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An Improved Construction Method for MIHCs on
Cycle Composition Networks
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Abstract—Many well-known interconnection networks, such as k-
ary n-cubes, recursive circulant graphs, generalized recursive cir-
culant graphs, circulant graphs and so on, are shown to belong
to the family of cycle composition networks. Recently, various
studies about mutually independent hamiltonian cycles, abbreviated
as MIHC’s, on interconnection networks are published. In this paper,
using an improved construction method, we obtain MIHC’s on cycle
composition networks with a much weaker condition than the known
result. In fact, we established the existence of MIHC’s in the cycle
composition networks and the result is optimal in the sense that the
number of MIHC’s we constructed is maximal.

Keywords—Hamiltonian cycle, k-ary m-cube, cycle composition
networks, mutually independent.

I. INTRODUCTION AND PRELIMINARIES

The architecture of an interconnection network is usually
represented by a graph, in which vertices and edges correspond
to processors and communication links, respectively. Thus, we
use the terms graph and network interchangeably.

For the graph definitions and notations, we follow [1]. A
graph G consists of a nonempty set V(G) and a subset E(G)
of {(u,v) | (u,v) is an unordered pair of V(G)}. The set
V(QG) is called the vertex set of G and E(G) is called the
edge set. Two vertices u and v are adjacent if (u,v) € E(G).
For a vertex u of G, we denote the degree of u by deg(u) =
{v | (u,v) € E(G)}|. A graph G is r-regular if for every
vertex u € G, deg(u) = .

A matching of size n in a graph G is a set of n edges
with no shared endpoints. The vertices belonging to the edges
of a matching are saturated by the matching; the others are
unsaturated. A perfect matching is a matching that saturates
every vertex of G.

A path is represented by a finite sequence of ver-
tices (vg,v1,v2,...,v,), where every two consecutive ver-
tices are adjacent. The length of a path P is the num-
ber of edges in P. We write the path (vg,v1,v2,...,0,)
as (vo,v1,...,Us, P1,v;, ..., 05, Pa,vg, ..., v,), Where Pp =
(Vs, Ust1, -+, 0;) and Po = (vj,0j41,...,0:). A hamiltonian
path between u and v, where uw and v are two distinct
vertices of G, is a path joining w to v that visits every

vertex of G exactly once. Two paths P; = (ug, u1,. .., Un)
and P, = (vg,v1,...,Vn) from a to b are independent
if up = vo = a, Uy, = v,y = b, and u; # wv; for
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1 <i<m—11[9] In [6], two paths P| = (ug,u1,...,Un)
and P} = (vg,v1,...,Un) are full-independent if u; # v; for
all 0 < ¢ < m. Paths with the same number of vertices are
mutually independent(resp. mutually full-independent) if every
two different paths are independent(resp. full-independent). A
graph G is hamiltonian connected if there is a hamiltonian
path joining any two distinct vertices of G. A graph G
is called [-vertex-fault-tolerant hamiltonian connected if it
remains hamiltonian connected after removing any vertex in
G.

A cycle is a path of at least three vertices such that
the first vertex is the same as the last vertex. A hamilto-
nian cycle of G is a cycle that traverses every vertex of
G exactly once. A hamiltonian graph is a graph with a
hamiltonian cycle. The length of a cycle C is the number
of edges/vertices in C. Two cycles Cy = (ug,us, ..., ug, ug)
and Cy = (vg,v1,...,Vk, Vo) beginning at s are independent
if ug = wvg = s and u; # v; for 1 < i < k [11]. Cycles
beginning at s with the same length are mutually independent
if every two different cycles are independent. A graph G is
said to contain n MIHCs if there exist n hamiltonian cycles
in G beginning at any vertex s such that the n cycles are
mutually independent. There are numerous studies in MIHCs.
Readers can refer to [7]-[15].

In 2008, Kueng et al. introduced the cycle composition
networks [4], abbreviated as CCN’s. Let £k > 4, n > 6,
r > 2 be integers, and G; be a r-regular graph with n
vertices for 0 < ¢ < k — 1. From now on, all additions
and subtractions are considered modulo k. Let M;; be an
arbitrary perfect matching between the vertices of G; and
those of G; and M = Ui:ol M; i+1. The cycle composition

network G = CCN(Gy,G1,...,Gr_1; M) is defined to
be the graph with the vertex set V(G) = Ui:ol V(G;) and
the edge set E(G) = Uf;ol(E(GE)) U M. We abbreviate
CCN(Gy, Gy, ..., Gg—1; M) as CCNg. See Figure 1 for an
illustration. Many well-known interconnection networks, such
as k-ary n-cubes, recursive circulant graphs, generalized recur-
sive circulant graphs, circulant graphs and so on, are shown to
belong to the family of CCN’s. Hence, CCN’s have attracted
many studies and research interests [2]—[4].

Suppose that each G; contains » MIHCs. More precisely,
for any vertex s; of G;, where 0 < ¢ < k — 1, there exist r
hamiltonian cycles in G; beginning at the vertex s; such that
the r cycles are mutually independent in G;. Is it true that
G = CCN(Gy, G, ..., Gr_1; M) contains (r 4 2) MIHCs?
In [5], M.-F. Hsieh et. al. derived the following result.

