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Identifying an unknown source in the Poisson
equation by a modified Tikhonov regularization

method
Ou Xie and Zhenyu Zhao

Abstract—In this paper, we consider the problem for identifying
the unknown source in the Poisson equation. A modified Tikhonov
regularization method is presented to deal with illposedness of the
problem and error estimates are obtained with an a priori strategy
and an a posteriori choice rule to find the regularization parameter.
Numerical examples show that the proposed method is effective and
stable.
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I. INTRODUCTION

In this paper, we consider the following problem[16], [17]:
⎧⎪⎨
⎪⎩

−uxx − uyy = f(x), 0 < x < π, 0 < y < +∞,
u(0, y) = u(π, y) = 0, 0 ≤ y < +∞,
u(x, 0) = 0, u(x, y)|y→∞ bounded, 0 ≤ x ≤ π,
u(x, 1) = g(x),

(1)
Our purpose is to identify the source term f(x) from the input
data g(·) := u(·, 1). This problem is called the inverse source
problem. In practice, the data at g(x) is often obtained on the
basis of reading of physical instrument. So only a perturbed
data gδ(x) can be obtained. We assume that the exact and
measured data satisfy

‖g − gδ‖ ≤ δ. (2)

where δ > 0 denotes the noisy level, ‖ · ‖ denotes the L2–
norm.

Inverse source problems arise in many branches of science
and engineering, e.g. heat conduction, crack identification
electromagnetic theory, geophysical propecting and pollutant
detection. The main difficult of these problems is that they
are ill-posed(the solution, if it exists, does not depend contin-
uously on the data). Thus, the numerical simulation is very
difficult and some special regularization are required. A few
papers have present the mathematical analysis and efficient
algorithms of these problems. The uniqueness and conditional
stability results for these problems can be found in[3], [4], [6],
[2], [9], [13]. Some numerical reconstruction schemes can be
found in [11], [1], [7], [10], [12], [5], [18], [15], [14], [16],
[17].

In [16], [17], a Fourier method and a modified regularization
method have been present for the problem (1). In both of
methods, the regularization parameters are a priori. It is well
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known that the ill posed problem is usually sensitive to the
regularization parameter and the a priori bound is usually
difficult to be obtained precisely in practice. In this paper,we
will use the Tikhonov regularization method to solve the
problem (1) in which a modified Tikhonov functional will be
used. We will show that the regularization parameter can be
chosen by the discrepancy principle. In [19], the method has
been used to solve a backward heat equation.

This paper is organized as follows. In section 2, we will
give the method to construct approximate solution. The con-
vergence results will be found in section 3. Some numerical
results are given in section 4 to show the efficiency of the new
method.

II. A MODIFIED TIKHONOV REGULARIZATION METHOD

Let φl(x) =
√

2
π sin(lx), it is well known that {φl(x)}∞l=1

is an orthonormal basis in L2(0, π), i.e.,
∫ π

0

φl(x)φk(x)dx = δl,k, (3)

where δl,k is the Kronecher symbol. So for any g ∈ L2(0, π),
we can write g(x) =

∑∞
l=1 ĝlφl(x), where

ĝl =

∫ π

0

g(x)φl(x)dx, l = 0, 1, 2, . . . . (4)

It can be verified that the solution of problem (1) can be given
as

f(x) =

∞∑
l=1

l2ĝl
1− e−l

φl(x) =: Tg (5)

It is apparent that the exact data ĝl must decay faster than the
rate l−2. However, in general, the measured function gδ does
not possess such a decay property. So

Tgδ =
∞∑
l=1

l2ĝδl
1− e−l

φl(x) (6)

can not give a reliable approximation for f . In the following,
we apply the Tikhonov regularization method to reconstruct a
new function hδ from the perturbed data gδ and Thδ will give
a reliable approximation of f . Before doing that we impose
an a priori bound on the unknown source

‖f‖p ≤ E, p > 0, (7)
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where E > 0 is a constant and ‖ · ‖p denotes the norm in
Sobolev space which is defined by [8] as follows:

‖f‖p =
( ∞∑
l=1

(1 + l2)p|f̂l|2
) 1

2

. (8)

We let hδ = hα,δ be the minimizer of the Tikhonov functional

Φ(h) = ‖h− gδ‖2 + α ‖Th‖2p , (9)

where α > 0 is a regularization parameter. If we let hδ(x) =∑∞
l=1 ĥ

δ
l φl(x), it can be verified that ĥδl satisfy [?](

1 + α(1 + l2)p
(

l2

1− e−l

)2
)
ĥδl = ĝδl . (10)

