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Abstract—Ant Colony Algorithms have been applied to difficult 

combinatorial optimization problems such as the travelling salesman 
problem and the quadratic assignment problem. In this paper grid-
based and random-based ant colony algorithms are proposed for 
automatic 3D hose routing and their pros and cons are discussed. The 
algorithm uses the tessellated format for the obstacles and the 
generated hoses in order to detect collisions. The representation of 
obstacles and hoses in the tessellated format greatly helps the 
algorithm towards handling free-form objects and speeds up 
computation. The performance of algorithm has been tested on a 
number of 3D models. 
 

Keywords—Ant colony algorithm, Automatic hose routing, 
tessellated format, RAPID.  

I. INTRODUCTION 
OSE and harness routing is a significant research area in 
assembly design. Many CAD and solid model 

manufacturers incorporate the ability to represent these 
components in their products. However, the programs 
available are not always able to produce efficient routing. 
Often, skilled personnel who understand the engineering 
requirements, the model representations and physical 
production issues fill this technical gap. This requires human 
intervention to create assemblies and as CAD design tools 
allow rapid design and redesign of products at speeds that 
exceed the current human capacity, hose and harness routing 
cannot be done efficiently. There is an unacceptable 
bottleneck in meeting the customer's demand when bringing 
products to the market.  

Most hose routing problems are difficult combinatorial 
optimization problems and combinatorial optimization 
techniques such as genetic algorithms, ant colony algorithms 
and simulated annealing can be used to produce a feasible set 
close to the optimal solution.  
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In the initial stage of this research, hose routing can briefly 
be defined as finding a collision free path (optimal or near 
optimal) between a start point and a target point.  

In this paper, two ways of representing the road map for the 
ant colony algorithm are presented; one is a fixed-sized grid 
map and the other consists of randomly selecting points from 
the world. To handle collision detection and achieve CAD 
software independency, the algorithm uses the tessellated 
format for the obstacles (which is available in most CAD and 
computer graphics packages) and the collision detection 
library RAPID. 

The structure of the algorithm is summarized in Fig. 1. 
  

 
 

Fig. 1 Structure of the ant colony algorithm for automatic hose 
routing 

 
The rest of the paper is structured as follows. Section II 

describes the ant colony algorithm. Section III provides a 
description of the tessellated format (or representation) of the 
CAD models and a description of the collision detection 
library RAPID. Section IV describes the implementation of 
the two versions of the ant colony algorithm. Section V 
presents the simulation results for the two versions. The 
results are discussed in Section VI and Section VII concludes 
the paper. 

II. ANT COLONY ALGORITHM 
Ant colony algorithms were first proposed by Dorigo and 

Grid Based and Random Based Ant Colony 
Algorithms for Automatic Hose Routing in  

3D Space 
Gishantha Thantulage, Tatiana Kalganova, and Manissa Wilson 

H 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

265

 

 

his colleagues [1], [4] as a multi-agent approach to difficult 
combinatorial problems such as the travelling salesman 
problem and the quadratic assignment problem. Later 
scientists have applied them to many different discrete 
optimization problems summarized in [2], [3] and [6]. In this 
paper, the ant colony algorithm is applied to 3D hose routing 
in assemblies using two types of road maps. 

Real ants are able to find the shortest path between their 
nest and a food source. Communication between the ants is 
based on a pheromone trail deposited by individual ants. An 
ant's tendency to choose a specific path depends on the 
intensity of the pheromone trail on the path, i.e., the stronger 
the pheromone trail a path has the higher the probability that 
an ant will follow that particular path. Over time, the 
pheromone trail evaporates and it loses intensity if no more 
pheromone is laid down by other ants. If a large number of 
ants choose a specific path, the intensity of this trail increases 
and more ants tend to choose that path. 

