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Abstract—Analysis of blood vessel mechanics in normal and 

diseased conditions is essential for disease research, medical device 

design and treatment planning. In this work, 3D finite element 

models of normal vessel and atherosclerotic vessel with 50% plaque 

deposition were developed. The developed models were meshed 

using finite number of tetrahedral elements. The developed models 

were simulated using actual blood pressure signals. Based on the 

transient analysis performed on the developed models, the parameters 

such as total displacement, strain energy density and entropy per unit 

volume were obtained. Further, the obtained parameters were used to 

develop artificial neural network models for analyzing normal and 

atherosclerotic blood vessels. In this paper, the objectives of the 

study, methodology and significant observations are presented. 
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I. INTRODUCTION 

HE Blood vessels either delivering oxygenated blood - 

arteries, arterioles, capillaries or returning with carbon 

dioxide – veins and venules, display highly nonlinear elastic 

and anisotropic mechanical behavior and exhibit complex 

material properties [1,2]. The blood vessel mechanics change 

from vessel to vessel, change with ageing and pathologies [3]. 

 Atherosclerotic vascular disease is the most common 

cause of morbidity and mortality in developed countries, and 

the world-wide importance of acute vascular syndromes is 

increasing. As people age, they tend to develop fatty plaques 

within the walls of their blood vessels [4]. Acute events are 

usually triggered by the development of plaque disruption and 

subsequent thrombus formation [5].  

The objective of blood vessel modeling is to analyze the 

function of the vessel from its geometry, material properties 

and boundary conditions [6]. Various constitutive models 

were proposed to describe the tissue mechanical behavior [7], 

such as elastic, pseudoelastic, randomly elastic, hyperelastic, 

linear viscoelastic model, or more complex models [8].  

Even though the simplified models cannot completely 

explain the actual behavior, when simplified assumptions are 

made some important information is often revealed [4]. In 

recent studies, averaged, idealized and patient-specific  
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geometric models have been used as a basis for numerical 

simulations [9].The finite element method is a powerful 

technique for finding approximate solution of a partial 

differential equation where the domain boundaries of a given 

problem are so complex that other approaches have difficulties 

or fail [10]. In the finite element method, a complex domain is 

discretized into a number of elements, such as that a set of 

basis functions can be defined on the elements to approximate 

the solution [4]. 

The capability of the feed forward back propagation neural 

network, with as little as one hidden layer, to approximate an 

arbitrary function has been theoretically proven by several 

authors. A multilayer neural network is capable of arbitrarily 

accurate approximation to an unknown mapping and its 

derivatives, to as many orders as desired [11]. 

The objective of this work is to develop suitable models for 

analysis of normal and atherosclerotic blood vessels using 

finite element methods and artificial neural networks. 

II. METHODOLOGY 

A. Generation of 3D finite element models of blood vessels   

The 3D model of a section of the thoracic aorta was 

developed using Comsol 3.5a. FEM models were developed 

for normal vessel and vessel with 50% plaque deposition and 

are shown in Fig. 1(a) and (b) respectively.  

 

 
Fig. 1(a) normal blood vessel geometry, (b) atherosclerotic blood 

vessel with 50% plaque deposition 

 

The geometry and mechanical properties of the vessel were 

adopted from literature [12]. The stiffness of the plaque 

component was taken to be 0.5 times that of the vessel 

stiffness. Further, the boundary conditions were applied to the 

developed models and the developed volumes were meshed 

using tetrahedral elements. The mesh quality was improved by 

fine tuning the mesh. 
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B. Basis Function  

The stress–strain relationship is developed for a general 

strain energy function based on strain invariants. The first and 

second strain invariants 1 2,I I  and volume ratio J are chosen 

as the variables in the strain energy function [Shen et al 

(2005)]. They are defined as: 
2 2 2

1 1 2 3I λ λ λ= + +
                         (1) 

2 2 2 2 2 2

1 1 2 2 3 1 3I λ λ λ λ λ λ= + +
                         (2) 
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3
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where, λk (k=1,2,3) are the principal stretch ratios and J is the 

total volume ratio. The strain energy function can be 

expressed in terms of 1 2,I I
and J , 

1 2( , , )U u I I J=
                          (4) 

Further, the stress-strain behavior is defined using the 

following equations. Writing the current position of a material 

point as x and the reference position of the same point as X, 

the deformation gradient is then defined as 

i

j

xx
F

X X

∂∂
= =

∂ ∂
     (i,j=1,2,3)         (5) 

Then J , the total volume change at the point, is 

J = det(F)                           (6) 

For simplicity, the deformation gradient with the volume 

change eliminated is defined as 
1

3F J F
−

=                            (7) 

Then, the deviatoric stretch matrix is introduced as 

.
T

B F F=                            (8) 

So that the first strain invariant is given by 

1 iiI traceB B= =
     (i=1,2,3)         (9) 

and the second strain invariant is given by 

{ }2

2

1
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2
I trace B trace B B= −

      (10) 

Then the stresses associated with the strain energy function 

are given by 

1

1 2 2

2
{( ) . }

U U U U
dev I B B B I

J JI I I
σ

∂ ∂ ∂ ∂
= + − +

∂∂ ∂ ∂
   (11) 

where, dev means deviatoric and is calculated as dev(A) = A − 

1/3 trace(A) for matrix A. I is the Identity matrix. For 

incompressible material, J = 1, u is a function of I1 and I2 only 

[Shen et al (2005)]. The potential function of the arterial 

material is as follows: 

1 1 2

1( 3) ( 1)
2 2

K
U I J

µ
= − + −

            (12) 

The material constants are the shear modulus, µ1 and the 

bulk modulus, K1.. 

