
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2652

Abstract—2007 is a jubilee year: in 1967, programming

language SIMULA 67 was presented, which contained all aspects of
what was later called object-oriented programming. The present
paper contains a description of the development unto the object-
oriented programming, the role of simulation in this development and
other tools that appeared in SIMULA 67 and that are nowadays
called super-object-oriented programming.

Keywords—Simulation, super-object-oriented programming,
object-oriented programming, SIMULA.

I. INTRODUCTION
HE present year is a jubilee year. 40 years ago, the detail-
ed properties of the programming language SIMULA (in

this time called SIMULA 67) were presented [1] to the world
professional community at the IFIP Working Conference on
Simulation Programmng Languages held in Oslo (Norway) in
May 1967 [2].

Both the title of the programming language and the
occasion of the presentation speak clearly on a relation
between the language SIMULA and simulation. The relation
led to a superstition that SIMULA is a simulation language.
Although SIMULA is an excellent programming tool for
constructing simulation programs it is not limited to
simulation; in the seventies of XX century, it was sometimes
called universal programming language of the third
generation. When SmallTalk 80 was offered to the world
programming community, being inspired by some properties
of SIMULA, the term object-oriented programming (further
OOP) came into existence for SmallTalk 80, then for some
other programming languages like it and then for any
programming tool and/or technique that allowed to:

(OOP1) declare abstract concepts as structures of values
and procedures,

(OOP2) use such a declaration Δ for generating any number
(and in any sequencing) of computing objects carrying the
values and procedures expressed in Δ,

(OOP3) use such a declaration Δ for any number of further

Manuscript received May 4, 2007. This work was supported by the Grant

Agency of Czech Republic, grant reference no. 201/060612, name “Computer
Simulation of Anticipatory Systems”.

Eugene Kindler is Professor of Applied Mathematics, now emeritus and as
external specialists with the Department of Computer Science of Faculty of
Science at Ostrava University, CZ – 701 03 Ostrava, Street 30. dubna no. 22,
Czech Republic (phone: 420-220-801-945; fax: 420-221-914-123; e-mail:
ekindler@centrum.cz).

declarations Σ, adding further values and procedures to those
expressed in Δ. A declaration of Σ should behave similarly as
that of Δ, i.e. (OOP2) and (OOP3) should be satisfied for it.

 The abstract concepts of (OOP1) were called classes, their
specialisations in (OOP3) were called their subclasses, the
values of (OOP1) were called attributes, the procedures of
(OOP1) were called methods and the computing objects of
(OOP2) were called instances of the given class, or – without
their relation to any class – objects. A subclass itself can be a
base for formulating its own subclasses and so the process of
specialization can continue and branch into trees of classes.
The classes themselves are not able to make any computing;
only their instances are able to do it, namely by sending mes-
sages to (other) instances. An instance a can send a message
to an instance b so that the message carries a name f of a
procedure (method) that b is able to perform. The message
represents a demand like “instance b, perform procedure f”. In
the description of f, another messages can occur and so a
message can activate an “avalanche” of message passing that
could make the whole computing job or task. Now another
principle of the object-oriented programming can be
expressed:

(OOP4) a procedure (method) can be specified as virtual in
a declaration of a class Δ so that its contents does not need to
be yet defined but expected to be – may be in different vers-
ions – completed in subclasses of Δ.

Nowadays OOP is considered as something completely
independent of computer simulation, but it is not true. More-
over, simulation caused that 40 years ago more than OOP was
already discovered and soon implemented, which is
sometimes called super-object-oriented programming
(SOOP) [3], [4].

II. START FROM SIMULATION LANGUAGES
Computer simulation is a method to study complex and

complicated systems. It is the only method to study them in
exact manner. The simulation model of a complex system is
also a complex software product and simulation languages
help to program such models. Their principle was, that their
users do not describe what should happen in the computer
during the simulation experiments: they describe directly the
simulated system and the description is automatically
translated into the computer code (in rare cases: automatically
interpreted as running simulation model).

