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Almost periodic solution for a food-limited
population model with delay and feedback control

Xiaoyan Dou and Yongkun Li

Abstract—In this paper, we consider a food-limited population
model with delay and feedback control. By applying the comparison
theorem of the differential equation and constructing a suitable
Lyapunov functional, sufficient conditions which guarantee the per-
manence and existence of a unique globally attractive positive almost
periodic solution of the system are obtained.
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I. INTRODUCTION

WHEN growth limitations are based on the proportion of
available resources not utilized, the food-limited model

was proposed in [1] as follows:

ẋ(t) =
rx(t)(K − x(t))
K + γx(t)

, (1)

here the population density is denoted by x(t) and the positive
constants r and K represent the growth rate of the population
and the carrying capacity of the habitat, respectively. Assum-
ing that a growing population requires more food (growth
and maintenance) than a saturated one (maintenance only),
a further modification is to assume that the average growth
rate is a function of some specified delayed argument t − τ
(see, e.g., [2], [3]). The model (1) becomes

ẋ(t) =
rx(t)(K − x(t− τ))
K + γx(t− τ)

, τ > 0, (2)

which is called as delayed food-limited model. Eq.(2) has been
extensively studied in the literature. A majority of results on
Eq.(2) deal with global attractivity of the positive equilibrium
and oscillatory behavior of solutions (see [2], [4], [5]). These
studies were also carried out on Eq.(2) with time periodic
coefficients(see [6], [7], [8]).

To the best of our knowledge, no work has been done for
the existence of almost periodic solutions of system (2) yet. It
is well know that the assumption of almost periodicity of the
coefficients in (2) is a way of incorporating the time-dependent
variability of the environment, especially, when the various
components of the environment are periodic with not necessary
commensurate periods (e.g. seasonal effects of weather, food
supplies, mating habits and harvesting). Also, as we know, the
method used to investigate the positive T -periodic solution of
the non-linear ecosystem (for example, by using coincidence
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degree theory (see [9]) or Brower’s fixed point theorem (see
[10])) could not be used to investigate the almost periodic
solution of the system (2).

On the other hand, we note that ecosystems in the real
world are continuously distributed by unpredictable forces
which can result in changes in the biological parameters
such as survival rates. In ecology, a question of practical
interest is whether or not an ecosystem can withstand those
unpredictable disturbances which persist for a finite period of
time. In the language of control theory, we call the disturbance
functions as control variables. In 1993, Gopalsamy and Weng
[11] introduce a models with feedback controls, in which the
control variables satisfy certain differential equation. In the
last decades, much work has been done on the ecosystem with
feedback controls (see [12], [13], [14], [15], [16], [17] and the
references therein). In particular, Li and Liu [12], Lalli et al.
[13], Liu and Xu [14] and Li [15] have studied delay equations
with feedback controls.

Stimulated by above reasons, in this paper we will consider
an almost periodic food-limited population model with delay
and feedback control as follows:⎧⎨
⎩ ẋ(t) =

r(t)x(t)(k(t) − x(t− τ))
k(t) + η(t)x(t− τ)

− d(t)x(t)u(t− τ),

u̇(t) = −β(t)u(t) + α(t)x(t− τ),
(3)

where x(t) is the population density, u(t) is the control
variable at time t, r(t) and k(t) represent the growth rate of
the population and the carrying capacity of the habitat at time
t, respectively, τ > 0 is time delay. And all the coefficients
r(t), k(t), d(t), η(t), β(t) and α(t) are continuous, bounded,
positive almost periodic functions on R = (−∞,+∞).

Let f be a continuous bounded function on R and we set

fu = sup
t∈R

f(t), f l = inf
t∈R

f(t).

Throughout this paper, we assume the coefficients of the
almost periodic system (3) satisfy

min{rl, kl, dl, ηl, βl, αl} > 0,
max{ru, ku, du, ηu, βu, αu} < +∞.

The aim of this paper is, by constructing a suitable Lya-
punov functional and applying the analysis technique of Feng
and Liu [18] and Shi and Chen [19], to obtain sufficient
conditions for the existence of a unique globally attractive
positive almost periodic solution of system (3).

