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Abstract—In this work, we analyze the deformation of surface 

waves in shallow flows conditions, propagating in a channel of 

slowly varying cross-section. Based on a singular perturbation 

technique, the main purpose is to predict the motion of waves by 

using a dimensionless formulation of the governing equations, 

considering that the longitudinal variation of the transversal section 

obey a power-law distribution. We show that the spatial distribution 

of the waves in the varying cross-section is a function of a kinematic 

parameter, κ , and two geometrical parameters ε
h

and 
wε . The above 

spatial behavior of the surface elevation is modeled by an ordinary 

differential equation. The use of single formulas to model the varying 

cross sections or transitions considered in this work can be a useful 

approximation to natural or artificial geometrical configurations.  
 

Keywords—Surface waves, Asymptotic solution, Power law 

function, Non-dispersive waves. 

I. INTRODUCTION 

N essential aspect of the propagation of ocean waves 

described by the shallow water approximation is that they 

are strongly influenced by geometrical and physical 

parameters. Among others, we can include sharp variations in 

the depth and width that are characteristic parameters of the 

specific geometry of the open channel. The propagation of 

Tsunamis over the continental shelf and the propagation of 

tidal waves into estuaries are some examples of this typical 

phenomenon. On the other hand, in order to capture energy 

from waves, artificial channels can be used as efficient 

collector waves. 

It is well known that one of the principal obstacles in 

obtaining adequate analytical solutions lies in the complicated 

geometry of natural estuaries; however, for some simplified 

geometries, it is possible to develop approximate analytical 

solutions. Today, computational methods offer a sophisticated 

tool for studying the dynamic propagation of shallow water 

waves. The modern use of digital computers can drastically 

reduce the numerical difficulties associated with complex 

geometries by enabling variations in depth and breadth to be 

incorporated in the calculations. This in turn increases the 

accuracy of the numerical solutions.  
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However, for some relevant limits the analytical solutions 

provide knowledge about the phenomenon of interest and can 

be very useful to simplify the numerical schemes. Reference 

[1] proposed a singular perturbation analysis to study the 

hydrodynamic performance of periodic ocean waves that are 

incident on an open parabolic channel of constant depth. 

Reference [2] developed a model for the monochromatic 

propagation on a smoothly varying bed profile divided into a 

series of shelves separated by abrupt steps. The submerged 

obstacles with different shapes, solids and porous solids have 

been studied extensively in order to determine the reflection 

and transmission of ocean waves and representative works can 

be found in [3]-[6]. In the specialized literature, approximated 

analytic solutions for the long wave equations with different 

propagation conditions based on Bessel functions can be 

found in [7]-[12]. The propagation of small amplitude water 

waves over variable bathymetry regions has been widely 

studied; [13] developed a consistent coupled-mode theory, 

which is derived from a variational formulation of the 

complete linear problem, representing the vertical distribution 

of the wave potential as a uniformly convergent series of local 

vertical models at each horizontal position. Previous 

investigations of tidal waves propagating in convergent 

channels with general shapes were investigated by [14]. In the 

previous works were studied separately the effect of the depth 

and width and analytical solutions were obtained by the well-

known method of separation of variables, generating Bessel, 

Frobenius and other transcendental functions depending on the 

used geometry. On the other hand, other widely technique 

used is the well-known step method. However, the application 

of the above traditional technique turns out to be a 

complicated process for some geometry.  

In this work, we develop a versatile analytical solution 

which allows us to study linear long water waves propagating 

along an open long channel of slowly varying cross-section, 

which obeys a power law function. The options of shapes in 

bottom and width can be so different ranging from 

rectangular, linear and parabolic transitions among others. 