There is a large spectrum to view (and thus to describe)

Simulation and 40 Years of Object-Oriented
Programming

Eugene Kindler

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2653

complex systems. Already in the early stage of discrete event
simulation, it was recognized that sophisticated behavior of
the complex systems is cause as interaction of less sophistic
behavior of processes, which often follows instructions
similar to computation algorithms but spread in time. Even a
pair of two processes ruled by the same algorithms but spread
into different time intervals may give a result that could seem
chaotic. And thus it was already the first discrete event
simulation language GPSS [5] that offered its users to
describe the simulated systems as classes of elements owning
analogous variables and governed by the same algorithms.
Assignments, branchings, cycles and similar algorithmic
substructures were allowed. Among them one could insert so
called scheduling statements that interrupted performing the
present algorithm and binding the continuing to some
condition, like a certain value of the (simulated) time, an
activating signal coming from another element that was just
performing its algorithm, a free place at a facility or a storage
etc. For the algorithms completing by scheduling statements
and interpreted by every instance of a class, name life rules
(of a class) came into use.

GPSS started developing the family of process-oriented
simulation languages. Although simple, it was used almost
until the present days [6]. Through the next development over
several languages, the process oriented simulation languages
reached their top in language called SIMULA [7], [8] (after
1967 SIMULA I). Note that this language, implemented
before 1965 was not the “true” object-oriented SIMULA. It
was really a simulation language, did not allow subclasses,
virtuality and procedures as components of classes, but

(S1) allowed declaring classes of objects with life rules
based on a wide spectrum of almost all tools of ALGOL 60
(the most progressive algorithmic language of the sixties), and
with attributes of a wide spectrum of types,

(S2) allowed generating instances of classes whenever dur-
ing performing life rules,

(S3) allowed list processing and generating pseudorandom
numbers by using standard functions and

(S4) permitted interactions between processes by so called
connection statements that allowed interpreting some state-
ments belonging to the life rules for a certain element X as
concerning another element Y (in such a statement X could
handle with the attributes of Y).

III. SIMULA AND HOARE’S RECORD HANDLING
The quality of the mentioned simulation language SIMULA

stimulated the organizers of the NATO summer school on
programming languages prepared for being in September
1966 in French Villard-de-Lans [9], to invite one of the
authors of SIMULA, Ole-Johan Dahl, to take there a course
on discrete event simulation languages [10]. At the Summer
School, Dahl met another lecturer C. A. R. Hoare and his
presentation on record handling [11]. Hoare proposed to
handle with records (data structures) according to the
following principles:

(RH1) there are declarations of classes of records, which
have their name and which define the contents of every
instance of a given class as a structure of components
characterized by their names and types;

(RH2) among the components, also a reference type can be,
specified in relation to the class to which it points;

(RH3) a class of records can be specialized to a subclass by
adding further components;

(RH4) a class of records is open for generating any number
of instances and for being base for specialization leading to
any number of subclasses,

(RH5) if A points to an instance of a class that has a
component called B, then A.B means “component B of A”.

An example of such a class can be person introduced as
having three components, namely first_name, last_name (of
text type) and date_of_birth; the last component is of
reference type, pointing to another class called date and
introduced as having three components of integer type, called
day, month and year. When A is defined as a name of an
instance of class person, then A.first_name, A.last_name and
A.date_of_birth and even A.date_of_birth.day,
A.date_of_birth.month and A.date_of_birth.year, but
expressions like A.date_of_birth.first _name or A.year are
refused as illegal (senseless, inconsistent). Class person can be
specialized e.g. to class student by adding further components
like school (of reference type), grade etc.

According to Hoare, the records were passive elements and
all handling with them had to be performed from a program
algorithmized by means of traditional structures (therefore no
processes were considered by Hoare).

O.-J. Dahl often reminisced that the Hoare’s concept of re-
cord handling gave him a lot for their discovering the proper-
ties of the new SIMULA (see e.g. [12]). Really, the Hoare’s
ideas helped them making an efficient step in the development
but the authors of the new – object-oriented and even super-
object-oriented – SIMULA had to add many own discoveries.
Firstly, let us concentrate to the aspects of the true synthesis of
(S1)-(S4) with (RH1)-(RH5):

(DH1) class is a declaration composed of a set of attributes
and life rules;

(DH2) a class is open for being a “pattern” of any number
of its instances, i.e. for the elements that behave as Hoare’s re-
cords if their attributes are taken into account, and as
SIMULA processes if their “lives” are taken into account;

(DH3) among the types of the attributes, a reference type
exists; when an attribute A of this type points to an element E,
then in the life rules, the expression A.G represents “the attri-
bute G of element E”; that expression is called remote
identification or – more popularly – dot notation;

(DH4) a specialization of a class C is a new class D with
added attributes and life rules; there are rules how to join the
added life rules to those belonging to C; D is called subclass
of C, while C is called superclass (or – more frequently –
prefix) of D;

(DH5) dot notation is not in contradiction with connection
statements, both tools can exist abreast.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2654

IV. PROCEDURES AS COMPONENTS OF ELEMENTS
A matter typical for OOP, namely the message passing, was

not a consequence of the synthesis of the original Simula and
Hoare’s ideas. It was reached by including procedures into the
contents of classes; namely, (DH1) was enriched to

(DN1) class is a declaration composed of attributes, proce-
dures and life rules.

