4.42      1.10 
  8                       0.028                       -5.33     0.56     1.32       -5.89     -1.48 
  9                       0.037                        3.09     0.76     1.43        2.33      0.59 
 10                     0.041                        0.50      0.83     1.47       -0.33     -0.08 
 11                     0.060                        2.00     1.22      1.77        0.78      0.20 
 12                    -0.012                        0.89    -0.24     1.19        1.13      0.28 
 13                    -0.059                       -2.37    -1.20     1.75       -1.17     -0.31 
 
R denotes an observation with a large standardized residual. 

Quite a number of trials were made to ascertain the aptness 
of the model-form chosen here for model-III (i.e., eqn. (28)). 
Table XI presents the regression output of the equation that 
would result if only the two fundamental predictors (i.e., only 
Tx-Rx separation and Tx-Building separation) had been used.  
R2 is obviously lower, in Table XI, which is a useful first step 
in seeing that the model of eqn. (28), indeed, represents a 
better fit to the data. Also, the RMSE, s, is larger with only d1 
and d2 as predictors.   
 

Table XI: Regression output if only predictors d1 and d2 had been used for 
model-III 

The regression equation is 
Mean Path Loss [dB] = 49.1 + 4.03 Tx-Rx Separation [m] 
                                       - 3.65 Tx-Building Separation [m] 
 
Predictor                                   Coef     SE Coef          T          P 
Constant                                 49.089         8.939     5.49    0.000 
Tx-Rx Separation [m]              4.034         1.815     2.22    0.050 
Tx-Building Separation [m]   -3.645         1.708    -2.13    0.059 
 
S = 5.51063   R-Sq = 49.6%   R-Sq(adj) = 39.6% 
 
Analysis of Variance 
Source                DF         SS         MS        F          P 
Regression            2   299.19    149.60    4.93   0.032 
Residual Error    10    303.67     30.37 
Total                   12    602.87 
 
Source                                    DF     Seq SS 
Tx-Rx Separation [m]              1     160.88 
Tx-Building Separation [m]     1     138.31 
 
                  Tx-Rx 
           Separation      Mean Path 
Obs                 [m]       Loss [dB]           Fit     SE Fit     Residual     St Resid 
  1                  12.6              79.93       77.50       4.97             2.43          1.02 X 
  2                  16.4              69.98       70.80       2.63            -0.81        -0.17 
  3                  21.3              61.00        68.45      2.39            -7.44        -1.50 
  4                  26.7              73.13        68.06      2.42             5.07          1.02 
  5                  32.4              60.87        68.64      2.34            -7.78        -1.56 
  6                  38.2              70.97        69.78      2.16             1.19          0.23 
  7                  44.1              78.10        71.25      1.95             6.85          1.33 
  8                  50.0              69.95        72.94      1.80            -2.99        -0.57 
  9                  55.9              81.09        74.76      1.79             6.32          1.21 
 10                 61.9              79.90        76.70      1.96             3.21          0.62 
 11                 67.9              79.26        78.72      2.30             0.54          0.11 
 12                 74.0              81.09        80.78      2.75             0.31          0.06 
 13                 80.0              76.01        82.90      3.30            -6.90        -1.56 

 

 
Fig. 36: Plot of Standardised residuals vs Tx-Rx separation for 

model-III 
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Now, before going on with carrying out hypotheses tests, 
constructing CIs, and making predictions, one ought to first 
inspect diagnostic plots to see if the model needs modification 
or whether outliers do exist in the data.  The standardised 
residuals in multiple regression are a result of dividing each 
residual by its (

plot is suitably useful in validating the normality assumption. 
Also, plots of the standardised residuals versus each of the 
predictors as well as versus fitted (i.e., predicted) path loss 
values ought to show no discernable pattern. The residuals 
ought to be randomly distributed about 0 (w.r.t. a normal 
distribution), therefore all but only a very few standardised 
residuals should lie within the region of -2 and +2, i.e., all and 

expected value 0. Looking at Fig. 36 to Fig. 41, they clearly 
all lie within the -2 to +2 range. The plot of standardised 
residuals vs fitted path loss values of Fig. 41 is actually a 
combination of the preceding residual plots, i.e., against each 
predictor variable, showing implicitly how residuals vary with 
the predictors. The plot of standardised residuals vs fitted 
values is apparently the single most often suggested for 
multiple regression analysis, and it is clearly evenly 
distributed about 0, with all points falling within the -2 to +2 
standardised residual range. Fig. 42 portrays how the fitted 
values measure up with observed path loss values. As 
emphasised during the discussions of model-I and -II, a 
normal probability plot reveals the plausibility of the 
assumption that the random deviation, , has a normal 
distribution. Fig. 43 presents the normal probability plot for 
standardised residuals corresponding to model-III. The 
straightness (approximately) of the points in the plot of Fig. 
43, proffers little doubt as to whether  is normally distributed.   