We consider the linear shallow water flow approximation 

by taking into account the influence of the width and bottom 

variables on the wave propagation. The governing equations 

for the ocean wave propagation are presented in dimensionless 

form as functions of the characteristic dimensionless 

parameters of the problem. The associate boundary-value 

problem is solved by using the well-known WKB (Wentzel–

Kramers–Brillouin) singular perturbation technique [15]. In 

order to obtain the asymptotic perturbation solution for the 

motion of surface waves, we consider that our physical model 
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is subdivided into three different regions. We anticipate that 

the continuity of kinematic and dynamic conditions will 

prevail and the solution of the surface elevation is function of 

a small kinematical parameter. The present mathematical 

formulation can be used in a first approximation to identify 

those geometries perturb significantly the amplitude of waves 

or which channels are less or more reflective than other 

geometries. This methodology can be widely used to select 

artificial tapered channels. 

II.  FORMULATION 

Let consider a linear long wave propagating in a channel of 

slowly varying cross-section. On Fig. 1 is depicted a 

schematic top view diagram of the physical model and Fig. 2 

corresponds to the side view of the same physical model. The 

channel is divided into three different regions 1R , 2R  and 3R . 

In the selected Cartesian coordinate system, the x  axis is 

positive to the right with origin in the intersection of regions 

2R and 3R , meanwhile the z axis pointing outwards in a 

normal direction to the mean sea water level. The interval of 

the transition region 2R  is 0 x L≤ ≤ , meanwhile the regions 

1R  and 
3R  are defined by the intervals L x≤ < ∞  and 

0x−∞ < ≤ ; respectively. In addition, we assume that the 

corresponding widths and depths of the channel in these last 

two regions are constants. In the present analysis, we assume 

that the walls of the channel are impermeable which means no 

mass transfer in these boundaries. However, the vertical 

boundaries on the right and left sides of the system are 

completely open to the passage of the sum of incident and 

reflected waves on the right and only a transmitted wave on 

the left. Taking into account the above comments, the 

prescribed widths and depths are given by the following 

relationships: 
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Fig. 1 Schematic top view diagram of the physical model studied 

 

 

Fig. 2 Schematic side view diagram of the physical model studied 

 

In the above equations, the slenderness ratios α  and β  are 

given by; 

 

 1 3 1 3   and   
m n

b b h h

L L
β α

− −
= =  (2) 

 

where ( )1
= =b b x L  and ( )1

= = Lh h x . 

In the present work, we assume that the propagation of the 

water waves is described, in a first approximation, by utilizing 

one-dimensional linear long wave equations. Therefore, the 

governing equations can be written as follows (the details can 

be seen from [16]): 

 

 
( ) ( ), ,

+ g = 0
U x t x t

U
t x

η∂ ∂

∂ ∂
 (3) 

 
( )

( )
( ) ( ), ,1

+ = 0 
x t U x t A x

t b x x

η∂ ∂

∂ ∂
 (4) 

 

Equation (3) represents the conservation of momentum, 

while (4) is the conservation of mass. In the above equations, 

U is the average velocity defined as 

( )( , , ) /
h

U u x z t dz h
η

η
−

= +∫ , where ( , , )u x z t is the horizontal 

instantaneous velocity; η  is the level of the water surface 

measured from the mean sea level at rest, ( )h x ; t  is the 

physical time, g  is gravitational acceleration and 

( ) ( ) ( )A x b x h x≈  is the area of the transversal section of the 

channel. The above set of equations can be written for each 

region by using appropriate dimensionless variables, and 

together with the boundary conditions, define the basic 

characteristics of the present model. 
Firstly, we derive the governing equation and the 

corresponding solution of travelling waves which are 

propagating in the transition region 
2

R ; the analysis of the 

other two regions is trivial and is given at the end of this 

section. 

The equations of continuity and momentum can be 

combined by differentiating (4) with respect to time, and then 

substituting (3) into the resulting equation can be readily 

obtained the following equation with the aid of 
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( ) ( ) ( ) ( )( )3 3

m nxA x b xx h x b hβ α+ +≈ = , 
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 (5) 

 

Equation (5) governs the unsteady oscillations of the water 

surface, ( ),x tη . The equation is valid for long waves with 

small amplitude and controlled by the following relationships 

( ) 1h x λ ≪/  and ( ) ( ), 1x t h xη ≪/ , where λ  is the 

characteristic wavelength. 