(DH2) should be enriched to
(DN2) a class is open for being a “pattern” of any number

of its instances, i.e. for the elements that behave as Hoare’s re-
cords if their attributes are taken into account, and as
SIMULA processes if their “lives” are taken into account, and
– independently on the state of such lives – they can perform
any procedure occurring in the class declaration in case they
are demanded to do it by any (other) instance.

To (DH3) another principle should be added, namely
(DN3) the dot notation can be applied also for procedures;

if X points to an instance of a class that contains a procedure P
with e.g. one parameter, then X.P(a) is a message demanding
X to perform P with parameter a.

When the names of procedures are suitable formulated the
messages may evoke (English) phrases (subject.verb(object))
or complex clauses (e.g. member1.conjunction(member2)).

(DH4) should be enriched in the following way to
(DN4) a specialization of a class C is a new class D with

added attributes, procedures and life rules; there are rules how
to join the added life rules …

V. VIRTUALITY
Generating an instance of class C is represented by

expression new C; already the original SIMULA allowed de-
claring classes with parameters; generating an instance of
class C with one parameter x is represented by expression new
C(x). The parameters can be of the same types as the
attributes. An idea to allow procedures as parameters easily
arises. After a profound analysis of its consequences that idea
was refused (the bad consequences are related to the block
features of SIMULA – see section VII) and instead of
allowing specifying procedures as parameters, the concept of
virtuality was introduced:

(V1) in a declaration of a class C, a procedure can be speci-
fied as virtual, in the sense that its contents is open to be
defined (or re-defined) in any subclass of C.

Note: Virtual procedure is often represented as a certain
“intelligent” aspect of OOP: when an element x obtains a
message with a virtual procedure P, it decides on the way how
to “understand” P and how to perform it: x has to overview its
own “birth certificate” (i.e. to determine what class G
occurred in the expression new G that generated x) and –
based on G – it finds the relevant declaration of P and
according to that declaration it performs P.

The virtuality became an integral tool of OOP (see principle
(OOP4) in section 1) and the authors of so called radical OOP
even demanded that every procedure should be virtual.

VI. ABOVE THE LEVEL OF OOP
While in simulation models one uses term element a

general tendency in OOP exists to use term object (see section
I).

 Assume that the development of new SIMULA stopped at
this phase. It would already reach the properties of an OOP
language, as (OOP1) is covered by (DN1), (OOP2) by (DN2),
(OOP3) by (DN4) and (OOP4) by (V1).

Naturally (DN1)-(DN5) represent more than OOP, because
they contain life rules and scheduling statements.

But the life rules and scheduling statements immediately
stimulated other features that were included and implemented
in SIMULA. The first concerns virtual destinations in life
rules. Note that the life rules do not need being performed
exactly in the same order as they are formulated in the class
declaration: transfers from one statement to another can be
formulated so that the destination of the transfer can be given
as a constant or as a results of “designational expression”.
Nevertheless, SIMULA allows using another possibility, too:

(V2) In a declaration of a class C a destination D of life rule
transfer can be specified as virtual. Then D is expected to
occur among the life rules formulated in subclasses of C.
When the life of an instance meets the transfer to D it
determines it according to its “birth certificate” (see the Note
to principle (V1)).

Virtual destinations enable the life of an instance to be ruled
in a sophisticated manner by switching life rules of any of its
superclasses.