 

 
 

Fig. 2 Flowchart of the ant colony algorithm 
 
Ants perform a complete tour (in this paper a tour is defined 

as travelling from the start point to the target point) by 
choosing grid points or random points according to a 
probabilistic state transition rule which selects neighbouring 
points that are closest to the target point and have a high 
amount of pheromone. Once all the ants have completed a 
certain number of turns (Nturns) a global pheromone updating 
rule (global updating rule, for short) is applied (see Fig. 2). A 
fraction of the pheromone evaporates on all edges (edges that 
are not refreshed become less desirable); each ant that was 
able to finish a complete tour, deposits an amount of 
pheromone on the edges which belong to its tour in proportion 
to how short its tour was (in other words, edges which belong 

to many short tours receive the greater amount of pheromone). 
After global updating, the current set of ants is removed from 
the civilization and another set of ants starts from the start 
point to explore the target point. The process is iterated until 
the number of turns reaches a maximum number of turns 
(MAX_TURNS). Note that, the parameter Nturns is set such that 
most of the ants in the initial set are able to reach the target 
point. 

The state transition rule used by ant the system, called a 
random-proportional rule, is given by (1) and gives the 
probability with which ant k in city r chooses to move to city s 
[5], 
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where τ is the pheromone level, η = 1/δ is the inverse of the 
distance (δ) from point s to the target point, Jk(r) is the set of 
neighbour points of r that remain to be visited by ant k 
positioned on the point r (to make the solution feasible), and β 
is a parameter which determines the relative importance of 
pheromone versus distance (β > 0). 

In the ant system, the global updating rule is implemented 
as follows. Ants those were able to complete their tour within 
the number of allocated turns (Nturns), allow updating 
pheromone levels of their visited edges according to [5], 
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0 < ρ < 1 is a pheromone decay parameter, Lk is the length 
of the tour performed by ant k, and m is the number of ants 
that were able to complete their tour within the stipulated 
number of turns Nturns. 

III. THE TESSELLATED FORMAT AND RAPID 
The search space is represented by a 3D model. The 3D 

model can be generated by using any CAD software such as 
Pro/Engineer or AutoCAD. Most CAD software supports the 
tessellated representation of a 3D model. Therefore, in order 
to provide a CAD software independent implementation of the 
algorithm, the 3D model was represented in the tessellated 
format. 

The .stl (STereoLithography) format [7] is an ASCII or 
binary file used in manufacturing. It is a list of triangular 
planes that describes a computer generated solid model. This 
is the standard input for most RAPID prototyping machines. A 
.stl file defines an object’s surfaces as a set of adjacent 
triangles as shown in Fig. 3. The file basically contains X, Y 
and Z Cartesian coordinates of each vertex of the triangles, as 
well as the coordinates of the vectors normal to the triangles. 
With the tessellated format, each edge is shared only by two 
triangles. The tessellated model is an approximation to the real 
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model and the accuracy of the tessellated model depends on 
the number of triangles used. In most CAD packages the 
number of triangles generated for the tessellated model can be 
controlled. Models were generated using the CAD package 
Pro/Engineer and its programming toolkit Pro/Toolkit. 

 

 
 

Fig. 3 Tessellated representation of objects 
 
The proposed algorithm is based on the identification of 

available paths in the given 3D model represented by .stl 
format. The availability of paths can be determined by the 
collision detection library RAPID. 

RAPID (Robust and Accurate Polygon Interface Detection) 
[8] is a C++ library developed at Department of Computer 
Science, University of North Carolina, for interference 
detection (or collision detection) of large environments 
composed of unstructured models. 
 It is applicable to polygon soups [8] - models that contain 

no adjacency information and obey no topological 
constraints. The models may contain cracks, holes, self-
intersections, and non-generic (e.g. coplanar and collinear) 
configurations. 

 It is numerically robust - the algorithm is not subject to 
conditioning problems and requires no special handling of 
non-generic cases (such as parallel faces). 

 The RAPID, library is free for non-commercial use. It has 
a very simple user interface: the user needs to be familiar 
with only about five function calls. 