So we can get

ĥδl =
1

1 + α(1 + l2)p
(

l2

1−e−l

)2 ĝδl (11)

That is to say

hδ(x) =

∞∑
l=1

1

1 + α(1 + l2)p
(

l2

1−e−l

)2 ĝδl φl(x). (12)

Then the approximation solution can be given as

f α,δ = Thδ =
∞∑
l=1

l2

1−e−l

1 + α(1 + l2)p
(

l2

1−e−l

)2 ĝδl φl(x). (13)

III. THE CHOICES OF REGULARIZATION PARAMETER α
AND CONVERGENCE RESULTS

In this section, we consider an a priori strategy and an a pos-
teriori choice rule to find the regularization parameter. Under
each choice of the regularization parameter, the convergence
estimate can be obtained. The follows lemmas are needed

Lemma 1: For any l ∈ N, we have

l2 ≤ l2

1− e−l
≤ 1 + l2, (14)

Lemma 2: If ‖Th‖p ≤ E, then we have

‖Th‖ ≤ ‖h‖ p
p+2 ‖Th‖

2
p+2
p . (15)

Proof: By the Hölder inequality and lemma 1,

‖Th‖2 =
∑∞
l=1

(
l2

1−e−l

)2
|ĥl|2

=
∑∞
l=1

(
l2

1−e−l

)2
|ĥl| 4

p+2 |ĥl|
2p

p+2 dξ

≤
[∑∞

l=1

[(
l2

1−e−l

)2
|ĥl| 4

p+2

] p+2
2

] 2
p+2

[∑∞
l=1

(
|ĥl|

2p
p+2

) p+2
p

] p
p+2

≤∑∞
l=1

[(
l2

1−e−l

)p+2

|ĥl|2
] 2

p+2

‖h‖ 2p
p+2

≤
[∑∞

l=1(1 + l2)p
(

l2

1−e−l

)2
|ĥl|2

] 2
p+2

‖h‖ 2p
p+2

= ‖h‖ 2p
p+2 ‖Th‖

4
p+2
p .

(16)

A. The a priori choice rule

We assume that we have obtained an E in (7), then we take

α1 =
δ2

E2
(17)

as the a priori rule. We can obtain the following theorem.
Theorem 3: Suppose that the conditions (2) and (7) hold,

f α1,δ is defined by (13) and (17), then

‖f α,δ − f‖ = (
√
2 + 1)E

2
p+2 δ

p
p+2 (18)

Proof: Owing to hα,δ is the minimizer of (9), we can
obtain

‖hα,δ−gδ‖2 ≤ Φ(hα,δ) ≤ Φ(g) = ‖g−gδ‖2+α1‖Tg‖2p ≤ 2δ2

(19)
and

‖Thα,δ‖2p ≤
1

α1
Φ(hα,δ) ≤ 1

α1
Φ(g) ≤ 2E2 (20)

So we have

‖hα,δ − g‖ ≤ ‖hα,δ − gδ‖+ ‖g − gδ‖ ≤ (
√
2 + 1)δ (21)

‖T (hα,δ − g)‖p ≤ ‖Thα,δ‖p + ‖Tg‖p ≤ (
√
2 + 1)E (22)

The assertion of theorem will be obtained by lemma 2.

B. The a posteriori choice rule

In the case of
‖gδ‖ ≥ δ, (23)

the Morozov’s discrepancy principle is used as an a posteriori
rule in this paper, i.e., choosing α from the following equation

‖hα2,δ − gδ‖ = δ. (24)

Theorem 4: Suppose that the condition (2),(7) and (23)
hold, f α2,δ is defined by (13) and (24), then

‖f α,δ − f‖ = 2E
2

p+2 δ
p

p+2 . (25)

Proof: Owing to hα,δ is the minimizer of (9),

‖hα2,δ − gδ‖2 + α2‖Thα2,δ‖2p = Φ(hα,δ)
≤ Φ(g) = ‖g − gδ‖2 + α2‖f‖2p (26)

So by (2), (7) and (24),

‖Thα2,δ‖2p ≤ ‖f‖2p+
1

α2
(‖g−gδ‖2−δ2) ≤ ‖f‖2p ≤ E2 (27)

Hence

‖T (hα2,δ − g)‖p ≤ ‖f‖p + ‖Thα2‖p ≤ 2E. (28)

Moreover,

‖hα2,δ − g‖ ≤ ‖hα2,δ − gδ‖+ ‖g − gδ‖ ≤ 2δ (29)

The assertion of theorem will be obtained by lemma 2.
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IV. NUMERICAL TESTS

In practical problem, the perturbed data of functions is
usually given at nodes. In this case, our approach can be
realized by a discrete sine transform(DST).