Further, (5) can be simplified in an ordinary differential 

equation by considering that the surface level ( ),x tη
 

is 

dictated by a simple harmonic motion with frequency ω , 

given by: 

 

 ( ) ( ), Re i tx t x e ωη η − =  ɶ
  
      (6) 

 

where ( )xηɶ  is the variable amplitude of the wave for any 

cross section along the coordinate x  in the interval 0 x L≤ ≤ , 

Re  “is the real part of ” and 1i = −  , 2ω Tπ= / , where T  

is the ocean wave period. Substituting (6) into (5), we can 

obtain the boundary-value problem for predicting the surface 

elevation ηɶ , which is given by; 

 

2 1 1
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3 3 3
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Introducing the following dimensionless variables, 

 

1

and  
x

L h
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χ δ= =

ɶ
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therefore, (7) can be rewritten as, 
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where the dimensionless parameters in the above equation are 

defined as 

 

1 1

2

3

1

3

, ,
( )

h w

gh h b

L h b
κ ε ε

ω
= = =                     (10) 

III. ASYMPTOTIC SOLUTION 

Although (9) can be solved numerically for different values 

of the dimensionless parameter κ ; here, we prefer to develop 

an asymptotic approximation taking into account that the 

dimensionless parameter 1κ ≪ . This procedure is capable of 

providing quickly insight into how the solution depends on the 

various parameters of the problem. 

For small values of the dimensionless parameter κ , we can 

find an approximate solution by using perturbation techniques. 

This parameter represents the competition between the 

potential head 
1g h , and the kinematical head, ( )2

Lω , which 

clearly is associated to the frequency ω  of the shallow-water 

wave. For linear non-dispersive long waves, the wave velocity 

is defined as ( )c gh x=  or c k Tω λ= =/ / , where 

2k π λ= /  is the wave number. Therefore, the parameter κ  

can be rewritten as ( )
2

2 Lκ λ π =  /  with the aid of the 

above kinematical relationships. From a geometrical point of 

view, the limit of  1κ ≪  corresponds to consider an 

horizontal projection L  very large compared with λ , for 

finite values of the frequency ω  and the geometrical 

parameters h
ε  and 

w
ε . In the following section and 

considering the relevance of the above limit in practical cases, 

we derive an asymptotic solution of (9). 

The WKB method is a powerful tool for obtaining 

approximate solutions of linear differential equations with 

variable coefficients in which the higher order derivative is 

multiplied by a small parameter. We must anticipate that the 

WKB technique is an appropriate tool for obtaining global 

approximations to the solution of a linear differential equation 

whose dominant tendency has a dispersive or oscillating 

behavior. In order to apply the WKB perturbation technique, 

the solution can be proposed as a potential series given by the 

following: 

 

 
0

1
( ) exp ( )n

n

n

Sδ χ δ χ
δ

∞

=

 
 
 

∑ɶ ∼  (11) 

 

Substituting (11) into (9) and retaining terms of the same 

order, we obtain after some algebraic manipulations that the 

solution up to terms of order 1/2κ  is given by (see Appendix A 

for more details): 
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(12) 

 

where C and D are constants which have to be determined 

with appropriated boundary conditions. In addition, ( ),F nχɶ  

is a specific integral given in Appendix (29). 

For the region 1
R , with constant values for the width and 

the depth and introducing the following dimensionless 
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variables for regions 1
R  and 3

R ; 

 

( ) ( )
1

3

3
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The surface elevation in dimensionless variables, in these 

regions can be expressed as: 

 

( ) i i

R Ie eχ χδ χ β β −= +        (14) 

 

and 

( ) ˆˆ ˆ i

T e χδ χ β −=             (15) 

 

where 
1I I

A hβ = / , 
1R R

A hβ = /  and 
3T T

A hβ = / . In the 

following section, we present the patching conditions needed 

to obtain the previous constants C , D , 
R

β  and  
T

β . 

