
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2578

Specification of Agent Explicit Knowledge

in Cryptographic Protocols

Khair Eddin Sabri, Ridha Khedri, and Jason Jaskolka

Department of Computing and Software

Faculty of Engineering

McMaster University

{sabrike, khedri, jaskolj}@mcmaster.ca

Abstract— Cryptographic protocols are widely used in various
applications to provide secure communications. They are usually
represented as communicating agents that send and receive messages.
These agents use their knowledge to exchange information and
communicate with other agents involved in the protocol. An agent
knowledge can be partitioned into explicit knowledge and procedural
knowledge. The explicit knowledge refers to the set of information
which is either proper to the agent or directly obtained from other
agents through communication. The procedural knowledge relates to
the set of mechanisms used to get new information from what is
already available to the agent.

In this paper, we propose a mathematical framework which spec-
ifies the explicit knowledge of an agent involved in a cryptographic
protocol. Modelling this knowledge is crucial for the specification,
analysis, and implementation of cryptographic protocols. We also,
report on a prototype tool that allows the representation and the
manipulation of the explicit knowledge.

Keywords: Information Algebra, Agent Knowledge, Cryptographic
Protocols

I. INTRODUCTION AND MOTIVATION

Cryptographic protocols are widely used in various appli-

cations to provide secure communications. They are usually

represented as communicating agents that send and receive

messages. Different formal methods are used to analyze them

such as logical methods [3], [6], [22], process algebras [2],

[15], [16], [18], and Petri-Nets [4]. Analyzing cryptographic

protocols is usually based on the assumption that an intruder

can control the network by intercepting, creating, or modifying

messages. The intruder knowledge of the exchanged informa-

tion and its nature are essential for attacking protocols. The

intruder can enrich its knowledge by receiving information

as messages and producing new information from the existing

one. The way the knowledge is modelled and evolved is critical

for a deeper analysis of cryptographic protocols. Mathematical

models are essential for capturing agents knowledge and

behaviours especially those of an intruder.

An agent knowledge can be seen as composed of explicit

knowledge and procedural knowledge. The explicit knowledge

is related to the information that an agent possesses such as its

own key(s), the cipher(s) used for encryption and decryption,

and the identity of other agents. Information in the explicit

knowledge can be sent to other agents. Also, the information

an agent receives from other agents becomes a part of its

explicit knowledge.

The procedural knowledge involves a set of mecha-

nisms/functions that enables an agent to obtain new informa-

tion from its explicit knowledge. For example, if the explicit

knowledge of an agent contains an encrypted message as well

as the key and the cipher used to decrypt the message, then by

using the procedural knowledge, the secret can be obtained.

In this paper, we focus only on the explicit knowledge.

Both parts of the agent knowledge are necessary in ana-

lyzing cryptographic protocols. When we analyze the liter-

ature using this classification of agent knowledge, we find

several representations of that knowledge. For example, in the

Knowledge Based Logic Inference System [17], four types

are used to classify the information in the agent knowl-

edge: agent, nonce, key, and message and each piece of

information in the explicit knowledge should belong to a

specific type. Explicit knowledge is represented as the axiom

Know(X, M) which indicates that the agent X knows the

message M . The procedural knowledge is defined as infer-

ence rules such as “Know(X, M) and Know(X, Key K) then

Know(X, Encrypt M K)”. In Strand Space [11], an agent

explicit knowledge is represented as a set containing the initial

information. The procedural knowledge is represented as a

set of strands, where each one can be seen as a sequence

of possible actions that an agent can perform on the initial

information to obtain a new information. In Brutus tool [8],

the explicit knowledge is represented as a set of messages.

The atomic messages, which are not obtained using the

procedural knowledge, are classified into keys, agent names,

nonce numbers and data. The procedural knowledge is defined

in Brutus as inference rules such as if m ∈ M and key k ∈ A

then {m}k ∈ M where M is the set of all messages and A is

the set of atomic messages.

In the literature, attention has been given to the procedu-

ral knowledge representation. For example, in [23], [25], a

framework is developed to specify the algebraic properties of

different elements of messages such as secrets, ciphers, and

keys. In CSP [16] and NRL analyzer [19], the algebraic prop-

erties of cryptographic primitives are taken into consideration

in producing new information. In [10], [14], the complexity

of extending the intruder capability of deducing information

based on algebraic properties is studied. On the other hand,

minimum attention is given to the explicit knowledge, even

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2579

though an efficient protocol analysis depends on a precise

and comprehensive knowledge of the information already

exchanged.

The explicit knowledge representation is important for the

specification, analysis, and implementation of cryptographic

protocols. We summarize below the uses of the explicit knowl-

edge in specifying protocols, specifying properties, generating

code, reducing the state space, and generating specific type of

attacks. For more information, we refer the readers to [26].

1) Protocols are based on exchanging messages between

agents. These messages are constructed from agent ex-

plicit knowledge, and therefore it is necessary to specify

protocols. Also, explicit knowledge is required to specify

agent internal actions such as verifying the freshness

of the received key. The explicit knowledge represen-

tation becomes more useful in complex protocols. For

example, in the registration part of the Equicrypt proto-

col [15], a third party can handle several registrations at

a time. Therefore, it should maintain an internal “table”

with information on the users that have a registration in

progress.