Give N − 1 knots

xi = iπ/N, i = 1, . . . , N − 1.

The noisy vector gδ = (gδ1, . . . ,g
δ
N−1) of the vector g =

(g1, . . . ,gN−1) = (g(x1), . . . , g(xN−1)) are given by

gδi = gi + εi (30)

where {εj}Nj=0 are generated by Function randn(N, 1)× δ1 in
Matlab, and the condition

‖gδ − g‖l2 ≤ δ

is assumed.
Then the expansion

gδi =

N−1∑
l=1

ĝδl sin(lxi), i = 1, . . . , N − 1

can be obtained, where the coefficients

ĝδl =
2

N

N−1∑
i=1

gδi sin(lxi), l = 1, 2, . . . , N − 1.

Then we can give the approximate function as follows

f α,δ(x) =
N−1∑
l=1

l2

1−e−l

1 + α(1 + l2)p
(

l2

1−e−l

)2 ĝδl sin (lx). (31)

Example 1 In this example, we let

f(x) =

∞∑
l=1

e−l sin lx, (32)

accordingly,

g(x) =

∞∑
l=1

(1− e−l)e−l

l2
sin(lx) (33)

It is obviously that the condition (7) holds for any p ∈ R
+.

We can not give the analytic expressions of f and g, so we
take

f(xi) =

M1∑
l=1

e−l sin lxi, (34)

and

g(xi) =

M1∑
l=1

(1− e−l)e−l

l2
sin(lxi) (35)

in practical computing, where M1 is an integer such that∑∞
l=M1

e−2l ≤ 10−20. The numerical results for taking
p = 0, 2, 4, 8 in (9) are displayed in Table 1. We can see
that when δ decreases from 0.1 to 0.0001, the relative errors
become smaller and when p increases, the rates of convergence
become larger.

Example 2 In this example, we let

f(x) =
∞∑
l=1

(1 + l2)−2

l
sin lx, (36)
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(a) The exact solution and its approximation with δ1 = 0.01
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(b) The exact solution and its approximation with δ1 = 0.001

Fig. 1. Results of Example 1

accordingly,

g(x) =
∞∑
l=1

(1 + l2)−2

l
sin(lx) (37)

We also can not give the analytic expressions of f and g, so
we take

f(xi) =

M2∑
l=1

(1 + l2)−2

l
sin lxi, (38)

and

g(xi) =

M1∑
l=1

(1 + l2)−2

l
sin(lxi) (39)

in practical computing, where M2 is an integer such that∑∞
l=M2

(1+l2)−2

l ≤ 10−20.
In this example, the condition (7) holds only for p < 2.,

while we also compute with p = 0, 2, 4, 8. Results are given
in Table 2, we can see that the results are close for p >= 2,
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TABLE I
NUMERICAL RESULTS OF EXAMPLE 1

δ1 p = 0 p = 2 p = 4 p = 8

1e-1 0.2266 0.2578 0.2620 0.2628
1e-2 0.0631 0.0450 0.0453 0.0462
1e-3 0.0212 0.0109 0.0103 0.0104
1e-4 0.0069 0.0021 0.0019 0.0018

TABLE II
NUMERICAL RESULTS OF EXAMPLE 1

δ1 p = 0 p = 2 p = 4 p = 8

1e-1 0.0692 0.0655 0.0785 0.0810
1e-2 0.0375 0.0140 0.0167 0.0175
1e-3 0.0162 0.0023 0.0029 0.0034
1e-4 0.0054 0.0006 0.0007 0.0007
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(a) The exact solution and its approximation with δ1 = 0.01
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Fig. 2. Results of Example2

which indicate that the method can work well even if p is
greater than the smooth scale of f .

V. CONCLUSION

We have proposed a new method to Identify the unknown
source in the Poisson equation. Theoretical analysis as well
as experience from computations indicate that the proposed
method works well. Moreover, the proposed method is readily
extendable to solve some other ill posed problems, but these
investigations are deferred to future work.
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