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Abstract—Accurately predicting non-peak traffic is crucial to 
daily traffic for all forecasting models. In the paper, least squares 
support vector machines (LS-SVMs) are investigated to solve such a 
practical problem. It is the first time to apply the approach and analyze 
the forecast performance in the domain. For comparison purpose, two 
parametric and two non-parametric techniques are selected because of 
their effectiveness proved in past research. Having good 
generalization ability and guaranteeing global minima, LS-SVMs 
perform better than the others. Providing sufficient improvement in 
stability and robustness reveals that the approach is practically 
promising. 

Keywords—Parametric and Nonparametric Techniques, 
Non-peak Traffic Forecasting 

I. INTRODUCTION 
HE success of intelligent transportation system (ITS) much 
depends on the provision of accurate real-time information 

and predictions of traffic status. Due to the importance of traffic 
forecasts, more research attention has been focused on this 
subject in recent decades. Some papers such as extensive 
review appear [1]-[3], which attract significant scientific 
interest in more flexible approaches. After summarizing former 
works, traffic forecasting is classified quite differently on the 
basis of diverse classification standards. The type of 
forecasting depends on the following groups of factors: single 
road link or transportation network, freeways or urban streets, 
physical models or mathematical methodologies, univariate or 
multivariate method, etc. As illustrated in the statement, traffic 
prediction “can be separated into two paradigms: the empirical 
based, incorporating fairly standard statistical methodology on 
one hand, and that based on traffic process theory, either of 
demand or of supply, on the other” [1].   By applying statistical 
methodology or heuristic methods in traffic forecasting, the 
empirical approaches can be classified into two categories: 
parametric and nonparametric techniques. 

To obtain accurate forecasts, since the early 1980s, extensive 
variety of parametric approaches has been employed ranging 
from historical average algorithms, smoothing techniques, 
linear and nonlinear regression, filtering techniques, to 
autoregressive linear processes including autoregressive 
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moving average (ARMA) family that is regarded as a milestone 
in forecasting field. Lately extraordinary development of 
distinct nonparametric techniques, including nonparametric 
regression, neural networks, etc., has shown their great 
potential alternative to their parametric counterparts. In 
essence, nonparametric statistical regression can be regarded as 
a dynamic clustering model that relies on the relationship 
between dependent and independent traffic variables. It 
attempts to identify past information that are similar to the state 
at prediction time, which leads to easily implemented nature. 
Some researchers demonstrated that nonparametric techniques 
generally perform well due to their strong ability to capture the 
nondeterministic and complex nonlinearity of traffic time series 
[4]-[11]. Many computational intelligence (CI) techniques 
including fuzzy systems, machine learning, and evolutionary 
computation have been successfully adopted in the field. 
Particularly, artificial neural networks (ANNs) such as the 
radial basis function neural network (RBF-NN) [12], [13], have 
been successfully applied. The theory of support vector 
regression (SVR) has also been introduced by several 
researchers to model traffic characteristics and predict traffic 
states [7], [14], [15]. The recent applications of various CI 
techniques and hybrid intelligent systems have shown their 
good potential on traffic forecasting. 

Least squares support vector machines (LS-SVMs) proposed 
by J. A. K Suykens [16], [17] are closely related to 
regularization networks and Gaussian processes, but emphasize 
and exploit primal-dual interpretations additionally. The early 
application of the method to financial time series forecasting 
has obtained breakthroughs and plausible performance [18]. In 
studies of k-nearest neighbor (k-NN) nonparametric 
approaches to traffic forecasting, state vectors are found to be 
essential to ensure more accurate prediction [19]. The traffic in 
non-peak period is the essential part of daily traffic. 
Unpredictable congestion occurred in the relatively stable 
traffic inevitably brings some difficulty for all predictors. Thus, 
the quality of forecasts in non-peak hours is fundamental to 
traffic prediction. And the LS-SVMs method is proposed to 
predict and analyze traffic status in non-peak period. 
Meanwhile, a hybrid state space method is applied to determine 
the appropriate input and output dimensions. 

Due to the simplicity of the parametric techniques and the 
effectiveness of the nonparametric ones, both types of 
techniques are chosen for comparison: historical-mean (HM), 
autoregressive moving average (ARMA), radial basis functions 
(RBF) networks, and support vector regression (SVR) models. 
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To validate our method, the forecast performance is measured 
by different indices of forecast accuracy. The results show that 
the proposed approach is generally better than the other models 
in both effectiveness and robustness through the comparative 
case analysis. 