The remaining part of this paper is organized as follows: In
Section 2, by applying the theory of differential inequality, we
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present the permanence results for system (3). In Section 3, by
constructing a suitable Lyapunov function, a set of sufficient
conditions which ensure the existence and uniqueness of
almost periodic solution of system (3) are obtained. In Section
4, we end this paper with a suitable example which is given
to illustrate the feasibility of the main results.

II. PERMANENCE

Now let us state several definitions and lemmas which will
be useful in the proof of our main result of this section.

Definition 1. System (3) is said to be permanent if there exist
two positive constants m, M and T0 such that each positive
solution (x(t), u(t))T of system (3) satisfies m ≤ x(t) ≤
M,m ≤ u(t) ≤M , for all t > T0.

Lemma 1. R2+ = {(x, u)|x > 0, u > 0} is positive invariant
with respect to system (3).

Lemma 2. [11] If a > 0, b > 0, and ẋ ≥ (≤)x(b − axα),
where α is positive constant, then

lim inf
t→+∞ x(t) ≥ (

b

a
)

1
α ,

(
lim sup
t→+∞

x(t) ≤ (
b

a
)

1
α

)
.

Lemma 3. [20] If a > 0, b > 0 and ẋ ≥ (≤)b − ax, when
t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) ≥ b

a

(
lim sup
t→+∞

x(t) ≤ b

a

)
.

Set

M1 : = ku exp(τru),

M2 : =
αuM1

βl
,

m1 : = kl exp
[(

rlkl

ku + ηuM1
− rlM1

ku + ηuM1

)
τ

]
,

m2 : =
αlm1

βu
.

We also introduce two assumptions:

(H1)
rlkl

ku + ηuM1
− duM2 > 0.

(H2)
rl(1 + ηl)
ku + ηuM1

− αu

m2
> 0.

Theorem 1. Suppose that (H1) holds, then system (3) is
permanence, i.e. there exists positive constants mi and Mi(i =
1, 2) such that for any positive solution (x(t), u(t))T of system
(3) satisfies

0 < m1 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤M1,

0 < m2 ≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
u(t) ≤M2.

Proof: Let (x(t), u(t))T be a positive solution of (3), from
the first equation of system (3) it follows that

ẋ(t) ≤ r(t)x(t)(k(t) − x(t− τ))
k(t)

≤ r(t)x(t) for all t ∈ R. (4)

Hence, for any θ < 0, integrating inequality (4) from t+ θ to
t, we obtain

x(t+ θ) ≥ x(t) exp
( ∫ t+θ

t

r(s) ds
)
. (5)

So for any t ∈ R, from (5) and the first equation of system
(3) we further obtain

ẋ(t) ≤ r(t)x(t)(k(t) − x(t− τ))
k(t)

≤ rux(t)(ku − x(t− τ))
kl

≤ rux(t)(ku − x(t) exp(
∫ t−τ
t

r(s) ds))
kl

.

Since for any t ∈ R and s ∈ [−τ, 0],∫ t+s

t

r(θ) dθ ≥ −τru,

we have

ẋ(t) ≤ rux(t)(ku − x(t) exp(−τru))
kl

= x(t)
(
ruku

kl
− ru exp(−τru)

kl
x(t)

)
. (6)

Applying Lemma 2 to (6) leads to

lim sup
t→+∞

x(t) ≤ ku exp(τru) := M1. (7)

From (7), for small enough positive constant ε > 0, there
exists a T1 > 0 large enough such that

x(t) ≤M1 + ε for all t ≥ T1. (8)

Then, from the second equation of system (3) and (8), we
obtain that for t ≥ T1,

u̇(t) ≤ −β(t)u(t) + α(t)(M1 + ε)
≤ −βlu(t) + αu(M1 + ε).

Setting ε→ 0 in above inequality leads to

u̇(t) ≤ −βlu(t) + αuM1.