A 100(1   is given by [7]: 
 

±
2, ( +1)  

 
A 99% CI for 1, the change in MPL associated with a 1-

meter increase in Tx-Rx separation while the other predictors 
are adjusted for, requires 0.005,13 (5+1) = 0.005,7 = 3.499. 
 

 
Fig. 37: Plot of standardised residuals vs Tx-Building separation for 

model-III 

 
Fig. 38: Plot of Standardised residuals vs Tx-Rx separation squared, 

for model-III 
 

 
Fig. 39: Plot of standardised residuals vs Tx-Building separation 

squared, for model-III 
 

 
Fig. 40: Plot of Standardised residuals vs (Tx-Rx times Tx-Building 

separation), model-III  
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Fig. 41: Plot of Standardised residuals vs fitted path loss values, for 

model-III 
 

 
Fig. 42: Plot of fitted path loss values vs observed MPL values, for 

model-III 
 

 
Fig. 43: Normal probability plot of standardised residuals, for model-

III 
 

With reference to Table IX for estimated values of  and 
, the CI for 1 is:  

 
20.37 ± (3.499)(27.73) = 20.37 ± 97.027 

                                           (-76.657, 117.397) 

For  2, a 99% CI is:   
                     -17.92 ± (3.499)(25.77) = -17.92 ± 90.169  
                                                             (-108.089, 72.249) 
For  3, 99% CI is:   
                    -6.85 ± (3.499)(15.64) = -6.85 ± 54.724 
                                                          (-61.574, 47.874) 
For  4, 99% CI is:    
                   5.01 ± (3.499)(16.25) = 5.01 ± 56.859 
                                                        (-51.849, 61.869) 
And, for  5, a 99% CI is:    
                    1.827 ± (3.499)(4.730) = 1.827 ± 16.550 
                                                           (-14.723, 18.377) 

 
For the expected path loss values of the various separation 

distances, CIs and PIs have been obtained using MINITAB 
(see Table XII). Analytically, say d1 = 16.4, 2 = 12.2, 1

2 = 
269, 2

2 = 149, and 1 2 = 200, then a 95% CI for this case 
would be:  

 
2 ±

2, +1 [    2] 
    69.41 ± 0.025,7 4.60 = 69.41 ± 2.365 4.60  
                                        = 69.41 ± 10.879 = (58.53, 80.29) 

 
And, the 95% PI: 

2 ±
2, +1

2 + [    2]2 

= 69.41 ± 0.025,7 (5.25946) 2 + (4.60)2

= 69.41 ± 16.525 = (52.89, 85.94) 
 

Table XII: Numerical elucidation of the (95%) CIs and PIs for model-III 
Predicted Values for New Observations 
New 
Obs          Fit    SE Fit           95% CI                95% PI 
  1        79.93       5.24     (67.53, 92.33)      (62.36, 97.49)X 
  2        69.41       4.60     (58.54, 80.28)      (52.90, 85.93) 
  3        64.95       3.05     (57.74, 72.16)      (50.57, 79.32) 
  4        64.69       3.13     (57.30, 72.09)      (50.23, 79.16) 
  5        67.45       2.88     (60.65, 74.26)      (53.28, 81.63) 
  6        70.69       2.62     (64.49, 76.90)      (56.79, 84.59) 
  7        73.68       2.34     (68.14, 79.22)      (60.07, 87.29) 
  8        75.85       2.76     (69.32, 82.37)      (61.80, 89.89) 
  9        78.76       2.78     (72.19, 85.32)      (64.69, 92.82) 
 10       80.24       3.04     (73.05, 87.43)      (65.87, 94.60) 
 11       78.48       4.62     (67.55, 89.42)      (61.92, 95.04) 
 12       79.96       3.56     (71.56, 88.37)      (64.95, 94.98) 
 13       77.17       4.36     (66.86, 87.48)      (61.02, 93.33) 
 