II. PROPOSED SCHEME 

A. Least Squares Support Vector Machines (LS-SVMs) 
Compared with standard support vector machines (SVMs) 

[20], LS-SVMs apply linear least squares criteria to the loss 
function instead of traditional Quadratic Programming (QP) 
method, which leads to the advantages of fast convergence, 
high accuracy and low computational efforts [16], [17]. The 
algorithm is introduced simply and mathematically. Suppose a 
training data set is 
 

             { }( ) : 1, 2, ,i iD = , y i = lLx                             (1) 

 
where xi∈ n is the input variable set; yi∈  is the output 
variable set; l corresponds to the size of the training data. In the 
weight space (primal space), the LS-SVMs formulation can be 
described as: 
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where Ф: L = n→H is a nonlinear mapping function that maps 
the input vector x into a higher (possibly infinite) dimensional 
feature space H; w∈H is the weight vector; ei∈  is the error 
variable; e=[e1,…,el]T∈ l is the error vector and b a bias term. 
In addition, J is the loss function, and ζ is the adjustable error 
term corresponding to a weighted least squares cost function. 
To solve the above minimization problem, the Lagrangian 
function is defined by: 
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where αi∈  are named Lagrange multipliers or support values 
that constitute the support vector α (α=[α1,…,αl]T∈ l). The 
conditions for optimality are given by: 
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In standard SVMs, w and Ф(xi) are never calculated. After 
variables w and e are eliminated, the following linear system 
can be easily obtained: 
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where y=[y1,…,yl]T, 1=[1,…,1] ∈ l, and Ω={Ωij}l×l. Here 
Mercer’s condition is applied within the matrix Ω 
 

                        T ( ) ( ) ( , )ij i j i j= KΦ Φ =x x x xΩ                     (6) 

 
In the optimum the weight vector can be denoted 
by

1
( )l

i ii=
= α Φ∑w x , and the LS-SVMs regressor is obtained by 

applying the Mercer’s condition: 
 

1
( ) ( ) ( , )lT

i ii=
f = b = K bΦ α+ +∑x w x x x            (7) 

 
where α and b can be obtained by solving the above matrix 
equation. For positive definite kernel function K(xi, xj), three 
typical kernels are commonly used. These are linear kernel with 
formula K(xi, xj)=xi

Txj, polynomial kernel of degree d with 
formula K(xi, xj)=(xi

Txj+1)d and radial basis function (RBF) 
kernel with formula 
 
                      ( )2 2( , ) exp / 2i j j iK = σ− −x x x x                     (8) 

 
where σ is a tuning parameter. The paper focuses on the use of 
the RBF kernel for its good performance and advantages in 
time series forecasting problem proved in past research. The 
precision and convergence of LS-SVMs are both affected by ζ 
and σ. 

B. State Space Method 
The state space methodology has a long historical 

background [19]. There the state contains vectors that include 
all the information about a certain system that carries over into 
the future. Specifically, the measurements during each time 
interval t, t-1,…, t-d compose a state vector where d is an 
appropriate number of lags (d∈ ). Suppose there are N weeks 
chosen for training in the traffic data obtained. For a particular 
day in a week (Monday, for example), the state vector Xk(t, d) 
of the traffic parameters measured every 1 hour can be 
described by: 
 

                      [ ]( , ) ( ), ( , )k k kt d = V t t dX x                          (9) 
 
where 
 

[ ]( , ) ( 1), , ( ) ,   [2, N],  [1, 24]k k kt d = V t V t d k t− − ∈ ∈Lx       (10) 
 
can be chosen as the input variables in training the RBF-NN, 
SVR and LS-SVMs models; Vk(t) denotes the traffic parameter 
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during the current time interval t in the week k; Vk(t-1) 
represents the one during the previous 1-hour interval, etc. All 
indices in xk(t, d) are closely related to Vk(t). Particularly, when 
t≤d, xk(t, d) contains the last d-t+1 parameters measured in the 
day before the chosen particular day. After d is appropriately 
determined, the vectors {xk(t, d),Vk(t)}, k∈[2, N] can be used 
as input-output pairs in the training process for each t, t∈[1, 
24]. And the number of each group of training samples is N-1 
(24 groups). Then for each time interval t in the week N+1, the 
vector xN+1(t, d) is used to obtain the final forecasting result 
�

N+1V (t). It is usually compared with the original measurement 
VN+1(t) that means the parameter measured during the 
corresponding time interval t in the week N+1. In practice, xk(t, 
d) may not only contain the d lagged values but also be 
supplemented with the historical information Vhist,k-1(t) that 
represents the historical index at the time of day and day of the 
week associated with the time interval t in the week k-1 along 
the cyclical curve. The combination forms a hybrid state space. 
The comparison of different nonparametric forecasting results 
is investigated after specifying the variable d. 