2) Some security properties are based on the explicit

knowledge of agents. For example, the secrecy property

requires that an intruder should not know a secret

information existing in the explicit knowledge of other

agents. Also, the classification of information in the

agent knowledge allows specifying other properties. For

example, long-term keys should not be sent through the

network.

3) Even if the protocol is proved to be secure, it could be

attacked due to its incorrect implementation. To reduce

the risk of incorrect implementation, one can derive the

code automatically from the mathematical model of the

protocol and prove that the derivation is correct. Having

an explicit knowledge representation that allows spec-

ifying internal actions such as inserting and extracting

information from the knowledge as well as verifying the

existence of an information in the knowledge would be

necessary to generate the code.

4) State space explosion is one of the main issues in analyz-

ing cryptographic protocols. This problem is caused by

the undeterministic behaviour of the intruder. In [20],

the authors indicate that an optimized behaviour of

an intruder that sends the messages with the potential

to be accepted by the receiver helps in reducing the

state space. This approach is followed in analyzing an

improved Needham-Schroeder public-key protocol using

µCRL [21]. The explicit knowledge representation is

necessary to build an intruder that sends useful messages

only. For example, sending a message encrypted by

a key different from that of the receiver is useless if

the receiver should decrypt the message. Therefore, the

intruder explicit knowledge should associate keys with

the identity of the agents that use those keys.

5) The explicit knowledge can be used to generate specific

attacks. For example, by specifying the sender of each

message in the explicit knowledge, the intruder can

replay messages to the sender to generate reflection

attack.

In the literature, there are different representations of the

explicit knowledge that share some characteristics such as

classifying the information. Almost all the methods used in

analyzing cryptographic protocols distinguish the key from

other information. This classification ensures that only keys are

used in the encryption or decryption. Also, this classification

decreases the state space when looking for a key. In several

cryptographic protocols, information is usually classified as

keys, nonce numbers, agent identities, and other data. In

the public key encryption, some methods classify keys into

public and private. Also, in the literature, different kinds of

information in the explicit knowledge are related to each

other such as the public and private keys. Other methods [5],

[17], [21] associate agent identity with key, card, nonce, and

message.

One limitation of the existing methods is that it depends on

the protocol to be specified. Therefore, to specify a protocol,

different structures (e.g., functions, relations, predicates) need

to be defined. Also, several functions are defined to extract

a piece of information such as getting a private key corre-

sponding to a specific public key. In order to specify another

protocol with different classification of information, different

structures and functions need to be introduced. Also, as the

protocol becomes more complex and new types are required,

additional functions need to be introduced as in the analysis of

the merchant registration phase of the SET protocol [17] where

six different functions are defined. To reduce the complexity

of specifying agent explicit knowledge, it would be essential

to have a uniform compact theory with a small number of

operators that can be used to specify agent explicit knowledge

regardless of the protocol to be specified.

In this paper, we develop a mathematical structure to repre-

sent the explicit knowledge and prove that it is an information

algebra [13]. Proving that our structure is information algebra

enables our representation to have similar characteristics to

the methods used in specifying the explicit knowledge. Also,

it allows our representation to overcome the limitation of the

methods reported in the literature by applying our theory

to any protocol without introducing a new theory. Finally,

proving that our structure is information algebra allows using

the established results within the information algebra1. Then,

we use our structure in specifying protocols and properties,

reducing the state space, and generating attacks.

It should be noted that it is necessary to represent agent

procedural knowledge in order to analyze cryptographic pro-

tocols.

In Section II, we introduce our representation of the explicit

knowledge. In Section III, we relate the mathematical structure

to cryptographic protocols and illustrate the use of the explicit

1An Information algebra is a composite structure formed of a lattice and
another composite algebraic structure which includes a commutative semi-
group. The literature contains a large number of results in these structures.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2580

knowledge through an example. In Section IV, we present

a summary of related work and a discussion. Finally, we

conclude and highlight current and future research.

II. AGENT EXPLICIT KNOWLEDGE

A. Information Algebra

In [13], Kholas and Stark explore connections between dif-

ferent representations of information. They introduce a math-

ematical structure called information algebra. This mathemat-

ical structure involves a set of information Φ and a lattice D.

They show that relational databases, modules, and constraint

systems are information algebras. In the rest of this paper, we

denote elements of Φ by small letters of the Greek alphabet

such as ϕ,ψ and χ. Each piece of information is associated

with a frame (also called domain in [13]), and the lattice D

is the set of all frames. Each frame x contains a unit element

ex which represents the empty information. Information can

be combined or restricted to a specific frame. Combining two

pieces of information ϕ and ψ is represented by ϕψ. Kholas

and Stark [13] assume that the order of combining information

does not matter and, therefore, the combining operator is both

commutative and associative. Restricting an information ϕ to

a frame x is denoted by ϕ↓x which represents only the part

of ϕ associated with x.

In the following definition and beyond, let (D,g,f) be a

lattice and x and y be elements of D called frames. Let 4 be a

binary relation between frames such that xg y = y ↔ x 4 y.

Let Φ be a set of information and ϕ,ψ, χ be elements of Φ.

We denote the frame of information ϕ ∈ Φ by d(ϕ). Let ex be

the empty information over the frame x ∈ D, the operation ↓
be a partial mapping Φ × D → Φ, and · be a binary operator

on information. For simplicity, to denote ϕ · ψ, we write ϕψ.