Values of Predictors for New Observations 
                 Tx-Rx  Tx-Building        Tx-Rx 
New  Separation    Separation   Separation  Tx-Building  Tx-Rx times 
Obs               [m]               [m]       Squared        Squared   Tx-Building 
  1                12.6                6.1              158                  37                  77 
  2                16.4              12.2              269                149                200 
  3                21.3              18.3              455                334                390 
  4                26.7              24.4              715                595                652 
  5                32.4              30.5            1049                929                987 
  6                38.2              36.6            1458              1338              1397 
  7                44.1              42.7            1941              1821              1880 
  8                50.0              48.8            2499              2378              2438 
  9                55.9              54.9            3130              3010              3070 
 10               61.9              61.0            3836              3716              3776 
 11               67.9              67.1            4617              4497              4556 
 12               74.0              73.2            5471              5351              5411 
 13               80.0              79.2            6401              6280              6340 
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With multiple regression analysis, the model utility test is 
based on a statistic that has a specified F distribution when H0 
is true, where [7]:    
Null Hypothesis: 0: 1 = 2 = = = 0 
Alternative hypothesis: :  at least one = 0  ( = 1, , ) 

Test statistic value: =
2

(1 2)
[ ( +1)]

=
[ ( +1)]

=  

SSR = SST  SSE 
Rejection region for a level  test: , , ( +1) 
 

Now, based on model-III of eqn. (28), with essentially five 
predictors, the relevant hypotheses are:  

0:   1 = 2 = 3 = 4 = 5 = 0 
Ha:   at least one of these five s is not 0 
Table IX presented the (MINITAB) regression output for 
model-III. From this table, the values of R2, adjusted R2, and s 
(Root Mean Square) have been found from the best fit to the 
data, and they all suggest a useful model.  

The model utility F ratio: 

                   =
2

(1 2)
[ ( +1)]

=
0.679

5
0.321

(13 6)

 

                                                    = 0.1358

0.045857142
= 2.961 

 
This value also appears in Table IX (MINITAB regression 

output for model-III), precisely in the F ratio column of the 
ANOVA table. Now, from a Table of Critical Values for F 
Distributions, at  = 0.100, , , ( +1). I.e., 0.100,5,7 =

2.88 .  
So, the F critical value applicable here, for numerator-df = 5 

and denominator-df = 7, is 2.88, which captures an upper-tail 
area of 0.100. Thus P-value < 0.100. The ANOVA table in 
the MINITAB output of Table IX shows that P-value = 0.095, 
which is < 0.100. Thus, it can be concluded that there is a 
useful linear relationship between path loss and one of the five 
predictor variables in model-III. It should be, particularly, 
noted that this does not imply that all five predictors are 
useful; results only suggest that H0 is successfully rejected, 
and that at least one of the five predictors is linearly 
associated to the response (i.e., linearly associated to the path 
loss predicted by model-III).         

Referring to Table V, the least mean path loss observed for 
model-III is 60.8657dB (at Tx-Building separation = 
30.480m), and the largest is 81.0877dB (at Tx-Building 
separation = 54.864m and 73.152m). Accordingly, the slow 
fading loss , estimated here as a Gaussian PDF function, is 
an r.v. approximately between 60.8657dB and 81.0877dB. 
Apparently, the mean of  ought to be transformed to zero to 
allow for an apt addition to the zero-mean empirical path loss. 
From Table IX, it can be found that the standard deviation of 
mean path loss here is 5.25946. The mean, as usual, is 
obtained by taking the average of the thirteen mean path loss 
observations made for model-III, which turns out to be equal 
to 73.9436230769231  73.9436 dB.  
Standardising to obtain zero-mean slow fading loss here, 
results in: 

60.8657 81.0877 

if and only if,  
 
60.8657 73.9436

5.259

73.9436

5.259

81.0877 73.9436

5.259
 

 
60.8657 81.0877  

 
=

60.8657 73.9436

5.259

81.0877 73.9436

5.259
  

 
= 2.487 1.358 = 1.36 ( 2.49) 
                                               = 0.9131 0.0064 = 0.9067 
 

Thus, the stipulated value, , is approximately the 90.67th 
percentile of the Gaussian distribution, with  = 73.9436 and 

 = 5.259. Using a table of the standard normal curve areas, it 
can be shown that the 90.67th percentile of the standard 
Gaussian normal distribution is approximately 1.32.  