C. Measures of Forecast Accuracy 
Two statistics are used to assess the quality of forecasting. 

The mean absolute percentage error (MAPE) and the variance 
of absolute percentage error (VAPE) are irrelevant to the unit 
of the measures and insensitive to the changes in the magnitude 
of forecasts: 
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where VO(t) is the observed value of the measure during the 
time interval t (VO(t)≠0); � PV (t) is the predicted value of the 
measure; and T is the number of forecasting periods (T=102 in 
the experiment). Specifically, the MAPE calculates the average 
relative error between the forecast output and actual observed 
data, which reflects the accuracy of the forecasting. The VAPE 
calculates the sum of the deviations from the average 
performance during the forecasting in all periods, which 
represents the stability of a forecasting model. Meanwhile, the 
percentage error (PE) between our prediction and the original 
data is also applied: 
 

             �( )( ) ( ) ( ) / ( )O OPPE t = V t V t V t 100%⎡ ⎤− ×⎣ ⎦
             (13) 

III. OTHER FORECASTING METHODS 
Two parametric and two nonparametric methods are used as 

representative techniques to supply overall comparisons. 

A. Historical-mean (HM) Model 
HM model, a simple conventional parametric technique, is 

described as below: 
 

                      , , 1
1

1( ) ( )
K

Aver K hist w i
i

V t = V t
K + −

=
∑                          (14) 

where ,Aver KV (t) is the average which represents the forecasting 
result � 1wV + (t) and K is the number of the historical weeks 
before the week w+1. Namely, the forecasting result is obtained 
from the average of the historical traffic data at the same time of 
day and day of the week. This method is used as a 
representative of parametric techniques to supply a 
comparison. 

B. Autoregressive Moving Average (ARMA) Models 
Autoregressive moving average (ARMA) models, including 

purely autoregressive (AR) and purely moving-average (MA) 
models as special cases, are one of the most popular classes of 
linear time series models [21]. The models are frequently 
applied to model linear dynamic structures, to depict linear 
relationships among lagged variables, and to provide effective 
linear forecasting. The AR and MA classes can be further 
extended to modeling more complicated dynamics of time 
series. Combining AR and MA forms together yields the 
ARMA model defined as 
 

               k 1 1 k 1 k 1
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t t q t q
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where {εt} is a simple type of stochastic process, denoted as 
{εt} � WN(0, σ2); p, q ≥ 0 are integers, and (p, q) represents the 
order of the model; Vk+1(t) denotes the traffic parameter during 
the current time interval t in the week k+1; Vk+1(t-1) represents 
the one during the previous 1-hour interval, etc. The white 
noise {εt} serves as a building block in defining more complex 
linear time series processes and reflects information that is not 
directly observable. ARMA model is one of the most frequently 
used families of parametric models in the time series analysis. 
This is due to their flexibility in approximating many stationary 
processes. 

C. Radial Basis Function Neural Network (RBF-NN) 
As a competitive nonparametric regression approach, the 

RBF-NN model for predicting traffic data series is applied in 
this paper. The method is different from the conventional 
multilayer perceptrons (MLPs) approach in which the 
nonlinearity of the model is only embedded in the hidden layer 
of the network [22]. There are many additional advantages in 
RBF-NN model, which have been proved recently. Compared 
with MLPs, the network can be well developed to become more 
adaptive to universal approximations with more accuracy and 
less time. Moreover, the RBF network outputs become linear 
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functions of the output layer weights when the basis functions 
are appropriately fixed. The above two advantages make us 
select the highly developed tool for comparison. 

D. Support Vector Regression (SVR) 
SVR has been introduced within the context of statistical 

learning theory and structural risk minimization (SRM) 
principle. Researchers regard it as a powerful methodology for 
linear and nonlinear regression. Benefiting from the SRM 
principle, the SVR can gain a much better ability on 
generalization which is especially important for machining 
learning algorithms. In brief, the SVR maps the inputs into a 
higher dimensional feature space with an appropriate kernel 
inner product, then in the mapped space minimizing the loss 
value with Quadratic Programming (QP) techniques can 
determine some parameters which exclusively denotes a 
regression function [20], [23]. Together with the determined 
parameters and the fixed regression formulation, the regression 
function can be ascertained. N.B. before the SVR processing, 
an appropriate kernel function and loss function must be chosen 
to get a better solution for our problem. For the proved 
efficiency of SVR in the early research, and both LS-SVMs and 
SVR predictors belonging to the same SVMs family, SVR 
predictor is also compared with ours. 