Definition 2.1 (Information Algebra [13]): An information

algebra is a system (Φ, D) that satisfies the following axioms:

1) (ϕψ)χ = ϕ(ψχ)
2) ϕψ = ψϕ

3) d(ϕψ) = d(ϕ) g d(ψ)
4) x 4 y → (ey)↓x = ex

5) d(ϕ) = x → ϕex = ϕ

6) d(ex) = x

7) x 4 d(ϕ) → d(ϕ↓x) = x

8) x 4 y 4 d(ϕ) → (ϕ↓y)↓x = ϕ↓x

9) d(ϕ) = x ∧ d(ψ) = y → (ϕψ)↓x = ϕ(ψ↓x∧y)
10) x 4 d(ϕ) → ϕϕ↓x = ϕ

¤

The first two axioms indicate that the set of pieces of

information together with the combining operator constructs a

semi-group. The Axiom 3 states that the frame of combining

two pieces of information is the join of their frames. The

axioms (4-6) give properties of the empty information ex.

Axioms (7-8) give the properties of focusing an information

to a specific frame. The axioms (9-10) give properties that

involve combining and focusing of information.

B. Explicit Knowledge Representation

In this section, we present a mathematical structure to

specify an agent explicit knowledge which involves a set of

pieces of information Φ. Each piece is associated with a frame

that belongs to the lattice D. The notion of frame in this paper

in different from that of Abadi and Cortier [1]. In [1], frame

represents the information available to the intruder. While

in this paper, frames are considered as classification of the

information in the explicit knowledge. We designate to each

agent an information algebra to model its explicit knowledge.

We define two operators on frames and prove that the set of

frames with the defined operators is a lattice. We also define

an operator to represent combining information. Furthermore,

we define an operator to focus on a specific part of information

such as focusing on keys. We prove that our structure is an

information algebra. It should be noted that we do not provide

more contributions to the theory of information algebra. Our

contribution in this section is developing a mathematical

structure to specify the explicit knowledge and prove that the

structure is an information algebra which enables us to inherit

a vast body of mathematical knowledge related to information

algebra.

Definition 2.2 (Agent Information Frame): Let {Ai | i ∈
I} be a family of sets indexed by the set of indices I . An

information frame DI is defined as:

DI ,
∏

i∈I

P(Ai)

Which can be equivalently written as

DI ,

{f : I →
⋃

i∈I

P(Ai) | ∀(i | i ∈ I : f(i) ∈ P(Ai))}

¤

Let J ⊆ I and IJ ⊆ I × I such that IJ = {(x, x) | x ∈ J}
(i.e., IJ is the identity on J). Given the frame DI , we can

define DJ as {g | ∃(f | f ∈ DI : g = IJ
;f)} where ;

denotes relational composition. We call an element ϕ of DJ

an information and DJ the frame of ϕ and denote2 it by d(ϕ)
where “d“ is called the labelling operator. The information ϕ

is a function which can be written as a set of 2-tuples (i, A)
where i is an index and A is a set. Each frame DJ contains

a special element called the empty information eDJ
and is

defined as {(i, ∅) | i ∈ J}. Whenever, it is clear from the

context, we write eJ instead of eDJ
. For J ⊆ I , we denote

the set of all frames DJ by D and the set of all pieces of

information by Φ.

As an example of our representation of Φ and D, suppose

that an agent can handle only keys and ciphers. In this case,

I = {k, c} and the lattice D is constructed as in Figure 1. The

lattice D consists of four frames: D∅ frame that might involve

only the empty information e∅ (absence of information), D{k}

(resp. D{c}) frame relates to keys (resp. ciphers), and D{k,c}

frame relates to information that includes both keys and

ciphers. To illustrate our representation of Φ, let us assume

2The notation d(ϕ) to denote the frame of ϕ comes from the usage of the
term domain in [13] as a synonym for frame. We prefer to use the term frame
to avoid any confusion with the domain of a relation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2581

º¹¸·³´µ¶

}}
}}

}}
}}

AA
AA

AA
AA
D

{k,c}

º¹¸·³´µ¶

D
{k}

AA
AA

AA
AA

º¹¸·³´µ¶

}}
}}

}}
}}

D
{c}

º¹¸·³´µ¶

D
∅

Fig. 1. The lattice D of the frames generated from I = {k, c}

that an agent knows the keys k1 and k2 and the cipher c1

and c2. Also, it knows that k1 is a valid key for c1 and k2 is

valid for c2. We represent the information in our structure as:

Φ = {{(k, {k1, k2})}, {(c, {c1, c2})}, {(k, {k1}), (c, {c1})},
{(k, {k2}), (c, {c2})}}, where the pieces of information

{(k, {k1, k2})} ∈ D{k}, {(c, {c1, c2})} ∈ D{c} and both

{(k, {k1}), (c, {c1})} and {(k, {k2}), (c, {c2})} belong to

D{k,c}. Such representation allows ignoring invalid cipher-

key combinations such as key k1 with cipher c2 and k2 with

cipher c1.

From the above representations, we have the following

axioms that will be used in the proofs given later in this paper.