Another principle that leads beyond OOP concerns
sequencing statements that are generalization of scheduling
statements. A sequencing statement causes that the performing
of life rules where it is met is interrupted and switched to
performing life rules of another object. Every object has its
reactivation point at that the first life rule that should be
executed is stored. When the mentioned switch is performed
from the life of A to that of B then the reactivation point of A
is assigned to point to the statement S following the
sequencing statement that was just performed. When
sometimes after another sequencing statement causes a switch
to A this object starts to execute its life rules from S. There are
three sorts of the sequencing statements:

(SQ1) call(A): when it is met in the performing the life rules
of element B this performing is switched to A; at the same
time, A puts into evidence that it was called from B; that takes
effect in performing another sequencing statement, detach:

(SQ2) when the life of an object like A introduced in (SQ1)
meets sequencing statement detach, the performing of its life
rules is interrupted and returned to performing those of the
object like B, i.e. of the object that “has called” A;

(SQ3) when the life of an object meets sequencing
statement resume(A) the computing is switched to the life
rules of A but no information on the object that caused
performing the resume statement is stored.

By means of the sequencing statements, the scheduling
statements used in simulation models can be programmed as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2655

procedures; SIMULA offers them as standard ones.

VII. BLOCK STRUCTURE OF SIMULA
The mention section II, telling SIMULA to have used the

large spectrum of algorithmic tools of ALGOL 60, contains
also an information on the fact that ALGOL 60 introduced the
complete block structuring. Block had local entities that were
declared in its heading and that were for disposal only inside
the block, while when the computing process left the block the
local entities disappeared. The new SIMULA took that con-
ception over and enlarged the concept of block in the follow-
ing manner:

(BS1) textual block is a part of written source code
composed of heading and operation part; heading contains
declarations of local entities, among which those of variables,
procedures and also classes can occur; when the computing
process behaves like entering a block B, a block instance of B
arises having the local entities as its proper ones; when the
same textual block is so entered twice two corresponding
block instances of it are generated.

Note that admitting the class declarations to be local in
blocks enabled modeling several interpretations of the same
concepts (interpretations e.g. following the same class declar-
ation but influenced by their context, or interpretations follow-
ing two different declarations of classes with the same names).

Class declaration is composed of class heading and class
body; where class heading serves for introducing the class
name, prefix, parameters, virtual entities etc., and the body
contains the declarations of attributes and the life rules. There
is a similarity between declarations of attributes and proce-
dures (methods) in class body at one side and local entities in
block at the other side. Therefore body of a class declaration
appears similar to block and therefore the new SIMULA intro-
duced the following principle:

(BS2) Class body is a statement (in practice it uses to be a
block).

Combining (BS1) and (BS2) implied the following pheno-
menon

(BS3) Class body can contain declaration of other classes.
Therefore classes can be local not only in blocks but in

other classes as well. If the body of class C contains declarat-
ions of other classes, then C is called main class.

Main class can be an image of a formalized theory or of a
concept of a generic model (model of a parametric system),
possibly of a carrier of such a formalized theory (an expert) or
of such a model (a modeler). In this manner, the new
SIMULA admits introducing main classes for list processing
and for event handling with respect to unique simulated time.
SIMULA Standard [14], [15] offers such classes as standard
tools (SIMSET for list processing and SIMULATION for
scheduling processes with respect to a modeled Newtonian
time flow), but other classes were programmed by SIMULA
users.

Suppose M is a main class representing a model of a system
S composed of objects, may be of processes. And suppose C is

a class of processes figuring in the model, i.e. modeling
components of S. Then C is a class local in M. It is possible to
include a block B into the life rules of C, and it is possible that
local classes N1, N2,… are declared in B. When the life of an
instance X of C enters B a block instance of B is generated and
X becomes and expert using notions N1, N2,… in his
argumentations (or becomes a modeler using N1, N2,… for
creating the model that he is to handle). When X leaves the
block it is modeled like to lose his expert or modeling ability.
When the lives of two instances of C are inside block B at the
same time, for each of them his own instance of B arises and
both of them can communicate like to discuss on the same
more or less theoretical matter or like to communicate so that
each of them has its own modeling computer to support his
argumentation.

Some applications of special abilities of that super-object-
oriented programming were mentioned e.g. in [16]-[19],
where further references occur. They mainly concern nesting
modeling, i.e. computer models of complex systems that
contain modeling (imagining,…) elements.

VIII. CONCLUSION
As mentioned in section I, the new SIMULA has got a tag

67, in order to be distinguished from the old simulation
language SIMULA that was then called SIMULA I. The
former SIMULA I users turned to SIMULA 67 and therefore
SIMULA I felt into oblivion. Thus in 1986, when SIMULA
67 was prepared to become an international standard under
ISO, the tag 67 was abolished. The old SIMULA is really
neglected.