IV. EXPERIMENTAL RESULTS 
Data for this study come from the Performance Measurement 

System (PeMS), which can be accessed through the Internet 
[24]. The travel time index (TTI) is commonly used in the 
analysis of traffic status. It expresses the average amount of 
extra time it takes to travel in the peak relative to free-flow 
travel. And it can present congestion levels in a format that is 
easy to understand and communicate to the general public. 
Considering it from a practical perspective, the PeMS supplies 
the TTI directly on its website to the public for reference and 
evaluates the traffic situation in the whole freeway network. 
The traffic data of 24 weeks from May 1 to Oct. 15, 2006 are 
used in the paper. The 1-hour lane-aggregated average TTI data 
are downloaded because of our access to limited traffic data. 
The data for a particular day start every 1 hour between 00:00 
am and 23:00 pm. Our attention is focused on predicting the 
TTI of the last week based on the former. 
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Fig. 1 Plot of all traffic data obtained from the transportation network 
(24 weeks) 

Fig. 1 shows the total 24 weeks traffic data hourly. In this 
section, the out-of-sample forecasting ability of the models is 
evaluated. Fig. 2 illustrates the above hourly average TTI data 
of 1,680 time points. The data are continuously recorded over a 
period of the selected 70 days (the first 10 weeks). With the 
plan axes of 24 hours and 70 days, the three-dimensional graph 
shows the periodical pattern of 24 hours with two peak periods. 
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Fig. 2 Three dimensional graph of the first 10 weeks 

Based on the analysis of the TTI of each day, the non-peak 
periods from the data are selected. Specifically, the time 
intervals (6:00 am – 10:00 am, 15:00 pm – 19:00 pm on 
weekdays; 13:00 – 20:00 pm on weekends) contain the 
morning and evening peak periods. Therefore, there are 14 and 
16 time points in the non-peak period for each weekday and 
each weekend day respectively. Namely, there are totally 102 
time points lying in the non-peak hours of one week. And the 
aim of the paper is to predict these points in the 24th week. 

Different parameters (K, d, etc.) are applied for the predictors 
in the experiments. Due to their general performance in our 
other studies, the most representative models with better 
performance measured in MAPE are chosen for simplicity: HM 
(K=3), ARMA (1,1), RBF-NN (d=1), SVR (d=3), and LS-SVR 
(d=4). For the three nonparametric techniques, the training 
process is based on the information in the non-peak periods of 
the former 23 weeks. Specifically, the former 12 weeks are 
selected for training, while the latter 11 are chosen for 
validation in the proposed model (N=23). Parameters adjusted 
appropriately help to obtain better performance. Due to distinct 
differences among the 102 time points of the week, 102 (ζ , σ) 
pairs with ζ ranging from 0.05 to 20000 and σ from 0.5 to 100 
help LS-SVMs producing the final forecast. An LS-SVMs 
software kit is applied in the experiments [25]. 

Fig. 3 compares the forecast performance of the HM, ARMA, 
RBF-NN, and SVR models with that of the LS-SVMs model in 
two groups. Fig. 3(a) presents the original data and the 
forecasts from the parametric techniques at 102 time points 
separately, while Fig. 3(b) displays the results from the 
nonparametric techniques for comparison. Correspondingly, 
Fig. 4 compares the PEs of these predictors point by point. 
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(a) HM, ARMA and LS-SVMs 
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(b) RBF-NN, SVR and LS-SVMs 

Fig. 3 Comparison of forecasts from the parametric and 
nonparametric models 
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(a) HM, ARMA and LS-SVMs 
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(b) RBF-NN, SVR and LS-SVMs 

Fig. 4 Comparison of PEs from the parametric and nonparametric 
models 

 
From the figures, it is obvious that most PEs of the 

nonparametric predictors are less than 4%. This indicates that 
the nonparametric techniques outperform the parametric ones. 
It also can be found that the simple HM model can provide 
relatively stable and accurate forecasts. Meanwhile, the two 

SVMs family members generally perform better, and nearly all 
the absolute values of PEs of our model are less than 2%. A 
predicted value from the RBF-NN model is visibly inaccurate 
(21:00 pm, Friday), which makes its PE up to about -8%. And 
the SVR model also produces such an inaccurate value with the 
PE up to 4% (20:00 pm, Friday). Moreover, it seems that more 
difficulties exist for all models to provide accurate forecasts on 
weekends. 