Axioms 2.1:

1) ϕ ∈ DJ → d(ϕ) = DJ

2) eJ , {(i, ∅) | i ∈ J}
¤

From the definition of DJ , it follows that ϕ ∈ DJ → ∀(i |
i ∈ J : ϕ(i) ∈ P(Ai)). Therefore, ϕ ∈ DJ can be written

as a set of 2-tuples {(i, A) | i ∈ J ∧ A ⊆ Ai}. We provide

the following propositions that will be needed in subsequent

proofs.

Proposition 2.1: For J,K ⊆ I and ϕ ∈ Φ

1) ϕ ∈ DK → IJ
;ϕ = {(i, A) | i ∈ (J ∩ K) ∧ A ⊆ Ai}

2) IJ
;IK = IJ∩K

3) ϕ ∈ DK → d(IJ
;ϕ) = DJ∩K

Proof: Detailed proof can be found in [24]

1) The proof uses the definitions of relation composition, ϕ,

and IJ as well as the trading rule for ∃, set intersection

axiom, and the distributivity of ∧ over ∃.

2) We use the definitions of relation composition, IJ , IK ,

and IJ∩K as well as apply the distributivity of ∧ over

∃, and set intersection axiom.

3) The proof uses the definition of DK , definition of DJ∩K ,

Proposition 2.1(2), and Axiom 2.1(1).

Let us assume that an intruder obtained the information

ϕ = {(k, {ka, kb}), (c, {c1})} from a protocol session. It

also obtained the information ψ = {(k, {ka}), (c, {c2})}
from another protocol session. One needs to express the

information that the intruder holds from both sessions as

ϕ ·ψ = {(k, {ka, kb}), (c, {c1, c2})}. The operator · is defined

as follows:

Definition 2.3 (Combining Information): Let Φ be a set of

information and ϕ, ψ be its elements. Let d(ϕ) = DJ and

d(ψ) = DK . We define the binary operators · (however, we

write ϕψ to denote ϕ · ψ) on information as:

ϕψ

,

{(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∪ ψ(i)}
∪ {(i, A) | i ∈ J − K ∧ A = ϕ(i)}
∪{(i, A) | i = K − J ∧ A = ψ(i)}

¤

We introduce the ∗ operator on pieces of information as

ϕ ∗ ψ , {(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∩ ψ(i)}. This

operator will be used later to define operators on frames. The ∗
operator represents the sharing of two pieces of information.

Based on the above operators, we define two operators on

frames as:

Definition 2.4: Let DJ and DK be frames, we define the

operators g and f as:

1) DJ g DK , {χ | ∃(ϕ,ψ | ϕ ∈ DJ ∧ ψ ∈ DK :
χ = ϕψ)}

2) DJ f DK , {χ | ∃(ϕ,ψ | ϕ ∈ DJ ∧ ψ ∈ DK :
χ = ϕ ∗ ψ)}

¤

Note: The detailed proofs of the following propositions can

be found in [24]. We provide here the properties used in the

proofs.

Proposition 2.2:

1) DJ g DK = DJ∪K

2) DJ f DK = DJ∩K

Proof:

1) The proof applies the definitions of DJ , DK , and DJ∪K

as well as it applies Definition 2.4(1), distributivity of ∧
over ∃, trading rule for ∃, nesting axiom, interchange of

dummies, Definition 2.3, Proposition 2.1(1), renaming,

and range split axiom.

2) We use the definitions of DJ , DK , and DJ∩K and

we apply Definition 2.4(2), distributivity of ∧ over

∃, trading rule for ∃, nesting axiom, interchange of

dummies, definition of ∗, Proposition 2.1(1), renaming,

and range split axiom.

The operators g and f satisfy the following properties:

Proposition 2.3:

1) DJ g DK = DK g DJ

2) DJ f DK = DK f DJ

3) (DJ g DK) g DL = DJ g (DK g DL)
4) (DJ f DK) f DL = DJ f (DK f DL)
5) DJ g (DJ f DL) = DJ

6) DJ f (DJ g DL) = DJ

Proof: We use Proposition 2.2(1), Proposition 2.2(2)

and the properties of ∩ and ∪.

Proposition 2.3 states that ({DJ}J⊆I ,g,f) is a lattice.

For simplicity, we use D to denote the lattice

({DJ}J⊆I ,g,f). On the lattice D and for DJ and DK

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2582

frames in D, it is known [9, page 39] that we have

DJ 4 DK ↔ (DJ g DK = DK) ↔ (DJ f DK = DJ).

As in [13], we define the more informative relation on pieces

of information as:

Definition 2.5 (More Informative Relation): Let Φ be a set

of information and ϕ,ψ be elements of Φ. Let D be a lattice

and DJ and DK be elements of D. Let d(ϕ) = DJ and d(ψ) =
DK . We define the binary relation ≤ on information as: ϕ ≤
ψ ↔ J ⊆ K ∧ ∀(i | i ∈ J : ϕ(i) ⊆ ψ(i))

¤

Proposition 2.4: The relation ≤ is a partial order.

Proof: The proof uses the fact that ⊆ is a partial order.

Proposition 2.5:

1) ∀(J,K | J,K ⊆ I : J = K → DJ = DK)
2) ∀(J,K | J,K ⊆ I : DJ 4 DK → J ⊆ K)

Proof:

1) The proof uses the trading rule for ∀ and substitution

axiom.