A. Patching Conditions 

In addition, we must provide kinematic and dynamic 

conditions at the common boundaries of these three regions in 

order to obtain the values of coefficients C , D , 
R

β  and  
T

β . 

We apply, therefore, patching conditions across the common 

boundaries, thus we have 
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From (12), (14), (15) and (16), we can easily derive the 

following system of equations, 
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with 

 

( )

( )

( ) ( )

( ) ( ) ( ) ( )

1/2

1/2

1/2

1/2

1 1/4 3/2 5/4 1/2

2

1
1 1, ,

2ˆ 0, ,

1 1

2

1
1 0, 1 0,

2

and

h

h

w h

h w h w

w h

F n

F n

m n

m q m n g n

θ ε
κ

ε
θ θ

κ κ

ε ε
α

ε ε ε ε

α ε ε

 = + 

 
= = 

 
− −

= +

= − + −

ɶ

     (18) 

 

where ( )0,F n  and ( )1,F n  are the values of the integral  

(29), evaluated at = 0χɶ  and = 1χɶ ; respectively, for different 

values of exponent n . It is necessary to precise that in the 

above integral, the exponent n takes different integer values, 

depending on the channel shape geometry, i.e. ( )= 1, 2,3...n . 

In the above system of equations, the variables g  and q  

are defined as ( ) 1, ng nχ χ −=ɶ ɶ  and ( ) 1, mq nχ χ −=ɶ ɶ , where 

( ) ( )0, 0, 0g n q m= =  for , 1n m >  and ( ) ( )0, 0, 1g n q m= =  

for , = 1m n . Therefore, the solution of the system (17) 

provides us the constants C  and D : 
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with 
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IV. RESULTS AND DISCUSSION 

We propose the following physical data in order to 

investigate the effect of the channel geometry on the wave 

propagation. Typical values for this kind of channels and sea 

water conditions are: 500L = m., 
1 4.47h = m., 

( )3
= 4.47, 2.235, 1.11h m., 1 50b = m., ( )3 50,25,12.5b = m.; 

the wave length in region  
1R  is 

1 99.34λ = , 15T = s., 

0.18IA = m. With the above values, we obtain the next 
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dimensionless parameters 0.001κ = , ( )1,2,4hε = , 

( )= 1, 2, 4
w

ε  and 
I

= 0.04β . In this manner, the selected data 

satisfy the assumption of linear long wave theory, that is 

1/ 0.04 1IA h = ≪  and  
1 0.282 / 10kh π= < , [17]; therefore, 

the fundamental assumptions are fully satisfied. 

As a particular case, considering 1h wε ε= = , the region 
2R  

degenerates into a channel with constant width and depth. 

Therefore, (9) is simplified as following 

 
2

2
0 

d

d
κ

χ
δ

δ+ =
ɶ

ɶ
ɶ         (22) 

 

From (19) and (20), we obtain that = 0C  and I
=D β ; 

therefore, the analytical solution for this case is written as 

 

( ) 1/2

 

  
i

I
e

χ

κδ χ β
−

=
ɶ

ɶ ɶ        (23) 

 

The distribution of the dimensionless surface elevation, δɶ , 

as a function of the dimensionless coordinate χɶ and calculated 

with (23) is shown in Fig. 3. From this figure is evident that 

the wave amplitude is not modified. 

In Fig. 4 is plotted the dimensionless surface elevation for 

waves propagating in a channel with a parabolic depth 

transition 2n = , 4hε =  and constant width 1wε = . The 

results are compared with the Green’s law for waves 

propagating over slowly depth transitions, which in in terms of 

dimensionless proposed variables, is written as 

 

( )
( )

1/ 4

1 1

1
 

1
I n

h h

δ χ β
ε ε χ− −

 
 =
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ɶ ɶ
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     (24) 

 

It should be noted that the surface elevation calculated with 

the present mathematical model is in good agreement with 

Green’s law.  
 