C. Forcing function 

The actual blood pressure signals were obtained from the 

MIT database of clinical signals (www.physiobank.net). The 

BP signal was modelled as a function of time using the sum of 

sinusoids model of the following form: 

 

y(t)=a1sin(b1t+c1)+a2sin(b2t+c2)+..... + ansin(bnt+cn)   (13) 

 

where a1, a2, .... an, b1, b2, ..., bn, c1, c2, ... cn are parameters of 

the model, ‘t’ is the time and, ‘y’ refers to the amplitude of the 

BP signal.  
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Fig. 2 The actual BP signal and the computed fit 

 

Several models were developed by increasing the number of 

model terms. A model with the five sine terms was found to 

have the least error. The actual BP signal and the fitting 

function is shown in Fig 2. The obtained function was used as 

the forcing function for simulating the developed FEM models 

of normal and abnormal blood vessels. Based on the 

simulations performed, the parameters such as total 

displacement, strain energy density and entropy per unit 

volume were obtained.  

D. Modelling using artificial neural networks 

Artificial Neural Networks (ANN) are able to learn key 

information patterns with multi-information domain. The 

advantage of the neural networks is that they can be used to 

model normal and abnormal signals in medical diagnostics 

through a flexible network of weights, transfer functions and 

input features.  

In this work, a feed forward neural network with the 

architecture having one hidden layer, and operating on tan 

sigmoid transfer function, was employed for modelling the 

normal and atherosclerotic blood vessels. Training of the 

network was performed under back propagation of the error 

using conjugate gradient algorithm. The blood pressure signal 

was taken as the input to the network and the output of the 

network consists of total displacement, strain energy density 

and entropy per unit volume. The networks with varied 

number of hidden layer neurons were synthesized and the 

training was performed using Matlab 7.1. The performance of 

the network and modelling accuracy was assessed using 

performance indices such as Integral Square Error (ISE). 
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III. RESULTS AND DISCUSSION 

The variation of ISE is shown as a function of the number 

of hidden layer neurons for normal blood vessel, in Fig. 3. It is 

seen that the ISE varies nonlinearly with increase in the 

number of hidden neurons of the ANN. In modelling the 

normal vessel, the error in estimation of the total 

displacement, strain energy density and entropy per unit 

volume was found to be minimum for a network with thirty 

hidden layer neurons. The ISE was found to increase with 

increase in the number of hidden neurons.  
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Fig. 3 The variation of integral square error shown as a function of 

the number of hidden neurons for normal blood vessel 
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Fig. 4 The variation of integral square error shown as a function of 

the number of hidden neurons for blood vessel with 50% plaque 

formation 
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Fig. 5 The variation of normal vessel response such as (a) total 

displacement, (b) strain energy density and (c) entropy per unit 

volume shown as a function of time for FEM and ANN model 
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Fig. 6 The variation of (a) total displacement, (b) strain energy 

density and (c) entropy per unit volume for the vessel with 50% 

plaque deposition shown as a function of time for FEM and ANN 

model 
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Similarly, the variation of ISE is shown as a function of the 

number of hidden layer neurons for blood vessel with 50% 

plaque formation, in Fig. 4. A periodic variation was observed 

in the ISE with increase in the number of hidden neurons. 

Further, it was found that the error in estimation of the output 

parameters was found to be minimum for a network with fifty 

hidden layer neurons. 

The outputs of the FEM model and ANN model of normal 

vessel and vessel with 50% plaque deposition are compared in 

Fig. 5 and 6. Fig. 5(a), (b) and (c) show the variation of 

normal vessel response such as total displacement, strain 

energy density and entropy per unit volume respectively, as a 

function of time. It appears that the response of the FEM 

model and ANN model with optimal number of hidden 

neurons are similar.  

The variation of the considered parameters for the vessel 

with 50% plaque deposition is shown as a function of time, in 

Fig. 6(a), (b) and (c). Also, it is seen that the response of both 

the FEM and ANN models are comparable for abnormal 

conditions.  

IV. CONCLUSION 

In order to prevent, diagnose and treat vascular disease, 

detailed knowledge of blood vessel mechanics is essential. For 

examining the relationship between vascular disease and 

hemodynamic conditions, detailed quantitative data on 

vascular mechanics in the arteries is required. However, 

experimental studies have several limitations including the 

time and expense of conducting these experiments, the 

difficulty in replicating in vivo conditions, and the limited 

quantitative data which can be extracted. In recent years, 

computational techniques such as finite element methods have 

been used increasingly by researchers seeking to understand 

vascular dynamics. These methods can augment the data 

provided by in vitro and in vivo methods by enabling a 

complete characterization of vessel mechanics under precisely 

controlled conditions. 

In this work, 3D finite element models of normal vessel and 

atherosclerotic vessels with 50% plaque deposition were 

developed using Comsol 3.5a. Boundary conditions were 

applied to the developed models and a distributed load was 

applied on the inner wall of the vessel. The developed vessels 

were subjected to a transient analysis and the parameters such 

as total displacement, strain energy density and entropy per 

unit volume were obtained for normal and atherosclerotic 

vessels. Further, the obtained results were utilized to develop 

artificial neural network models of normal and atherosclerotic 

vessels. The accuracy of the developed models was analyzed 

using performance estimates such as integral square error. 

This work seems to be clinically important since the 

modelling of blood vessels in normal and diseased states is 

essential for designing stents, surgery planning, treatment and 

diagnosis of vascular diseases. 
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