2) The proof uses Proposition 2.5(1) and Proposi-

tion 2.2(1).

Assume that an agent has the information ϕ =
{(k, {ka, kb}), (c, {c1, c2})} and it is interested only in the

set of keys {(k, {ka, kb})}. To focus on a part of a piece of

information, we define the following operator.

Definition 2.6 (Marginalizing Information): Let DJ be a

frame and ϕ be an information, we define a binary operator

↓: Φ × D → Φ as ϕ↓DJ , IJ
;ϕ.

¤

Proposition 2.6: For J,K ⊆ I , we have

1) (ϕψ)χ = ϕ(ψχ)
2) ϕψ = ψϕ

3) d(ϕψ) = d(ϕ) g d(ψ)
4) d(ϕ) = DJ → ϕeJ = ϕ

5) d(eJ) = DJ

6) DJ 4 DK → (eK)↓DJ = eJ
7) d(ϕ) = DJ ∧ d(ψ) = DK → (ϕψ)↓DJ = ϕ(ψ↓DJ∧DK)
8) DJ 4 d(ϕ) → d(ϕ↓DJ) = DJ

9) DJ 4 DK 4 d(ϕ) → (ϕ↓DK)↓DJ = ϕ↓DJ

10) DJ 4 d(ϕ) → ϕϕ↓DJ = ϕ

Proof: The full detailed proof can be found in [24].

1) The proof calls for Definition 2.3, commutativity and

associativity of ∪, and properties of set difference.

2) We use Definition 2.3 and commutativity of ∩ and ∪.

3) The proof essentially uses Axiom 2.1(1), Proposi-

tions 2.2(1), the definition of DJ∪K , Proposition 2.1(1),

and Definition 2.3.

4) We basically use Definition 2.3, Axiom 2.1(2), idempo-

tency of ∩, and empty range axiom.

5) The proof essentially calls for Axiom 2.1(1 and 2), the

definition of DJ , and Proposition 2.1(1).

6) The proof uses Definition 2.6, Axiom 2.1(2), Proposi-

tion 2.1(1), and Proposition 2.5(2).

7) The proof uses Definition 2.6, Definition 2.3, Proposi-

tion 2.1(1), and properties of set difference, ∪ and ∩.

8) The proof uses Definition 2.6, Proposition 2.1(3), Ax-

iom 2.1(1), and Proposition 2.5(2).

9) We use Definition 2.6, Proposition 2.1(2), and Proposi-

tion 2.5(2).

10) The proof calls for Definition 2.6, Proposition 2.1(1),

Definition 2.3, Axiom 2.1(1), Proposition 2.5(2), range

split axiom, and properties of set difference, ∪, and ∩.

Proposition 2.6 states that the structure (Φ, D) is an infor-

mation algebra.

As consequence results of proving that (Φ, D) is an infor-

mation algebra, the following properties hold and the proofs

can be found in [13]:

Proposition 2.7:

1) d(ϕ) = DJ → ϕ↓eJ = ϕ

2) ϕϕ = ϕ

3) DJ 4 DK → eJeK = eK
4) d(ϕ) = DJ → (ϕeK)↓DJ = ϕ

5) DJ 4 d(ϕ) → (ϕeK)↓DJ = ϕ↓DJ

6) e(JgK) = eJeK
¤

III. RELATING THE MATHEMATICAL STRUCTURE TO

PROTOCOLS

We represent the explicit knowledge of each agent involved

in a protocol as a set of information Φ and a lattice of

frames D. Our structure has several interesting features. We

can classify information into different frames. The combining,

marginalizing, and labelling operators defined in our context

on information and frames are essential for handling the

explicit knowledge. For example, combining information is

used to expand, or to relate different kinds of information.

The labelling operator is used to associate each piece of

information with a frame so that one can distinguish between

different kinds of information such as keys, ciphers, etc. The

marginalizing operator can be used to focus on a part of a

piece of information. Also, as Φ is a set, different operators

on sets can be used to add or remove a piece of information

from the knowledge. Each agent can have its own structure

by defining its own Φ and D. Finally, our structure and its

theory can be applied to any protocol without introducing

new theory. This can be considered the main advantage of

our representation over the existing ones. For example, we do

not need to define explicitly new types or relations to relate

two pieces of information or extract part of it as other methods

do.

To handle the explicit knowledge, we define several func-

tions. We define functions to insert and remove a piece

of information from the knowledge. The signature of these

functions is IK × Φ → IK where IK is a set of knowledge

which is an information algebra. We also define a function

to update an information with another information in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2583

knowledge of an agent. The signature of the update function is

IK×Φ×Φ → IK. Furthermore, we define functions to extract

pieces of information from the knowledge and to verify if an

information exists in the knowledge of an agent. The extract

function, which has the signature IK × D × Φ → P(Φ),
is based on the marginalizing, and labelling operators. The

function extract(N , x, ϕ) extracts pieces of information from

the knowledge N , (D, Φ) that contain ϕ, and then restrict

them to the frame x. Formally extract(N , x, ϕ) , {ψ↓x |
x ∈ D ∧ ψ ∈ Φ ∧ ϕ ≤ ψ}.

For example, the function

extract(N , D{key}, {(sender, {A})}) extracts the keys

associated with the sender A.