RAPID accepts only polygonal models composed entirely 
of triangles, but does not require the model to have any 
particular structure. For example, some collision detection 
systems require the shapes to be well-formed solids – the 
surfaces must be “closed” so that there are a well-defined 
inside and outside. 

IV. IMPLEMENTATION 
The algorithm was implemented in three steps. In the first 

step, the tessellated representation of the obstacles was 
obtained as a text file from the CAD package. This file was 
passed to a program which incorporated the collision detection 
library RAPID. The following inputs were also supplied to the 
program: 
 world Size of the paths to be explored, given by the 

maximum and minimum of each coordinate axis - Xmin, 
Xmax, Ymin, Ymax, Zmin, and Zmax, 

 coordinates of the start point S(XS, YS, ZS) and target point 
T(XT, YT, ZT), 

 number of ants to be released, 
 values for the parameters ρ (pheromone decay parameter) 

and β, 
 initial pheromone levels of the edges (constant), 
 number of turns for which the algorithm is to be run 

(MAX_TURNS), 
 frequency at which the global pheromone update rule is 

applied (Nturns), 
 radius (r) of the hose or pipe segment. 

It was not possible to find a benchmark for a comparison 
study with previous work on pipe routing. Automatic pipe 
routing has previously been addressed in [7]; the authors used 
genetic algorithms and RAPID for pipe routing and applied 
them only to one real-world application and took hours to 
obtain the optimal path or near optimal path. Therefore, at the 
initial stage, the implementation of the algorithm was 
restricted to models specifically generated for the 
experiments. Furthermore, the main goal was to conduct a 
feasibility study of applying the ant colony algorithm for 
automatic 3D hose/pipe routing. In future work, the algorithm 
will be applied to some real-world applications. 

In the second step, the program implemented three tasks. 
Firstly, it created the whole road map for the two versions, 

rectangular grid or randomly generated points from the world. 
When connecting two points, the program checked, with aid 
of the C++ library, RAPID, that the path between the two 
points was collision free (the axis of the hose cylinder lies on 
the line connecting the two points). For simplicity, a 
rectangular hexahedron was used that was centred on the line 
segment between the two points such that the cylindrical hose 
could be laid within it. For the first version (fixed-size grid 
map), when trying to connect a grid point to another, the 
algorithm considered only north, west, south, east, top and 
bottom neighbours (6-way connection) as this would reduce 
the number of routes needed to be stored in the memory. The 
road map was stored in a text file that can be used again if the 
algorithm needs to be executed another time. For the second 
version, the program generated points randomly from the 
world. Then as for the first version, the algorithm tried to 
connect each and every point (including the start and target 
points) within the randomly generated point set. 

Secondly, the program searched for optimal path or near 
optimal path between the start and the target points using the 
ant colony algorithm and the roads maps created earlier. If 
paths contained cycles, these were removed before applying 
global updating of the pheromone. Initially, a constant 
pheromone value was set for each edge. Before applying 
global updating, the program found the optimal path for the 
current set of ants and if this was an improvement on the path 
for the previous set of ants, it set this path as the optimum path 
found so far. 

Thirdly, at the end of MAX_TURNS, the (optimal) path 
obtained for the grid-based version was further refined to 
eliminate some ‘staircases’ (see Fig. 4). Again, when refining 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

267

 

 

the optimal path, before connecting two points, the algorithm 
used RAPID to detect any collisions. 

 
Fig. 4 Refining the path 

 
In the third step, the program generated the list of points 

needed for moving from the start point to the target point. 

V. SIMULATIONS 
Two versions of the ant colony algorithm were 

implemented and their strengths and weaknesses were 
investigated experimentally. The CAD Pro/Engineer package 
was used for generating the 3D models and its programming 
toolkit Pro/Toolkit, was used for obtaining the tessellated 
format of the generated models. 

The parameter settings for the ant colony algorithm were: 
number of ants = 10, initial pheromone level for each edge = 
100, number of turns for which the algorithm is to be run, 
MAX_TURNS = 10,000, pheromone decay parameter ρ = 
0.01, and β = 5.  