Many popular OOP languages do not allow the life rules
with scheduling statements for their switching and many of
them permit classes only as global entities, because they do
not consider block structuring. Note that the users of such
languages (C++, SmallTalk, newer versions of Pascal,…)
meet obstacles when they desire to program in “process-like”
manner their simulation models.

Something like SOOP can be observed at JAVA and BETA
[20]. Note that definition of JAVA syntax makes it not secure
against some programmer’s errors that sometimes demand
lengthy test during the program execution and sometimes can
lead to the job collapse, while BETA uses syntax that is
uncommon and distant from any programming usage. Both the
languages mix the description of what should happen in the
computer itself, with what is to be modeled. acknowledgment.

ACKNOWLEDGMENT
This work has been supported by the Grant Agency of

Czech Republic, grant reference no. 201/060612, name
“Computer Simulation of Anticipatory Systems”

REFERENCES
[1] O.-J. Dahl and K. Nygaard, “Class and subclass declarations”, in [2],

pp. 159–174.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2656

[2] J. N. Buxton, Ed., Simulation Programming Languages – Proceedings
of the IFIP Working Conference on Simulation Programming
Languages. Amsterdam: North-Holland, 1968.

[3] H. E. Islo, “SOOP Corner”, ASU Newsletter, vol. 22, no. 2, pp. 22–26,
May 1994.

[4] E. Kindler, “SIMULA and Super-Object-Oriented Programming”, in
[13], pp 165–182.

[5] G. Gordon, “A general purpose systems simulation program”, in
Proceedings of 1961 East Joint Computing Conference, New York:
MacMillan, 1961, pp. 81–91.

[6] T. J. Schrieber, An Introduction to Simulation Using GPSS/HTM. New
York – Chichester – Brisbane – Toronto – Singapore: Wiley, 1990.

[7] O.-J. Dahl and Kristen Nygaard, “SIMULA – A Language for
Programming and Description of Discrete Event Systems. Introduction
and User’s Manual”. Norwegian Computing Center, Oslo, 1965.

[8] O.-J. Dahl and Kristen Nygaard, “SIMULA – an ALGOL-based
Simulation Language,” Communications of the ACM, vol. 9, pp. 671–
678, September 1966.

[9] F. Genuys, Ed., Programming Languages. Academic Press, London –
New York, 1968.

[10] O.-J. Dahl, “Discrete Event Simulation Languages,” Norwegian
Computing Center, Oslo, 1966. Reprinted in [9], 349–394.

[11] C. A. R. Hoare, “Record Handling,” in [9], pp. 291–346.
[12] O.-J. Dahl, “The Birth of Object Orientation: the Simula Languages,” in

Software Pioneers: Contribution to Software Engineering, M. Broy and
E. Denert, Eds. Berlin: Springer, 2002. Reprinted in [13], pp. 15–25.

[13] O.Owe, S. Krogdal and T. Lychne, Eds., .From Object-Orientation to
Formal Methods, [Lecture Notes in Computer Science, vol. 2635].
Berlin, Heidelberg, New York: Springer, 2004.

[14] O.-J. Dahl, B. Myhrhaug and K. Nygaard, “Common Base Language”.
Norwegian Computing Center, Oslo, 1968 (1st edition), 1972 (2nd
edition), 1982 (3rd edition), 1984 (4th edition).

[15] SIMULA Standard. Simula a.s., Oslo, 1989.
[16] E. Kindler, “Object-Oriented Simulation of Simulating Anticipatory

Systems”, in International Conference on Bioengineering Technology,
Computer Science, Knowledge Mining, Prague, February 24-26, 2006;
Computer Science, C. Ardil, Ed, [Enformatika, Vol. 11], pp. 67–73.

[17] E. Kindler: “Object-Oriented Simulation of Simulating Anticipatory
Systems,” International Journal of Computer Science, vol. 1., 2006, no.
3, pp. 163–171.

[18] E. Kindler: “Agent-Based Simulation of Simulating Anticipatory
Systens – Classification,” in 14th International Enformatika Conference
IEC 2006, August 25-27, 2006, C. Ardil, Ed., [Enformatika, Vol. 14],
pp. 1–6.

[19] E. Kindler: “Agent-Based Simulation of Simulating Anticipatory
Systens – Classification,” IJIT – International Journal of Intelligent
Technology, vol. 1, 2006, no. 4, pp. 281–287.

