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Abstract— A recent neuro-spiking coding scheme for feature

extraction from biosonar echoes of various plants is examined with a
variety of stochastic classifiers. Feature vectors derived are employed
in well-known stochastic classifiers, including nearest-neighborhood,
single Gaussian and a Gaussian mixture with EM optimization.
Classifiers’ performances are evaluated by using cross-validation and
bootstrapping techniques. It is shown that the various classifers
perform equivalently and that the modified preprocessing
configuration yields considerably improved results.

Keywords— Classification, neuro-spike coding, non-parametric
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I. INTRODUCTION

HEN navigating in their natural habitat, the landmarks
available to most bats are trees. The echolocation
performed by bats is well established in theory.

However, it remains a problematic area how to encode the
received echoes for landmark recognition. McKerrow showed
that echoes generated from continuous-time frequency
modulated (CTFM) signals contain relevant cues for classifier
design [1]. Frequency components are extracted by
demodulating the echo with the same transmitted signal and
indicate the distribution of echo scatterers with depth. The
outcome is bundled into a database profile, which can be used
for classification purposes. Kuc [2] presented a study with
biomimetic sonar for classifying various objects where the
object identity information is embedded in the echo envelope.
Further, he presented a transformation of plant echoes into
pseudo-action potentials where temporal differences are
represented by a spatio-temporal field [3]. In [4], Kuc and
Müller presented a neuro-spike representation of random echo
ensembles and developed a hypothetical neural architecture.

In this study, we examine a more comprehensive yet easy-
to-implement neuro-spike code representation of plant echoes
as a random process, given by Müller [5]. The feature
representation is based on summary statistics of inter-spike
time differences at a number of threshold levels.
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II. BIOLOGICAL SIGNAL PROCESSING FOR ECHOES, FEATURE

EXTRACTION AND PROPOSED PREPROCESSING SCHEME

The echo preprocessing operation consists of two stages:
cochlear filtering and coding, [5]. In the first stage, the
waveform is passed through a fourth order gammatone filter
with center frequency fc and –3 dB quality factor Q-3dB for
modeling cochlear filters. This stage is followed by envelope
extraction performed as half-wave rectification and low-pass
filtering (LPF) with
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where fs is the sampling rate.
The LPF output is then normalized and searched for first-

crossings of a number of thresholds to model spike generation.
Müller [5] showed that successive inter-spike time intervals at
threshold levels αm and αm+1 with the condition

cmm f/.),( 511 ≥≥≥≥++++αα∆ constitute sufficient statistics for
classifying a given echo source. He defined echo feature
vectors as 3-tuples comprising
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where I[.] is an indicator function giving 1 when the condition
is met otherwise 0.

In this study, we tested two alternative LPF structures. Since
the LPF given by (1) introduces varying nonlinear phase
response and hence group delay across the frequency range
used, features extracted will deviate from the real quantities. A
single-pole architecture is also prone to unstable operation i.e.,
unbounded impulse response. In order to remedy these
shortcomings, we propose a discrete-time LPF given by
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The main characteristic of this filter is that it has an almost
constant phase response and hence identical group delay.
Impulse response will be more bounded compared to previous
design.

III. DENSITY ESTIMATION MODELS

In classification, the objective is to decide the class label
which best represents the data, x, hence a minimum error

probability, Pe amongst M different classes, Ck, which results
in the Bayesian decision rule [6]

)|( xCPk i
i

argmax==== (4)

From Bayes’ rule, the above posterior probability can be
expressed in terms of likelihood densities, or conditional
probability density functions (pdf) p(x|Ck) and a priori
probabilities P(Ck) as
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Therefore, it is essential to develop the appropriate
representations of the likelihood functions p(x|Ck). This can be
done non-parametrically or parametrically.

A. Non-parametric Methods

Data is assigned to the class containing the closest training
sample. In this study, the nearest-neighborhood algorithm [7]
is adopted, which can be described as
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where the distance metric is the Mahalanobis normalization
which, for column vector data, is given by
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The model parameter Σ is the within-class covariance matrix
and its estimation is similar to parametric models, to be
discussed next.

B. Parametric Models (1): Single-Gaussian

A single (multi-variate) Gaussian density profile is given by
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where d is the feature vector dimension. Model parameters
mean, (µ), and covariance matrix, (Σ), are estimated by using
training set as
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C. Parametric Models (2): Gaussian Mixture

Each class conditional pdf is expressed as a linear
composition of Mk component Gaussian pdfs as
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subclasses, Mk, can be determined by using Akaike’s
Information Criterion [8], or Rissanen’s Minimum Description
Length, [9], etc., --- an ongoing topic of clustering research.