All the simulations were conducted on a Pentium IV PC 
(Processor speed = 3.0 GHz, Memory = 512 MB) in the 
Microsoft Windows XP environment using Microsoft Visual 
C++ (Version 6.0). 

The performance of the algorithm was defined by time 
(seconds) and the length of the optimal path. 

For each model, the grid-based version was tested on 3 
different step sizes (increment values of the x, y and z 
coordinates) 10, 25, and 50. The random-based version was 
tested for 100, 150, 200 and 500 random points. All the 
simulations were carried out for 10,000 turns and averaged 
over 10 trials. 

In the figures below, the best paths obtained over 10 trials 
are shown for the two versions. 

A. Model 1: Hose Routing in an Environment with a Hole 
in a Cube  

TABLE I 
COMPARISON OF GRID-BASED AND RANDOM-BASED - HOLE IN A CUBE 

MODELS 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 18081 1377 225 100 150 200 500 
Avg. Length 244.32 251.66 378.80 292.70 299.00 262.49 245.22 
St. Dev. (Len.) 4.21 4.35 11.24 51.20 54.00 17.51 3.40 
Best (Length) 237.79 247.23 367.96 256.80 257.70 241.32 238.85 
Avg. Time (s) 993.70 49.40 3.50 8.90 21.40 32.00 220.10 

 

The proposed ant colony algorithm was tested in an 
environment consisting of a cube containing a hole (see Fig. 
5). Hose segments needed to be laid inside this hole in order 
to obtain the optimal path. 
 

  
(a) Grid-based (b) Random-based 

 
Fig. 5 Model 1: Hole in a cube  

{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200, Zmax = 
0; S = (-200, 150, -100); T = (-100, -50, -150);   

Radius = 5; Nturns = 100} 
 

Table I shows the comparison of the two versions over 10 
trials for each value of the step size (version 1) and each 
number of random points (version 2). According to Table I, 
the optimal solution generated by the random-based version 
(with 500 random points) is very close to the optimal solution 
generated by the grid-based version (with step size = 10 and 
18081 points). However, the average computational time 
taken by the random-based version is comparatively less than 
for the grid-based version (220.1 sec. against 993.7 sec.). The 
random-based version is more than 4 times faster. 

B. Hose Routing in an Environment with a Hole in a Cube 
where the Optimal Path is Blocked by an Obstacle 

In this simulation, the optimal path found in the earlier case 
was blocked by a cubic obstacle and the target point was 
placed behind the obstacle (see Fig. 6 and Table II).  

 
TABLE II 

COMPARISON OF GRID-BASED AND RANDOM-BASED - HOLE IN A CUBE 
MODELS WHERE THE OPTIMAL PATH IS BLOCKED BY A CUBIC OBSTACLE 

 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 18081 1377 225 100 150 200 500 
Avg. Length 322.70 305.08 400.00 397.70 368.10 376.50 312.60 
St. Dev. (Len.) 20.96 7.24 0.00 43.10 29.88 41.70 15.14 
Best (Length) 290.55 299.34 400.00 339.40 329.54 324.40 291.51 
Avg. Time (s) 952.20 64.40 5.00 12.30 27.30 49.90 318.30 
 

  
(a) Grid-based (b) Random-based 

 
Fig. 6 Model 2: Optimal path is blocked by a cubic obstacle  

{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200,  
Zmax = 0;  S = (-200, 150, -100); T = (-200, -100, -150);  

Radius = 5; Nturns = 100} 
 

The best average length for the grid-based version is 
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obtained with step size 25 (points 1377). However, the best 
path was produced with the step size 10. The average path 
length of the random-based version with 500 points (312.6) is 
relatively close to the average path length of the grid-based 
version with step size 25 (305.08) and the lengths of the best 
paths for in the both versions are very close. 

This experiment shows that when selecting the right grid 
(or step) size, the grid-based version performs very well even 
with relatively large step sizes. 