 

 

 

 

Fig. 3 Dimensionless surface elevation δɶ  as a function of 

dimensionless axis χɶ , for constant values of the parameters 

0.001κ = , 0.04Iβ = , 1hε = and 1wε =  

 

 

Fig. 4 Comparison of the dimensionless surface elevation δɶ  in a 

channel with parabolic depth transition with the wave amplitude 

calculated by Green´s law 

A. Particular Cases 

1. Channel with Constant Depth and Variable Width: 

= 1
h

ε  

In this part, we present the hydrodynamics of waves 

propagating in a channel with constant depth and variable 

width, considering that 1hε =  and 4wε = , for different 

values of exponent m  and constant values of the parameters 

0.001κ = , 0.04Iβ = . Fig. 4 show the dimensionless surface 

elevation δɶ  as a function of the dimensionless coordinate χɶ  

for three different horizontal shapes ( )= 1, 2,5m . 

The analytical solution of waves propagating under these 

conditions reads now as 

 

( ) 1/2 1/2

1  1
1

    .
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i i
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w

Ce De
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κ κδ χ
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− +  

ɶ ɶ
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 (25) 
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The constants C  and D  are evaluated taking into account 

(19) and (20). 

For large values of m ,  the dimensionless amplitude δɶ is 

increased in the interval 0 1χ< <ɶ . It should be noted, in 

addition, that the values of variable δɶ  at = 0χɶ  are twice 

greater than the corresponding values at = 1χɶ .  Fig. 5 shows 

that the wavelength remains constant, which satisfies the 

assumption that the ocean wave velocity for linear non-

dispersive long waves propagating in a flat bottom, is 

constant, i. e. c = / T = ghλ . 

 

 

Fig. 5 Approximated analytical solution for the dimensionless surface 

elevation δɶ  as a function of the dimensionless coordinate χɶ , for 

= 0.001κ , = 0.04Iβ , = 1hε , = 4wε  and three different values 

of ( )1 2 5m , ,=  

2. Channel with Constant Width and Variable Depth: 

= 1wε  

In order to characterize in a first approximation the linear 

long waves propagating in depth with smooth transitions; here 

we show analytical results of the dimensionless water surface 

elevation and reflection and transmission coefficients for 

different bottom shapes. 

The analytical solution of waves propagating under this 

condition reads now; 

( )
( ) ( )

1/2 1/2

 ,  ,

1/4
.

( 1) 1

h hi F n i F n

n

h

Ce De

ε ε
χ χ

κ κ

δ χ
ε χ

   −   
   +

=
 − + 

ɶ ɶ

ɶ ɶ

ɶ

   (26) 

 
In Fig. 6 is plotted the propagation of water waves in a 

channel with constant width and variable depth, calculated 

from (26). The parameters take values of = 4
h

ε , κ = 0.001 , 

= 0.04
I

β  and the bottom shapes are ( )= 1, 2,5n . In this 

figure should be noted that the wavelength of the 

dimensionless water surface calculated for the three different 

channels, is varying along the channel, which is a consequence 

of the variable depth. Additionally, in the channel with a shape 

= 5n  generates amplitude greater than the other two cases. 

This is due to that for large values of n , the depth is 

practically flat along the channel as 1χ →ɶ  and an abrupt 

transition is presented, limiting the values of n . 

 

 

Fig. 6 Approximated analytical solution for the dimensionless surface 

elevation δɶ  as a function of the dimensionless coordinate χɶ , for 

values of = 0.001κ , = 0.04Iβ , = 1wε , = 4hε  and three 

different values of ( )1, 2, 5n =  

3. Channel with Width and Depth Variables 

The geometrical perturbation of the dimensionless water 

surface elevation by a channel with width and depth variables 

is shown in Fig. 7. For simplicity, we carry out the results, 

considering that the three cases have the same distribution 

geometry for the width and the depth; that is ( )= = 1, 2,5m n  

for constant values of 2h wε ε= = , 0.001κ =  and = 0.04
I

β . 