Since u(t) > 0 for all t ∈ R holds, then u(0) > 0, so applying
Lemma 3 to above inequality we obtain

lim sup
t→+∞

u(t) ≤ αuM1

βl
:= M2. (9)

From (9), for above ε > 0, there exists a T2 ≥ T1 > 0 large
enough such that

u(t) ≤M2 + ε for all t ≥ T2. (10)

From the first equation of system (3) and (8) and (10), we
obtain that for t ≥ T2,

ẋ(t) ≥ rlx(t)(kl − x(t− τ))
ku + ηu(M1 + ε)

− du(M2 + ε)x(t)

= x(t)
[

rlkl

ku + ηu(M1 + ε)
− du(M2 + ε)

− rl

ku + ηu(M1 + ε)
x(t− τ)

]
.
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Setting ε→ 0 in above inequality leads to

ẋ(t) ≥ x(t)
[

rlkl

ku + ηuM1
− duM2 − rl

ku + ηuM1
x(t− τ)

]
.

Then by (7) and applying Lemma 3 given in [21], there exists
a constant m1 such that

lim inf
t→+∞ x(t) ≥ m1 = kl exp

[(
rlkl

ku + ηuM1
− duM2

− rlM1

ku + ηuM1

)
τ

]
. (11)

From (11), for above ε > 0, there exists a T3 ≥ T2 > 0 large
enough such that

x(t) ≥ m1 − ε for all t ≥ T3. (12)

Then, from the second equation of system (3) and (12), we
obtain that for t ≥ T3,

u̇(t) ≥ −β(t)u(t) + α(t)(m1 − ε)
≥ −βuu(t) + αl(m1 − ε).

Setting ε→ 0 in above inequality leads to

u̇(t) ≥ −βuu(t) + αlm1.

Then applying Lemma 3 to above inequality, we have

lim inf
t→+∞ u(t) ≥ αlm1

βu
:= m2. (13)

(7), (9), (11), and (13) show that under the assumption of
Theorem 1, system (3) is permanence. This completes the
proof of Theorem 1.

Next we will prove for t ∈ R, the above conclusions hold.
We denote by (S) the set of all solutions z(t) =

(x(t), u(t))T of system (3) on R satisfying m1 ≤ x(t) ≤
M1,m2 ≤ u(t) ≤M2 for t ∈ R.

Theorem 2. (S) �= ∅.

Proof: From properties of almost periodic functions, there
exists a sequence tn, tn → ∞ as n→ ∞, such that

r(t+ tn) → r(t), k(t+ tn) → k(t), η(t+ tn) → η(t),
β(t+ tn) → β(t), α(t+ tn) → α(t), d(t+ tn) → d(t)

as n → ∞ uniformly on R. Let z(t) = (x(t), u(t))T be a
solution of Eq.(3) satisfying m1 ≤ x(t) ≤ M1,m2 ≤ u(t) ≤
M2 for t ∈ R. Clearly, the sequence z(t + tn) is uniformly
bounded and equicontinuous on each bounded subset of R.
Therefore by Ascoli’s theorem, we know that there exists
a subsequence z(t + tk) which converges to a continuous
function p(t) = (p1(t), p2(t))T as k → ∞ uniformly on each
bounded subset of R. Let T̄ ∈ R be given, then for t ∈ R, we
have

x(t+ tk + T̄ ) − x(tk + T̄ )

=
∫ t+T̄

T̄

[
r(s+ tk)x(s+ tk)(k(s+ tk) − x(s+ tk − τ))

k(s+ tk) + η(s+ tk)x(s+ tk − τ)

−d(s+ tk)x(s+ tk)u(s+ tk − τ)
]

ds,

u(t+ tk + T̄ ) − u(tk + T̄ )

=
∫ t+T̄

T̄

(−β(s+ tk)u(s+ tk) +

α(s+ tk)x(s+ tk − τ)) ds.

Applying Lebesgue dominated convergence theorem, and let-
ting k → ∞ in above equalities, we obtain

p1(t+ T̄ ) − p1(T̄ ) =
∫ t+T̄

T̄

[
r(s)x(s)(k(s) − x(s− τ))
k(s) + η(s)x(s− τ)

−d(s)x(s)u(s− τ)
]

ds,

p2(t+ T̄ ) − p2(T̄ ) =
∫ t+T̄

T̄

(−β(s)u(s) + α(s)x(s− τ)) ds

for all t ∈ R. Since T̄ ∈ R is arbitrarily given, then p(t) =
(p1(t), p2(t))T is a solution of system (3) on R. It is clear
that m1 ≤ p1(t) ≤ M1,m2 ≤ p2(t) ≤ M2 for t > 0. Thus
p(t) ∈ (S).