 

C. Hose Routing in an Environment with a U-Shape 
Obstacles 

In this experiment, a U-shape obstacle was placed in the 
environment and the environment was made more complex by 
introducing other objects. Furthermore, the start and the target 
points were placed such that only one path existed between 
them. Note that the z coordinates of the search space were 
restricted to the top and the bottom of the obstacles (See Fig. 7 
and Table III). 

In this experiment, the grid-based version failed in all the 
trials with the step sizes 10 and 50. However, it was 
successful with step size 25 and generated the best average 
length (596.28) and best optimal path lengths (551.31). This 
experiment demonstrates that if the right resolution is selected, 
the grid-based version performs well in terms of both optimal 
length and the computational time. 

 
TABLE III 

COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS WITH A U-
SHAPED OBSTACLE 

 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 55451 4205 675 100 150 200 500 
Avg. Length 596.28 1260.00 925.00 761.60 710.30 
St. Dev. (Len.) 22.42 405.00 328.00 174.80 40.00 
Best (Length) 551.31 698.00 654 619.10 608.9 
Avg. Time (s) 

Failed 

173.25 

Failed 

13.20 38.10 89.70 804.60 
 
 
 
 

  
(a) Grid-based (b) Random-based 

 
Fig. 7 Model 3: U-shaped obstacle  

{Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300, Zmax = 400;  
S = (50, 25, -50); T = (350, 25, -50); Radius = 5; Nturns = 100} 

 
D. Hose Routing in an Environment with Parallel Walls 
In this experiment, two 3D points were selected and the 

shortest path between them was blocked by 5 parallel walls 
(see Fig. 8 and Table IV). 

 
 
 

TABLE IV 
COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS CONTAINING 

PARALLEL WALLS 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 40931 3125 507 100 150 200 500 
Avg. Length 1096.90 1021.90 1025.40 986.20 963.61 
St. Dev. 
(Len.) 

91.30 41.60 57.20 45.90 9.07 

Best (Length) 1007.70 968.90 963.00 938.00 948.09 
Avg. Time (s) 

Failed 

133.67 

Failed 

11.10 28.30 59.40 316.70 

 

  
(a) Grid-based (b) Random-based 

 
Fig. 8 Model 4: Parallel walls {Xmin = -300, Xmax = 300, Ymin = 0, 

Ymax = 100, Zmin = -300, Zmax = 300; S = (-300, 25, 0);  
T = (300, 50, -25); Radius = 5; Nturns = 100} 

 
Here also, the grid-based version failed for step sizes 10 

and 50. Even though, the grid-based version was successful 
with step size 25, the average length and the best length are 
higher than the respective values for the random-based 
version. The average computational time for the random-
based version is low for all cases except for 500 random 
points. 

E. Hose Routing in an Environment with a Diagonal 
Empty Space 

In this simulation, a diagonal empty space was placed 
between two objects and the straight path between the start 
point and the target point was blocked by a cubic shaped 
object (see Fig. 9 and Table V). The grid-based version failed 
in all 3 cases. The random-based version was successful in 
each case and produced reasonable results. 

 
 

TABLE V 
COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS WITH A 

DIAGONAL EMPTY SPACE 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 22386 1683 270 100 150 200 500 
Avg. Length 320.24 313.32 327.17 295.23 
St. Dev. (Len.) 13.70 9.21 20.44 9.86 
Best (Length) 302.38 299.14 303.08 275.39 
Avg. Time (s) 

Failed Failed Failed 

7.60 16.60 27.50 155.70 
 

 
Random-based 

 
Fig. 9 Model 5: Diagonal empty space  

{Xmin = -50, Xmax = 350, Ymin = -50, Ymax = 150, Zmin = -200, Zmax = 
50; S = (25, 0, 0); T = (180, 100, -185); Radius = 5; Nturns = 100} 
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VI. DISCUSSION 
Previously, scientists have applied the ant colony algorithm 

to many real-world problems such as the travelling salesman 
problem (TSP), the quadratic assignment problem, and job 
shop scheduling. In this paper, it has been applied to 
automatic 3D hose/pipe routing where the world is 
represented as two versions, grid-based and random-based. 