The function isInKnowledge(N , x, ϕ), which has the sig-

nature IK × D × Φ → IB, verifies if there is an information

associated with the frame x and combined with ϕ exists in

the knowledge N . A special case of this function is verifying

if the information ϕ exists in the knowledge N . In this case

x should be the frame of ϕ.

A. Illustrative Example

To assess the adequacy of our definitions, we implement a

prototype tool, written in the functional programming language

Haskell, for the proposed model of information algebra. This

prototype tool is used to represent and manipulate explicit

knowledge of agents. It allows initializing the lattice of

frames D and the set of information Φ for each agent. It

implements the functions presented earlier so that the user

can insert, remove and update the knowledge of each agent.

Also, it allows extracting information from the knowledge and

verifying the existence of an information in the knowledge of

an agent. The prototype tool is a part of a whole system that

is used to analyze cryptographic protocols. The other parts

deal with the procedural knowledge and the communication

between agents.

In this section, we illustrate the use of our representation of

the explicit knowledge to specify protocols, specify properties,

reduce the state space, and generate a specific type of attacks

using the prototype tool.

As an example, we specify the explicit knowledge of a

server and an intruder that we denote by S, and Z, respectively.

Specifying the knowledge of each agent requires providing

the tool with a set of indices such as Is or Iz , and the

initial set of information. Assume that the server set of

frames is indexed by Is = {sessionK, publicK, privateK}
that represents session, public, and private keys. Also, as-

sume that the intruder set of frames is indexed by Iz =
{sender, sessionK, publicK, id, message}. The elements of Iz

respectively represent the identities of the sender of a message,

session keys, public keys, agent identities, and messages.

Initializing the indices of agents is implemented in prototype

tool in the function setFrameIndices. This function takes as

parameter an agent name and the set of indices. Then, it builds

a lattice and stores it in a file associated with the agent name.

The function makeSet is used to build the set.

-- Initialize the set of indices for the server

-- and the intruder

setFrameIndices "S"

(makeSet ["sessionK","publicK","privateK"])

setFrameIndices "Z"

(makeSet ["sender", "sessionK", "publicK",

"id", "message"])

The function setInitialKnowledge can be used to set the

initial knowledge of each agent. This function takes as input

an agent name and a set of pieces of information. Then,

it stores them in a file associated with the agent name.

For efficiency purposes, we associate each piece of infor-

mation with its frame when implementing the agent knowl-

edge. This representation facilitates retrieving the frame of a

piece of information or the frame produced by combing two

pieces of information or focusing of information. Suppose

that the initial knowledge of the server contains combined

information that relates the public key to its correspond-

ing private key {(privateK, {PrKs}), (puplicK, {PKs})}. Also,

assume that the initial knowledge of the intruder contains

two pieces of information {(id, {A}), (puplicK, {PKa})} and

{(id, {S}), (puplicK, {PKs})} that relates agents to their pub-

lic keys. These two assumptions about the initial knowledge

of agents can be represented by using the prototype tool as

follows:

-- Set the initial knowledge for the server

-- and the intruder

setInitialKnowledge "S"

[([("privateK", ["PrKs"]), ("publicK",

["PKs"])],["publicK", "privateK"])]

setInitialKnowledge "Z"

[([("id",["A"]), ("publicK",["PKa"])],

["publicK", "id"]),

([("id",["S"]), ("publicK",["PKs"])],

["publicK", "id"])]

Assume that the server receive a session key k1 from other

agents. Inserting this information to the server knowledge can

be achieved through the insertInformation function.

-- Insert the following session key into the

-- server knowledge

insertInformation "S"

([("sessionK",["k1"])],["sessionK"])

Suppose that a protocol specification states that the server

receives a fresh session key from agent A and forwards it to the

agent B. The server internal action that verifies the freshness

of the key k (i.e., the key k is not played in previous session)

can be specified using our framework as: ¬ ∃(ϕ | ϕ ∈ ΦS :
d(ϕ) = D{sessionK} ∧ k ≤ ϕ). This property can be checked

using the tool as follows:

-- Verify if the server knowledge contains

-- the session key "k1"

isInKnowledge "S" (["sessionK"])

([("sessionK",["k1"])],["sessionK"])

output: True

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2584

-- Verify if the server knowledge contains

-- the session key "k4"

isInKnowledge "S" (["sessionK"])

([("sessionK",["k4"])],["sessionK"])

output: False

The property that the intruder should not get a session key k

can be specified as ¬ ∃(ϕ | ϕ ∈ ΦZ : k ≤ ϕ) equivalently

∀(ϕ | ϕ ∈ ΦZ : ¬(k ≤ ϕ)). This property can be checked

using the tool through the following command

-- Verify if the intruder knowledge contains

-- the session key "k"

isInKnowledge "Z" (["sessionK"])

([("sessionK",["k"])],["sessionK"])

output: False

One way to reduce the state space is to restrict the behaviour

of the intruder to the useful behaviours only. For example, all

the messages sent to the server should be encrypted with the

server public key if the server should decrypt the message.

The server message can be extracted from the knowledge

as: extract(NZ , D{publicK}, {(id, {S})}). This operator can be

performed using the tool as follows:

extractInformation "Z" (["publicK"])

([("id",["S"])],["id"])

output: ([("publicK",["PKs"])],["publicK"])

Finally, the intruder can use its explicit knowledge to mount,

for example, a reflection attack where it plays a message back

to the sender. First, the intruder should combine each received

message {(message, {msg})} with the identity of the sender

{(sender, {x})} where x is the sender of the message msg.