This completes the proof.

III. EXISTENCE OF A UNIQUE ALMOST PERIODIC
SOLUTION

Now, we give the definition of the almost periodic function.

Definition 2. [22] A function f(t, x), where f is an m-vector,
t is a real scalar and x is an n-vector, is said to be almost
periodic in t uniformly with respect to x ∈ X ⊂ Rn, if f(t, x)
is continuous in t ∈ R and x ∈ X , and if for any ε > 0, it is
possible to find a constant l(ε) > 0 such that in any interval
of length l(ε), there exists a τ such that the inequality

||f(t+ τ, x) − f(t, x)|| =
m∑
i=1

|fi(t+ τ, x) − fi(t, x)| < ε

is satisfied for all t ∈ R, x ∈ X . The number τ is called an
ε-translation number of f(t, x).

Definition 3. [23] A function f : R → R is said to be
asymptotically almost periodic function, if there exists an
almost periodic function q(t) and a continuous function r(t)
such that

f(t) = q(t) + r(t), t ∈ R and r(t) → 0 as t→ ∞.

We refer to [24], [25] for the relevant definitions and the
properties of almost periodic functions. In the followings,
by constructing an suitable Lyapunov functional, we get the
sufficient conditions for the existence of the globally attractive
solution for system (3).

Theorem 3. Assume that (H1) and (H2) hold, then for any
two positive solutions z1(t) = (x1(t), u1(t))T and z2(t) =
(x2(t), u2(t))T of system (3), we have

lim
t→∞ |z1(t) − z2(t)| = 0.

Proof: Let z1(t) = (x1(t), u1(t))T and z2(t) = (x2(t),
u2(t))T be any two positive solutions of system (3).
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From (H2), α
lm1
M2

2
> 0, dlm1 > 0 and dlm2 > 0, it follows

that there exists an enough small ε > 0 such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A1(ε) = rl(1+ηl)

ku+ηu(M1+ε)
− αu

m2−ε > ε,

A2(ε) = αl(m1−ε)
(M2+ε)2

> ε,

A3(ε) = dl(m1 − ε) > ε,
A4(ε) = dl(m2 − ε) > ε.

(14)

It follows from (8), (10), (12) and (13) that for above ε > 0,
there exists a T ≥ T3 > 0 such that for t ≥ T ,

m1 − ε ≤ x(t) ≤M1 + ε, m2 − ε ≤ u(t) ≤M2 + ε.

Set

V1(t) = | lnx1(t) − lnx2(t)|.
Calculating the upper right derivatives of V1(t) along the
solution of (3), it follows that

D+V1(t)
= sgn(x1(t) − x2(t))[(lnx1(t))′ − (lnx2(t))′]

= sgn(x1(t) − x2(t))
[
r(t)(k(t) − x1(t− τ))
k(t) + η(t)x1(t− τ)

−d(t)x1(t)u1(t− τ)

−r(t)(k(t) − x2(t− τ))
k(t) + η(t)x2(t− τ)

+ d(t)x2(t)u2(t− τ)
]

= sgn(x1(t) − x2(t))

×
[
r(t)k(t)(1 + η(t))(x2(t− τ) − x1(t− τ))

(k(t) + η(t)x1(t− τ))(k(t) + η(t)x2(t− τ))
+d(t)x2(t)(u2(t− τ) − u1(t− τ))

+d(t)u1(t− τ)(x2(t) − x1(t))
]

≤ sgn(x1(t) − x2(t))

×
[
r(t)k(t)(1 + η(t))(x2(t− τ) − x1(t− τ))

k(t)(k(t) + η(t)x2(t− τ))

]
−d(t)x2(t)|u1(t− τ) − u2(t− τ)|
−d(t)u1(t− τ)|x1(t) − x2(t)|

= − r(t)(1 + η(t))
k(t) + η(t)x2(t− τ)

|x1(t− τ) − x2(t− τ)|
−d(t)x2(t)|u1(t− τ) − u2(t− τ)|
−d(t)u1(t− τ)|x1(t) − x2(t)|.