 
                    = 0.9067 = +   

                        = 73.9436 + 1.32 5.259 = 80.885 dB 
 

Consequently, the slow fading loss (in dB), modelled here 
as a PDF Gaussian r.v., is: 

=
1

2

2

2 2

=
1

2 5.259

80.885 2

2 27.657  

                                 = 3.258 × 10 53  
 

Thus, the total loss/equation for model-III is: 
 

 = 687 + 20.37 1 17.92 2 6.85 1
2 

                     +5.01 2
2 + 1.827 1 2 + 3.258 × 10 53 [dB] 

 
where 1 = Tx-Rx separation distance 
            2 = Tx-Building separation distance 

V. CONCLUSIONS 
Fundamentally, the essence of any model would be to 

proffer valuable information with reference to the relationship 
between the response (dependent) variable and the predictor 
(independent) variable(s). If the decision is to obtain a model 
empirically, then all the modeller essentially has to do is 
determine the right number of predictor variables applicable to 
the given context, upon which the dependent r.v.(s) will be 
exemplified. Of course, the dependent variable in propagation 
modelling will always be path loss (or received signal 
strength), depending on the modeller preference.  

An empirically derived propagation model will, at the end 
of the day, comprise constant values (i.e., the y-intercept and 
regression slope coefficient(s)) and the predictor variable(s), 
proportionate to the specified environment. Utmost care 
certainly ought to be taken to obtain the right number of 
predictors. Though, more often than not, empirically derived 
propagation models will only encompass Tx-Rx separation 
distance as the predictor variable. However, as with model-III 
of this paper, the more predictors a model has, the more 
information the model bids. 
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It ought to be comprehended that every path loss model (not 
just those proposed here) is subject to inconsistency, i.e., not 
100% accurate, of course. Moreover, no model (including the 
widely accepted ones) deserves being presupposed to having 
high unlimited accurateness. This is somewhat impossible 
given the highly random nature of the radio signal and 
channel. Here, the accuracy level of the models have been 
made implicit by way of providing confidence and prediction 
intervals for each predicted path loss amplitude, in an attempt 
to proffer some general idea as to how much variability is 
obtainable, for each particular Tx-Rx separation distance. 

After having gone though the Results and Discussions 
section, it may well have become obvious that developing an 
empirical model basically involves having a look at an 
available data (usually graphically) and then deciding on one 
or more candidate models, wherein some modification is then 
carried out to sooth the particular circumstance at hand.  

Three empirically/statistically derived propagation models 
are proposed here. The first two (i.e., models -I and -II) only 
utilise the distance between transmitter and receiver as the 
predictor variable, to predict the behaviour of path loss in 
typical indoor and somewhat-outdoor passageways, 
respectively. Model-III incorporates, in addition to Tx-Rx 
separation distance, other predictors, such as Tx-Building 
separation distance, as well as other predictor functions, 
composed of Tx-Rx separation distance and/or Tx-Building 
separation distance.   

It must be noted that while the models proposed here may 
well predict path loss under similar settings, more polished 
and expanded models are obtainable with supplementary field 
measurements and trials, thereby reducing the standard 
deviation and thus yielding more precise predictions. Note that 
the standard deviations of mean path loss corresponding to the 
models are 8.121dB, 9.206dB and 5.259dB, respectively, for 
models -I, -II and III. Indeed, more precise models may be 
obtained, possibly through more measurements, as just 
accentuated.    

Unmistakably, one path loss attenuation-factor that seems to 
immensely impinge on radio signal strength is that of the floor 
thickness of the multi-storey building. Its effect is well 
observed and exemplified, here, by data corresponding to 
model-III, where signal strength is seen to be severely weaker 
at an even (much) shorter propagation path length, barely as a 
result of more floor(s) being between the weaker, shorter 
channel. This can be observed from the path loss plot of Fig. 
25, portraying high path loss despite the shorter (first few) Tx-
Rx separation distances; clearly resulting from the RF signals 
in question having to propagate through one or two floors.  

To sum up, as can be seen from the path loss plots of Fig. 
25 and Fig. 26, the behaviour of path loss, on the whole, (for 
the environment corresponding to model-III) tends to show 
some rather nonlinear reduction, which may well be as a result 
of the vegetations between the transmitter and receiver for 
certain propagation paths, in addition to the multi-level 
building floor attenuation factor.  
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