[20] O. Madsen, B. Møller-Pedersen and K. Nygaard, Object-Oriented
Programming in the Beta Programming Language. Harlow – Reading –
Menlo Park: Addison Wesley, 1993

Eugene Kindler was born in Prague on
May 22, 1935. He studied mathematics at
Charles University in Prague (Czech
Republic) during 1953-58. During 1961-6
he made his doctoral studies at the Research
Institute of Mathematical Machines in
Prague. At Charles University in Prague, he
got grades RNDr (Rerum Naturalium
Doctor, doctor of natural sciences) in
mathematics and programming in 1968 and
PhDr in logic in 1974, at the Czechoslovak
Academy of Sciences he got grade CSc
(Candidate of sciences) in physics and
mathematics in 1970.

 In 1958-1966 he worked with the Research Institute of Mathematical
Machines in Prague, where he participated in designing new digital computers
and then led the team for implementation of ALGOL 60 compilers for the
designed computers. In 1967-1973 he worked with Faculty of General
Medicine at Charles University in Prague, where he participated in projects in
nuclear medicine and biophysics, and designed and implemented the first
Czechoslovak simulation language. In 1974-2000 he worked with Faculty of
Mathematics and Physics of the same Charles University, where he was
concerned in education of undergraduate and doctoral students. For the
courses, he developed mathematical theory of simulation modeling and
introduced application of the object-oriented programming; the last activity
soon passed the University domain over and focused into a working group at
the Czechoslovak Cybernetic Society (one of the scientific societies existing
under the Czechoslovak Academy of Sciences). Since 2000, he has worked
with the new University of Ostrava, which was established in the 90-ies of the
XX century after the change of political situation. And after the same change
of political situation, he has got grade Professor in applied mathematics. He
has collaborated with the same University as an external specialist since 2006,
i.e. in the year when he reached the age of 71 and retired. As visiting
professor, he worked one year with the University of Pisa (Italy, 1969-70) and
one year with West Virginia University at Morgentown (USA, 1992-3). He
worked three months with University of Blaise Pascal in Clermont-Ferrand
(France, 1995) as invited professor and with the same University he worked
six months as user of professor scholarship of French government (1997-8).
Three times he was one month with the University of South Brittany in
Lorient (France, 2003, 2004 and 2005) as invited professor. In 1983 he spent 3
months as foreign lecturer at Humboldt University in Berlin (Germany).
During the years 1974-1989 he was responsible for projects of international
collaboration between Charles University in Prague and Humboldt University
in Berlin, and between Charles University and Latvian Governmental
University in Riga (at this time Soviet Union, nowadays Latvia). Both the
collaborations were oriented to computer simulation. He was the responsible
person in the Czech Republic for works on two projects organized by
European Commission and oriented to modernizing sea harbors with use of
computer models (1995-2000). His Czech book on simulation languages,
published in 1980, was translated in Russian and published in 1985 by the
Moscow Energoatomizdat (Publishing House for atomic energy) and he
participated with 100 pages in writing a book of 300 pages titled “Managing
and Controlling Growing Harbour Terminals” and edited by The Society for
Computer Simulation International in 1997 (ISBN 1-56555-113-3). Among
seven hundereds of papers written by him in journals and conference
proceedings, there is “Object-Oriented Representations of Formal Theories as
Tools for Simulation of Anticipatory Systems” in Computing Anticipatory
Systems. American Institute of Physics, Melville, New York, 2006 [AIP
Conference Proceedings Volume 839], pp. 253-259 (ISBN 0-7354-0331-7).
His present interest is object-oriented simulation of systems under intelligent
control and its application in production, transport, ecology and service.
 Prof. Kindler is a member of scientific or program committees of two
Czech (MOSIS – Modeling and simulation of systems, annual conference, and
ASIS – Advanced simulation of systems, annual conference) and two foreign
(CASYS – computing anticipatory systems, biennial), ECMS – European
conference on modeling and simulation, annual) periodical conferences on
systems, modeling and simulation; besides, he is just nowadays a member of
the International program committee of EUROSIM congress (Ljubljana,
Slovenia, triennial). He is a member of committee of CSSS (Czech and Slovak
Simulation Society). In his country, he got seven awards in mathematics,
technology and medicine (beginning from the first prize in national Olympics
in mathematics in 1953), in 1992 he was established senior member of The
Society for Computer Simulation and in 2000 and 2005 he got best paper
awards at conferences CASYS (Computing anticipatory Systems, Liege,
Belgium).