Theorem 1: For k > 6, let {G,-,}f;ol be k r-regular hamil-
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Fig. 1. An illustration for CCN, =CCN(Go, G1,...,Gr_1; M).

tonian graphs with n vertices. Suppose that each G; contains
r MIHCs and r mutually full-independent hamiltonian paths
between any r pairs of distinct vertices of G;, and is 1-vertex-
fault-tolerant hamiltonian connected. Then there exist r + 2
MIHCs in CCNy,.

Obviously, each vertex of G has exactly r + 2 neighbors.
However, the requirement that each GG; contains r mutually
full-independent hamiltonian paths between any r pairs of
vertices of G; seems to be unnecessarily strict. Besides, to
check whether this requirement is satisfied on each G; is a
difficult task. Consequently, Theorem 1 is of little practical
use. In this paper, using a different construction scheme, we
are able to achieve the same result with a much weaker
condition on G;. (See Theorem 4).

The following notations are defined for the rest of the paper.
Let u; be a vertex of G; for some i. We use I/ u;—; to denote
the vertex of G;_; such that there exists a path in M of the
form <ui, lui_l, l2ui_2, “eey ljui_j>. Slmllarly, W€ use Tj’U,H_j
to denote the vertex of G;4; such that there exists a path in M
of the form (u;, ru;+1,7%uit2, . .., Uiy ;). WL.O.G., letu €
Gy and u = ug. See Figure 1 for an illustration. It is possible
that there exists a cycle beginning at u with the length £ of
the form (u = wug, ruy, r2us, . . ., 7 2ug_o, r* " lug_1, ug).
More specifically, 7*u; = I¥~"u;_j forany 1 <i < k — 1.

II. MAIN RESULTS

Let £ > 4 and n > 6. Throughout this section, we use the
symbol CC Ny, for CCN(Gy, Gy, ...,Gj_1; M), which is a
cycle composition network composed of & graphs {G; | G; is
a r-regular graph with |G;] = n for 0 < i < k — 1} and k
perfect matchings M = Uf:_ol M; i+1, for simplicity.

Lemma 1: Consider any CC'Ny,. Suppose that Gy contains
r MIHCs beginning at any given vertex, denoted by {C{ |
0 < <r—1}, and there exists some edge (ao,bo) such that
(ao,bp) € Cf for all 0 < ¢ < r —1. Let a; € V(Gy) and

by—1 € V(G,_1) be arbitrary. If there is a path P between ay
and b,_1 such that P visits each vertex of Uf;ll G; in CCNy,
exactly once, then CC' N}, contins » MIHCs starting with any
vertex in Gy and passing through a common edge.

Proof: WL.O.G,, let so € V(Gg) be the beginning
vertex. Obviously, for 1 < ¢ < r — 1, 68 is of the form
{s0, A% ag, by, B?, s9), where A* and B? are two disjoint paths
in Go such that A? is between sy and ag, B’ is between by
and sg, and A; |JB; = V(Gy). Since {C§ |0 < i <r—1}
are MIHCs in Gy, it must be |A;| # |A;| and |B;| # | B;| for
i # j. Otherwise, ao or by might appear at the same timestep
on different 68’5.

Note that ra; € V(G;) and lb._1 € V(G,_1). It is known
that there is a path P between ra; and lb._; such that P
visits every vertex of Uf;ll G; in CCNy, exactly once. Let
C; = (s0,A% ag,may, P,lb,._1,bg, B%,s0). It is easy to see
that {C; | 1 < <r —1} forms a set of » MIHCs of CC Ny,
and each C; contains the edge (ag, ra1 ), which is the common
edge. ]

Theorem 2: Consider CCNy. For 0 < i < 3, suppose that
G, satisfies the following two requirements — (1) G; is 1-
vertex-fault-tolerant hamiltonian connected. (2) Starting from
any vertex of (3;, there exist » MIHCs passing through a
common edge of G;. Then CCN, contains r + 2 MIHCs
passing through a common edge.

Proof: W.L.O.G., let sq be an arbitrary vertex of Gp. We
want to construct r + 2 MIHCs starting at so in CCNy. It is
known that G contains » MIHCs beginning at sy and passing
through a common edge of Gy. Let u; and vy be any two
vertices in G; and G, respectively. Since G; is hamiltonian
connected, there exist three hamiltonian paths P;, P, and Ps,
such that P; connects ra; and u; in Gy, P connects rus
and v, in Go, and P53 connects rvg and [b3 in GG3. Then P =
(ray, Py, uy, rus, Py, va, rv3, P3,lbg) is a path between rag
and [bs that visits each vertex of {G; | 1 < i < 3} exactly
once. By Lemma 1, CCN, contains » MIHCs, denoted by
{C; 10 <i<r—1}, and each C; contains the common edge
(ag,ray).