The function knowCombine is used to combine two pieces of

information. Inserting information into the intruder knowledge

after combing it with the information {(message, {msg})} is

represented using the tool as:

insertInformation "Z"

(knowCombine ([("sender",["A"])],["sender"])

([("message",["msg1"])],["message"]))

insertInformation "Z"

(knowCombine ([("sender",["B"])],["sender"])

([("message",["msg2"])],["message"]))

insertInformation "Z"

(knowCombine ([("sender",["A"])],["sender"])

([("message",["msg3"])],["message"]))

The set of all messages that can be replayed to an

agent A can be extracted from the explicit knowledge

as: extract(NZ , D{message}, {(sender, {A})}). The function ex-

tracts the messages from all pieces of information that contain

{(sender, {A})}. To do that we proceed as follows:

extractInformation "Z" (["message"])

([("sender",["A"])],["sender"])

output:

[([("message",["msg1"])],["message"]),

([("message",["msg3"])],["message"])]

IV. RELATED WORK AND DISCUSSION

In this section, we report on several formal methods used

to specify cryptographic protocols and compare them to our

approach with respect to the explicit knowledge representation.

The surveyed method represents agent explicit knowledge in

cryptographic protocols using either sets or predicates. These

two structures are related and each structure can be mapped to

the other one. LOTOS [15], Brutus tool [8], strand space [11],

and inductive approach [22] follow the set-based approach,

while the knowledge-based logical system [17] and MSR [7]

adopt predicates to capture agent explicit knowledge.

In the literature, different structures are introduced to clas-

sify and associate different kinds of information together. For

example, LOTOS [15], strand space [11], Brutus [8], and

inductive approach [22] associate private key to its correspond-

ing public key. In MSR [7], the shared key is associated with

two agent identities that use the key while the public and

private keys are associated with one agent identity. In inductive

approach [5], several functions are defined to associate agent

identity with card, agent identity with key, and card with key.

Also, functions are defined to extract pieces of information as

in coloured Petri net [4] where a function is defined to return

the decryption key of a given key and another function to

return the shared key between two agents. The representation

of the information that an agent possesses and its relationship

are tailored to each protocol.

In our approach, the specifier needs only to define the

set of frames of the explicit knowledge which indicates the

classification of information. We use a compact number of

operators to specify the agent explicit knowledge of any proto-

col. For example, the knowledge-based logical approach [17]

uses about six functions to specify the registration phase of

the SET protocol. Four functions are used to map an agent

to its public encryption key, private encryption key, public

signature key, and private signature keys. Also, a function

is introduced to associate two agents with a shared key, and

another function to verify if a message is a part of another one.

In the framework proposed in this paper, only the pre-defined

operators within the framework are required to manipulate the

information. There is no need to define new operators. Having

a small number of operators would reduce the complexity of

specifying cryptographic protocols and verifying them.

Also, the proposed framework enables specifying the in-

ternal actions of agents. For example, we can specify the

ability of the server to check the freshness of a message while

this is not possible in Brutus [8]. The inability of specifying

the internal actions would affect the protocol analysis and

implementation. Finally, within the proposed framework one

can specify a “rational” intruder that sends a message only if

it has the potential to be accepted by the receiver. Specifying

a rational intruder would reduce the state space generated

by analyzing protocols, and thus reduce the complexity of

the analysis. The specification of a rational intruder does not

require introducing new operators to our framework. While

in developing a rational intruder in µCRL [21] for analyzing

the Needham-Schroeder public key protocol, two new sets of

operators are introduced to store the nonce of the initiator and

the nonce of receiver in addition to the original set that stores

the nonce numbers. We do not need to specify three frames

for nonce numbers. We can have only one frame for nonce

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2585

numbers. We should have also a frame for agent identity where

the linkage of the two frames exists within our framework.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a framework to specify agent

explicit knowledge. Our main contribution is developing an

algebraic structure to specify the explicit knowledge of cryp-

tographic agents based on information algebra. In our con-

text, we define the combining, marginalizing, and labelling

operators. These operators are all what is needed to express

operations on information independently of the protocols. The

proposed operators involve both information and their frames.

We also define a set of frames to be associated with infor-

mation. Then, we prove that our structure is an information

algebra which links our work to a rich heritage of mathemat-

ical theories. Our mathematical structure is expressive as it

allows combining information for different purposes regardless

of their frames, extracting a part of information, or associating

information with a frame. Also, our structure allows capturing

different kinds of information such as associating keys with

ciphers. Developing an expressive structure should be useful

in identifying the set of messages that has the potential to

generate successful attacks which can be used to build an

efficient intruder. At the implementation level, each agent has

a knowledge and performs operations such as inserting and

extracting information. These operators that are performed as

internal actions of an agent are specified within our framework

and implemented in Haskell. Therefore, once we have the

specification of the internal actions of an agent specified within

our framework, the automatic generation of the corresponding

code is straightforward.

In the literature of cryptographic protocols, operators are

usually defined on information that belongs to a specific

type, while the proposed framework enables a uniform and

general way to handle information. Also, defining a relation

between frames and linking them to the operators applied on

information is not addressed in the literature. Furthermore,

different protocol-dependent structures should be defined to

relate different kinds of information which are not needed in

our representation.