The problem presented in this paper and the TSP is quite 
similar; however there are some differences. In the TSP, paths 
must be found such that each ant must travel to each city once 
and must finally come back to the start city. In the case 
described in this paper, ants must start from the start point and 
need to finally reach the target point. The constraints that each 
ant must travel to each point and that ants must finally come 
back to the start point are not imposed. However, it must be 
guaranteed that when an ant has visited a point, it must not 
visit that point again. To this end, cycles were removed from 
the ants’ paths before applying the global updating rule. For 
the TSP, the global updating rule is applied after all ants have 
completed a tour (i.e., each and every ant must come back to 
the start city). Hence, for the TSP, the algorithm knows when 
to apply the global updating rule. In the experiments described 
above, this is not always possible, as some ants may get lost. 
Thus, a new parameter, Nturns, was introduced into the 
algorithm. This parameter was set such that most of the ants of 
the current set were able to reach the target point. 

The above simulation results show the strengths and 
weaknesses of the grid-based and the random-based of the ant 
colony algorithm for automatic 3D hose routing. The 
simulation results show that both versions can be applied for 
any shape which can be generated using any CAD software. 
The use of the RAPID library greatly helps the algorithm to 
detect collisions when laying the hoses. 

The simulation study also indicates that the proposed grid-
based and random-based versions of the ant colony algorithms 
are of practical use because the required computational times 
are reasonably low.  

However, in the grid-based version the resolution or the 
size of the grid plays an important role in the determination of 
the optimal path and affects the computational time. If none of 
the grid line falls on the optimal path when constructing the 
road map, the algorithm fails to obtain the optimal path (See 
Tables III, IV and V). Thus, selecting the right size of grid (or 
step size) is important for the grid-based version. 

The advantage of using the random-based version is that it 
did not fail for any of the tested models and produced a 
reasonably good solution to the problem.  Furthermore, in the 
case of grid-based version, as the step size is decreased, 
amount of memory needed to store the road map increases 
drastically as does computation time. 

VII. CONCLUSION 
In this paper, two versions of ant colony algorithm, namely 

grid-based and random-based, have been proposed for 
automatic 3D hose routing. For both versions the algorithm 

generates the optimal set of pipe segments linking the start 
and the target points. The C++ library, RAPID, is 
incorporated into the program for collision detections. The .stl 
format of the obstacles is passed to the algorithm as the 
RAPID can only handle triangular shapes. However, the 
accuracy of the collision detection depends on the number of 
triangles used to approximate the obstacles. The effectiveness 
of both versions of the algorithm is demonstrated by 
simulation studies. The simulation results shows that proposed 
algorithm can handle complex environments and any shape 
that can be generated using any CAD software. The 
computational efficiency suggests that the algorithm can be 
applied to real-world hose/pipe routing problems. 

The selection of the right resolution (or step size of the 
grid) of the grid-based version plays an important part and is 
dependent on the problem at hand (See Tables III, IV and V). 
When the resolution increased, the algorithm requires higher 
amounts of memory and more time to compute the results. 
However, if the correct resolution is selected, the grid-based 
version can in some cases provide the best solution 

In the random-based version, the algorithm was able to find 
a reasonably good solution in a reasonable time for any of the 
tested models. 

At this initial stage of the research, the algorithm has been 
implemented only for optimizing the distance between the 
start and target points. In the next stage, other hose routing 
knowledge will be incorporated into the algorithm, such as, 
the selection of pipe bends from a pre-specified catalogue of 
angles of bends, the minimizing of the cost of pipes, the 
avoidance of hot, sensitive and moving objects. Other 
combinatorial optimization algorithms will also be 
implemented, such as genetic algorithms and quantum-
inspired genetic algorithms for automatic 3D hose routing and 
these will be compared to the results with the ant colony 
algorithm presented here. 
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