Let

V2(t) = | lnu1(t) − lnu2(t)|.
Calculating the upper right derivatives of V2(t) along the
solution of (3), it follows that

D+V2(t) = sgn(u1(t) − u2(t))[(lnu1(t))′ − (lnu2(t))′]

= sgn(u1(t) − u2(t))α(t)
[
x1(t− τ)
u1(t)

− x2(t− τ)
u2(t)

]

= −α(t)x1(t− τ)
u1(t)u2(t)

|u1(t) − u2(t)|

+
α(t)
u2(t)

|x1(t− τ) − x2(t− τ)|.

Now let us define

V (t) = V1(t) + V2(t).

Therefore, for t ≥ T , it follows from above analysis that

D+V (t) ≤ −
[

r(t)(1 + η(t))
k(t) + η(t)x2(t− τ)

− α(t)
u2(t)

]
×|x1(t− τ) − x2(t− τ)|
−α(t)x1(t− τ)

u1(t)u2(t)
|u1(t) − u2(t)|

−d(t)x2(t)|u1(t− τ) − u2(t− τ)|
−d(t)u1(t− τ)|x1(t) − x2(t)|

≤ −
[

rl(1 + ηl)
ku + ηu(M1 + ε)

− αu

m2 − ε

]
×|x1(t− τ) − x2(t− τ)|
−α

l(m1 − ε)
(M2 + ε)2

|u1(t) − u2(t)|
−dl(m1 − ε)|u1(t− τ) − u2(t− τ)|
−dl(m2 − ε)|x1(t) − x2(t)|.

From (14), we know that there must be an positive constant ε
such that

D+V (t) ≤ −ε|x1(t− τ) − x2(t− τ)| − ε|u1(t) − u2(t)|
−ε|u1(t− τ) − u2(t− τ)| − ε|x1(t) − x2(t)|.

Integrating the above inequality on internal [T, t], it follows
that for t ≥ T

V (t) + ε

∫ t

T

|x1(s− τ) − x2(s− τ)|ds

+ε
∫ t

T

|u1(s) − u2(s)|ds

+ε
∫ t

T

|u1(s− τ) − u2(s− τ)|ds

+ε
∫ t

T

|x1(s) − x2(s)|ds ≤ V (T ) < +∞.

Therefore,

lim sup
t→∞

∫ t

T

|u1(s) − u2(s)|ds ≤ V (T )
ε

< +∞,

lim sup
t→∞

∫ t

T

|x1(s) − x2(s)|ds ≤ V (T )
ε

< +∞.

From the above inequalities, one could easily deduce that

lim
t→+∞ |x1(t) − x2(t)| = 0, lim

t→+∞ |u1(t) − u2(t)| = 0.

This completes the proof.

Theorem 4. Suppose that all conditions of Theorem 3 hold,
then there exists a unique almost periodic solution of system
(3).

Proof: From Theorem 2, there exists a bounded positive
solution

z(t) = (u1(t), u2(t))T , t ≥ 0.

Suppose that z(t) = (u1(t), u2(t))T is a solution of (3), then
there exists a sequence {t′k}, t′k → ∞ as k → ∞, such that
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(u1(t+t′k), u2(t+t
′
k))

T is a solution of the following system:⎧⎪⎪⎨
⎪⎪⎩
x′(t) =

r(t+ t′k)x(t)(k(t+ t′k) − x(t− τ))
k(t+ t′k) + η(t+ t′k)x(t− τ)

−d(t+ t′k)x(t)u(t− τ),
u′(t) = −β(t+ t′k)u(t) + α(t+ t′k)x(t− τ).

From above discussion and Theorem 1, we have that not only
ui(t+t′k) (i = 1, 2) but also u̇i(t+t′k) (i = 1, 2) are uniformly
bounded, thus ui(t+ t′k) (i = 1, 2) is uniformly bounded and
equi-continuous. By Ascoli’s theorem there exists a uniformly
convergent subsequence {ui(t+ tk)} ⊆ {ui(t+ t′k)} such that
for any ε > 0, there exists a k(ε) > 0 with the property that
if m, k > K(ε) then

|ui(t+ tm) − ui(t+ tk)| < ε (i = 1, 2).