Showing the prediction results from different models, Table I 
lays strong emphasis on the study using the measures of 
forecast accuracy: MAPE and VAPE. It can be easily noticed 
that the performance of the two SVMs family members is better 
than that of the other models. Moreover, compared with the 
HM, ARMA, RBF-NN, and SVR predictors, our model 
reduces 8.31%, 34.18%, 13.85%, and 6.61% in MAPE 
respectively. Meanwhile, it also reduces 15.28%, 49.73%, 
38.31%, and 17.93% in VAPE respectively. This can fully 
demonstrate that our model is more accurate and robust than the 
other four. 
 

TABLE I 
COMPARISON OF PREDICTION PERFORMANCE IN MAPE & VAPE USING 

DIFFERENT PREDICTORS FOR NON-PEAK HOURS (%) 
Predictor MAPE VAPE 

HM (K=3) 0.7030 0.6553 
ARMA (1, 1) 0.9793 1.1045 

RBF-NN (d=1) 0.7482 0.9000 
SVR (d=3) 0.6902 0.6765 

LS-SVMs (d=4) 0.6446 0.5552 

 
In order to compare the models from a holistic perspective, 

the analysis using another measure of forecast accuracy, the PE, 
is further produced. After the PEs are calculated for each 
model, the numbers of the predicted time points lying in 
different ranges of |PEs| (the absolute values of PEs) are 
statistically analyzed. The range boundaries are set as 1%, 2%, 
and 4%. For the five groups of non-peak period forecasts, Table 
II clearly shows the comparisons of the numbers computed 
from each model. It can be seen that only the two SVMs family 
members have no PEs above 4%. Simple comparisons show 
that our model has more predicted points lying in the range less 
than 1% and fewer points in the range more than 2%. 

 
TABLE II 

THE NUMBERS OF PREDICTED POINTS LYING IN DIFFERENT RANGES OF |PES| 

Predictor [0, 1%] (1%, 2%] (2%,4%] Above 
4% 

HM (K=3) 76 23 2 1 
ARMA (1, 1) 67 25 6 4 

RBF-NN (d=1) 79 17 5 1 
SVR (d=3) 67 30 5 0 

LS-SVMs (d=4) 78 22 2 0 
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Fig. 5 Original TTI and search window 

 
As shown in Figure 5, the observed TTI VTTI(t) (t∈N) and a 

variant Δ (Δ>0, Δ∈R) can produce a search window that is two 
Δ wide. At each time point t, the upper boundary of the window 
is VTTI(t)+Δ and the lower one is VTTI(t)-Δ. The use of the 
window can determine the distribution of the predicted TTI and 
evaluate the accuracy of each model in another way. 
Obviously, when the search window expands with Δ 
increasing, more predicted points lie inside it. 

Table III lists the specific numbers of the predicted TTI lying 
inside different ranges (Δ1, Δ2] using the models. In the table, 
Δ1 and Δ2 determine the search window W1 with width=2Δ1 and 
W2 with width=2Δ2 (Δ1<Δ2). The predicted points lying in the 
range (Δ1, Δ2] means that these points lie inside window W2 and 
outside W1. Examining the presented numbers, it can be seen 
that 51.96% forecasts from the LS-SVMs model lie inside the 
window with width=0.010 (Δ2=0.005). Particularly, there are 
no predicted points lying outside the search window with 
Δ=0.040. This proves the robustness and accuracy of the 
proposed model from another point of view. 
 

TABLE III 
THE NUMBERS OF PREDICTED POINTS LYING IN DIFFERENT RANGES (Δ1, Δ2] 

(Δ1, Δ2] HM ARMA RBF-NN SVR LS-SVR 
(0, 0.005] 52 41 46 48 53 

(0.005, 0.010] 32 32 36 38 34 
(0.010, 0.025] 17 23 19 15 14 
(0.025, 0.040] 0 3 0 0 1 
(0.040, 0.060] 1 3 0 1 0 
(0.060, 0.075] 0 0 1 0 0 

 
Measuring the forecast accuracy in four ways, the analyses 

show that the proposed model generally outperforms the others 
in non-peak traffic forecasting. It demonstrates the 
effectiveness and robustness of the LS-SVMs model applied in 
the special situation. 

V. CONCLUSION 
First applying the LS-SVMs in non-peak period forecasting, 

the case studies comprehensively compare the performance of 
two parametric and two nonparametric techniques. An hourly 
TTI time series is used in our experiments to demonstrate the 
effectiveness of our model, only as an example and because 
hourly traffic data are available to us. The LS-SVMs predictor 

shows its superiority because of its extraordinary ability of 
converging rapidly and avoiding local minimum. The good 
adaptability to forecast traffic status in non-peak hours 
evidences the potential applicability of the approach in 
real-time traffic forecasting. 
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