Currently, we are using the explicit knowledge to analyze

the information flowing between agent. Also, it is used to ana-

lyze cryptographic protocols by integrating it with procedural

knowledge and global and end-point calculi [24], [25].

REFERENCES

[1] Martı́n Abadi and Véronique Cortier. Deciding knowledge in security
protocols under equational theories. Theoretical Computer Science,
367(1):2–32, 2006.

[2] Martin Abadi and Andrew D. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. In Proceedings of the 4th ACM Conference

on Computer and Communications Security, pages 36–47. ACM Press,
1997.

[3] Kamel Adi, Mourad Debbabi, and Mohamed Mejri. A New Logic
for Electronic Commerce Protocols. Theoretical Computer Science,
291(3):223–283, January 2003.

[4] Issam Al-Azzoni, Douglas G. Down, and Ridha Khedri. Modeling and
Verification of Cryptographic Protocols Using Coloured Petri Nets and
Design/CPN. Nordic Journal of Computing, 12(3):200–228, September
2005.

[5] Giampaolo Bella. Inductive verification of smart card protocols. Journal

of Computer Security, 11(1):87–132, 2003.
[6] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of

authentication. ACM Transactions on Computer Systems, 8(1):18–36,
February 1990.

[7] Iliano Cervesato. Typed multiset rewriting specifications of security
protocols. In A. Seda, editor, First Irish Conference on the Mathe-

matical Foundations of Computer Science and Information Technology

— MFCSIT’00, pages 1–43, Cork, Ireland, 19–21 July 2000. Elsevier
ENTCS 40.

[8] Edmund M. Clarke, Somesh Jha, and Wilfredo Marrero. Verifying Secu-
rity Protocols with Brutus. ACM Transactions on Software Engineering

and Methodology, 9(4):443–487, October 2000.
[9] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.

Cambridge university press, second edition, 2002.
[10] Stéphanie Delaune. Easy Intruder Deduction Problems with Homomor-

phisms. Information Processing Letters, 97(6):213–218, March 2006.
[11] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman.

Strand Spaces: Proving Security Protocols Correct. Journal of Computer

Security, 7(2–3):191–230, January 1999.
[12] Riccardo Focardi and Roberto Gorrieri. The Compositional Security

Checker: A Tool for the Verification of Information Flow Security
Properties. IEEE Transactions on Software Engineering, 23(9):550–571,
September 1997.

[13] Jürg Kohlas and Robert F. Stärk. Information Algebras and Consequence
Operators. Logica Universalis, 1(1):139–165, January 2007.

[14] Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction
for the equational theory of Abelian groups with distributive encryption.
Information and Computation, 205(4):581–623, April 2007.

[15] Guy Leduc and François Germeau. Verification of security protocols
using LOTOS-method and application. Computer Communications,
23(12):1089–1103, July 2000.

[16] Gavin Lowe and Bill Roscoe. Using CSP to Detect Errors in the TMN
Protocol. IEEE Transactions on Software Engineering, 23(10):659–669,
October 1997.

[17] Xiao-Qi Ma and Xiao-Chun Cheng. Formal Verification of Merchant
Registration Phase of SET Protocol. International Journal of Automation

and Computing, 2(2):155–162, December 2005.
[18] Fabio Martinelli. Analysis of Security Protocols as Open Systems.

Theoretical Computer Science, 290(1):1057–1106, January 2003.
[19] Catherine Meadows. Analysis of the Internet Key Exchange Protocol

Using the NRL Protocol Analyzer. In IEEE Symposium on Security and

Privacy, pages 216–231. IEEE Computer Society, May 1999.
[20] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis

of cryptographic protocols using Murφ. In IEEE Symposium on Security

and Privacy, May 1997.
[21] Jun Pang. Analysis of a security protocol in µCRL. Technical Report

SEN-R0201, CWI, Amsterdam, 2002.
[22] Lawrence C. Paulson. The inductive approach to verifying cryptographic

protocols. Journal of Computer Security, 6(1–2):85–128, September
1998.

[23] Khair Eddin Sabri and Ridha Khedri. A multi-view approach for the
analysis of cryptographic protocols. In Workshop on Practice and Theory

of IT Security (PTITS 2006), pages 21–27, Montreal, QC, Canada, 2006.
[24] Khair Eddin Sabri and Ridha Khedri. A mathematical frame-

work to capture agent explicit knowledge in cryptographic proto-
cols. Technical Report CAS-07-04-RK, department of Comput-
ing and Software, Faculty of Engineering, McMaster University,
2007. http://www.cas.mcmaster.ca/cas/research/cas reports06-07.php
(accessed on September 15, 2008).

[25] Khair Eddin Sabri and Ridha Khedri. Multi-view framework for the
analysis of cryptographic protocols. Technical Report CAS-07-06-
RK, department of Computing and Software, Faculty of Engineering,
McMaster University, 2007.

[26] Khair Eddin Sabri and Ridha Khedri. Agent explicit knowledge: Survey
of the literature and elements of a suitable representation. In 2nd

Workshop on Practice and Theory of IT Security (PTITS 2008), pages
4–9, Montreal, QC, Canada, 2008.