It shows that ui(t) (i = 1, 2) are asymptotically almost
periodic functions, then, ui(t+tk)(i = 1, 2) are the sum of an
almost periodic function qi(t+ tk)(i = 1, 2) and a continuous
function pi(t+ tk)(i = 1, 2) defined on R, such that

ui(t+ tk) = pi(t+ tk) + qi(t+ tk) for all t ∈ R,

where

lim
k→+∞

pi(t+ tk) = 0, lim
k→+∞

qi(t+ tk) = qi(t),

qi(t) is an almost periodic function, which implies that
limk→+∞ ui(t+ tk) = qi(t) (i = 1, 2).

On the other hand,

lim
k→+∞

u̇i(t+ tk) = lim
k→+∞

lim
h→0

ui(t+ tk + h) − ui(t+ tk)
h

= lim
h→0

lim
k→+∞

ui(t+ tk + h) − ui(t+ tk)
h

= lim
h→0

qi(t+ h) − qi(t)
h

= q̇i(t).

So the limit q̇i(t)(i = 1, 2) exists.
Now we will prove that (q1(t), qi(t))T is an almost solution

of system (3).
From the properties of almost periodic functions, there

exists an sequence {tn}, tn → ∞ as n→ ∞, such that

r(t+ tn) → r(t), k(t+ tn) → k(t), η(t+ tn) → η(t),
β(t+ tn) → β(t), α(t+ tn) → α(t), d(t+ tn) → d(t)

as n → +∞ uniformly on R. It is easy to know that ui(t +
tn) → qi(t) as n→ +∞(i = 1, 2). Then we have

q̇1(t)
= lim

n→+∞ u̇1(t+ tn)

= lim
n→+∞

[
r(t+ tn)u1(t+ tn)(k(t+ tn) − u1(t+ tn − τ))

k(t+ tn) + η(t+ tn)u1(t+ tn − τ)

−d(t+ tn)x(t+ tn)u(t+ tn − τ)
]

=
r(t)q1(t)(k(t) − q1(t− τ))

k(t) + η(t)q1(t− τ)
− d(t)x(t)u(t− τ),

q̇2(t)

= lim
n→+∞ u̇2(t+ tn)

= lim
n→+∞

[ − β(t+ tn)u2(t+ tn)

+α(t+ tn)u1(t+ tn − τ)
]

= −β(t)q2(t) + α(t)q1(t− τ).

This proves that (q1(t), q2(t))T satisfies system (3) and
(q1(t), q2(t))T is a positive almost periodic solution, by The-
orem 3, it follows that there exists a unique positive almost
solution of system (3). The proof is completed.

IV. EXAMPLE

Consider the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) =

(40 + sin2(t))x(t)(1 + sin2(t) − x(t− 1
41 ))

1 + sin2(t) + (1 + cos2(t))x(t− 1
41 )

− cos2(t)+1
1000 x(t)u(t− 1

41 ),
u̇(t) = −(1 + cos2 t)u(t) + (1 + sin2(t))x(t− 1

41 ).

(15)

In this case, we have rl = 40, ru = 41, kl = 1, ku = 2, ηl =
1, ηu = 2, βl = 1, βu = 2, αl = 1, αu = 2, du = 1

500 , d
l =

1
1000 and τ = 1

41 . And so

M1 = kueτr
u

= 2e > 0,

M2 =
αuM1

βl
= 4e > 0,

m1 = kl exp[(
rlkl

ku + ηuM1
− duM2

− rlM1

ku + ηuM1
)τ ] = e−0.13 > 0,

m2 =
αlm1

βu
=

1
2
e−0.13,

(H1)
rlkl

ku + ηuM1
− duM2 = 3.086 > 0,

(H2)
rl(1 + ηl)
ku + ηuM1

− αu

m2
≈ 1.66 > 0.

Then by Theorem 3, we obtain that system (15) has a unique,
globally attractive, positive, almost periodic solution.
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