Parameters can be optimized in the maximum likelihood
sense by using the expectation-maximization (EM) algorithm
[10] iteratively until the likelihood function reaches a local
minimum or a predefined number of iterations have been used.
EM description of the i-th component conditional model
parameters at the (j+1)-th iteration with βi=P(ci|Ck), as
follows:
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IV. CLASSIFIER DESIGN AND PERFORMANCE MEASUREMENT

In experiments, we employed 2100 echoes for each of four
tree types (acer, carpinus, platanus and tilia) from Müller’s
database of 85000 echoes. The transmitted signal was a
frequency-modulated chirp sweeping linearly from 120 kHz
down to 20 kHz in 3 ms. Tree hedges were scanned by two
receivers in three dimensions at an almost perpendicular angle
and echoes were sampled at fs=1MHz.

The filterbank consists of a single-channel with a band-pass
filter of parameters fc=50 kHz and Q-3dB=10. Classifier
performances are assessed versus the LPF time constant
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parameter (and the number of chosen components for the
mixture models).

Fig. 1 illustrates first order, sample mean, statistics over a
randomly chosen 500 echoes for each tree with the proposed
discrete LPF characteristic. Reasonable separation of the
classes can be seen.

Fig.1. Variation of mean feature vector components with 95% confidence
intervals; sample of 500 random echoes for each class

Based on the above feature definitions, nearest
neighborhood, single and mixture of Gaussian models were
constructed. The mixture Gaussian model is implemented with
EM and carried out for (maximum) 1000 iterations. Each
classifier’s performance is evaluated with the leave-one-out
cross-validation technique [11] with 2100 features by using 10
subgroups for each tree. Those 10 distinct sample average
results of estimated correct classification probabilities are
processed with boot-strapping to obtain a final classification
performance within a given 95% confidence interval. The
results are shown in Fig. 2-4 where the average proportion of
each class correctly classified is plotted against the LPF time-
constant. From the results, it is found that optimum component
numbers with the EM mixture model for acer, carpinus,
platanus and tilia are 2, 4, 4 and 2 respectively.

For the Gaussian mixture classifier with EM algorithm, the
components are initialized by using K-Means algorithm [12].
Component model parameters, such as the mean and

covariance matrix can be computed by using maximum
likelihood method similar to a single-Gaussian model. The
initial component probabilities, P(ci|Ck), are given by relative
distribution of subclass members.

Fig.2. Nearest-neighborhood classifier: average performance on 210 tests with
1890 training instances, and 95% confidence intervals.

Fig.3. Single-Gaussian classifier: average performance on 210 tests with 1890
training instances, and 95% confidence intervals.

For comparison purposes, a single-Gaussian classifier is
designed with the LPF structure used by Müller [5] and its
performance is shown in Fig. 5.

All the classifiers tested show similar (good) classification
performance except for low LPF time-constants, and all
perform equally. The new LPF characteristic results in an
average correct decision proportion better than 90% for τ>50
ms with labelled samples. This improves significantly on the
classification performance achieved by Müller [5] using the
LPF structure of (1) and kernel estimates of the likelihood pdfs
computed from the full set of echoes for each tree species in
the 85000 echo database.

However, each classifier has pros and cons. For example,
nearest neighborhood classifier performance will be subject to
the number of training samples, i.e., the larger the number, the
longer to train the model and the greater the memory
requirements. The single Gaussian model has the problem that
the full likelihood pdfs shown in [5] are clearly non-Gaussian.
The Gaussian mixture model with EM introduces a
convergence problem with small number of training samples.
None of these models is straightforward to adapt for on-line
class learning.
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Fig.4. Gaussian mixture model classifier: average performance on 210 tests
with 1890 training instances, plotted for different numbers of mixture
components against LPF time constant. Confidence intervals are 95%.

Fig. 5. Single-Gaussian classifier performance using LPF in (1) with 95%
confidence interval.

The results demonstrate that the LPF employed with this
study brings out better separation of feature statistics, hence,
considerably improved classification performance. The effect
can be accounted for by the almost constant phase
characteristics of the filter, as explained before, while
magnitudes are similar for both structures. It should be noted
that, since τ>>1/fs, both filters operate in the asymptotical
region and filter constants should be high precision.

V. CONCLUSION

Three probabilistic classifier models are examined for
classifying various plant echoes with labelled data in a single-
shot mode. For improving the feature first-order statistics’
separation further, a new LPF structure is proposed. Classifier
performances are presented and compared to a previous
auditory model [5] that employed kernel-estimated likelihood
pdfs and the classical single-pole LPF structure of (1).

A variety of parametric and non-parametric classifiers are
tested and found to perform adequately, showing the
robustness of the chosen feature set.
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