Similar results as the previous cases are obtained and the 

variable δɶ  for a geometry with 5m n= = , shows larger 

values than the other two cases in the interval of 0 1χ< <ɶ . At 

0χ →ɶ  and for the three different channels, the dimensionless 

surface elevation is almost 50% times greater than the 

corresponding amplitude at 1χ →ɶ . 
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Fig. 7 Approximated analytical solution for the dimensionless surface 

elevation δɶ  as a function of the dimensionless coordinate χɶ , for 

values of = 0.001κ , = 0.04Iβ , = 4h wε ε=  and three different 

values of ( )1,2,5m n= =  

V. CONCLUSIONS 

An analytical model based on the WKB singular 

perturbation technique, is conducted to obtain a simple 

dimensionless equation for the deformation of ocean waves, 

propagating in a channel of slowly varying cross-section. The 

new solutions are general and easy to apply. 

For a channel with parabolic bottom transition, = 2n , the 

analytical solution for the surface elevation reproduces 

properly the asymptotic solution Green’s law for waves 

propagating on slowly depth transitions. We present three 

examples of the water surface oscillation; in the first case we 

analyze the effect of a channel with variable width transition 

and constant depth with the aim to identify the magnitude 

order of the amplification of the ocean waves. In this case, the 

dimensionless amplitude δɶ  is perturbed and the wavelength 

remains constant. 

The second case depicts the effect that different bottom 

transition shapes with constant width have in the oscillation of 

progressive surface waves. It should be noted that the wave 

length is variable along the channel. Due to the versatility of 

the analytical solution, the hydrodynamic of progressive 

waves propagating in a channel of slowly varying cross-

section, is also analyzed. The results show that the surface 

elevation at 0χ →ɶ  is almost 50 % greater than the boundary 

condition at = 1χɶ . 

In the present model, the width and depth of the channel can 

take different values. In particular, we have recovered the 

wave propagating in a channel with flat bottom and constant 

width. 

Furthermore, the present model can be used to study in a 

first approximation, the perturbation of surface waves in 

shallow flow conditions in order to amplify the heights of 

ocean waves.  

The geometrical transitions studied in this work are useful 

approximations of estuarine configurations.  

APPENDIX 

• Appendix A: WKB Perturbation Technique, for 1κ ≪  

Differentiating once and twice (11), taking into account the 

solution given by (11) and applying a dominant balance, we 

obtain that, 
1/2

.δ κ= Collecting terms of order 
0κ , we 

obtain: 

 

( ) ( )
0 2

0
: (

11
0) h

h

n
O Sκ

χ
ε

ε −
′ + =

+ɶ
    (27) 

 
where 

( ) ( )1/2

0  ,hS F n iχ ε χ= ±ɶ ɶ       (28) 

 

and 

( ) 1
, .

( 1) 1n

h

F n dχ χ
ε χ

=
− +

∫ɶ ɶ

ɶ

      (29) 

 

Similarly, we can collect terms of order
1/2κ , obtaining that,  

 

( )
( )
( )

( )
( )

1/2

0 1 0

1 1

0

:      2

1 1
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1 1 1 1

n m

h w
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− −

′ ′ ′′+ +

 − −
′+ = 
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ɶ ɶ
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    (30) 

 

with 

 

( ) ( ) ( )
1 1

4 2
1 2  ln 1 1 ln 1 1

n m

h wS cχ ε χ ε χ
− −

   = − + −+ + +   ɶ ɶ ɶ (31) 

 

and 
2c  is an integration constant. Therefore, the solution (12) 

is easily obtained by replacing (28) and (31) into (11). 
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