Now, we construct the (r+1)-th MIHC of C'C'N, beginning
at so. In (G5, choose a vertex x3 which is adjacent to [sg
and x3 # lb3. Since G3 is 1-vertex-fault-tolerant hamiltonian
connected, there is a hamiltonian path 753 of G3 — {ls3}
between laz and x3. We can write T3 as (las, Qs,ys,x3).
Since G; is 1-vertex-fault-tolerant hamiltonian connected,
Go — {so} contains a hamiltonian path Qo that connects
ryo and ag, Gy — {rsi} contains a hamiltonian path Q)
that connects ra; and [?z;, and Go — {lzz} contains a
hamiltonian path Qs that connects r2sy and I2a,. Let C,. =
(s0,7s1,7%59, Q2,1%az, las, Q3,ys, Y0, Qo, ag, 7a1, Q1, 1*x1,
lxg, x3,ls3, sg). It is easy to see that C, is mutually
independent of the r MIHCs {C; | 0 < i < r—1} constructed
by Lemma 1, and C, passes through the edge (ag,rai),
which is underlined in C,..

Finally, we construct the (r + 2)-th MIHC of CCN,
beginning at sg. In G, choose a vertex wsy such that wy is
adjacent to 7255 and wy # lxo. Choose another vertex z in
G such that zp # r2as and zy # r2s5. Since G3 is hamil-
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tonian connected, there exists a hamiltonian path Rz of Gj
that connects [s3 and rz3. Since G; is 1-vertex-fault-tolerant
hamiltonian connected, Go — {so} contains a hamiltonian path
Ry between 722y and ag, G1 — {rs1} contains a hamiltonian
path R; between ra; and lz;, and G5 — {r?s;} contains
a hamiltonian path Ry between 2o and ws. Let Crpq =
<80, ng, Rg, rz3, 7“220, Ro, ap,ray, Rl, lZl, 22, RQ, wa, 7“2527

81, o). Consequently, C,.1 is mutually independent of {C; |
0 < i < r} constructed above and passes through the common
edge (ag,ra1), which is underlined. See Figure 2 for an

illustration. u
Gi
0<i<r-l G G; G3
5o Al apira; P; u,% ruy ) 23 v;% A} P3 Ibsiby B S0
S O+O- O+O O-+O- O-+O- 'e}
C, Gr—{Ix>} Gs—{x3,l53} Go—{s0} Gy —{rs;}
So rfl% s, 0> /zﬂzi las 03 Y3iryo Qo ira, 0 Fx,%lxz% x3ls3 s
o0%0 C+O: : ‘ o
Crel G; Go—{so} G—{rs;} G, sz
5o Is3 R; rzsir’zo Ry a ra; R; 111? 22 R; w2 g sy sy

Fig. 2. An illustration of Theorem 2 .

Theorem 3: Suppose that CCNj is constructed by five -
regular graphs G; with n vertices for 0 < i < 4, and each G;
is 1-vertex-fault-tolerant hamiltonian connected and contains
r MIHCs passing through a fixed edge from any vertex of G;.
Then CC N5 contains 7 + 2 MIHCs passing through a fixed
edge.

Proof: W.L.O.G., we let so be the beginning vertex and
687 6(1), e 766_1 be the » MIHCs beginning at sq and passing
through the fixed edge (a, by) in G. Hence we can write C,
as (so, A%, ag, by, B?, s) for 0 < i < 7 — 1. We will construct
the 4+ 2 MIHCs beginning at sy and passing through a fixed
edge in CC'N5.

Consider the first » MIHCs of CCNj5 beginning at sg.
Let uy, vo and us be any three vertices in Gy, G2 and
G, respectively. There exist four hamiltonian paths P;, P,
P; and P, joining from ra; to wy, rus to wve, Tvz tO
ug and ruy to lby in Gy, Ga, Gs and Gy, respectively.
Set C; = (sg, A% ap,ra, Pr,ur, rus, Py, ve, mv3, P, us,
g, Py, Ibg, b, B, sq) for 0 < i < 7 — 1. Then, the r MIHCs
are Cy, C1, ---, C._1, which pass through the fixed edge
(ag,ray).

Now, we consider the (r+1)-th MIHC of C'C'N; beginning
at so. In G4, choose a vertex x4 which is adjacent to /s4 and
x4 # lby. Since G4 is 1-vertex-fault-tolerant hamiltonian con-
nected, there is a hamiltonian path Ty of G4 — {ls4} between
lay and z4. WL.O.G., T4 can be written as (lay, Q4, Y4, T4).
In G35, choose a vertex lx3 # r3s3. If lxg = r3s3, we have
to choose another vertex x4, which is adjacent to [s4, for
les # r3s3. Since G35 is 1-vertex-fault-tolerant hamiltonian
connected, there is a hamiltonian path Q3 of G3 — {lz3}
between rds and [2as, it can be written as (rds, Qs,%a3).
Let dy be any vertex in G not adjacent to [%a3. Using the
1-vertex-fault-tolerant hamiltonian connected property of Gy,
G and G, there exist three hamiltonian paths Qy, Q1 and

Q2 of Gy — {so}, G1 — {rs1} and Go — {I?z2} from ryg
to ag, ra; to I3x; and 72s, to dy, respectively. Let C, =
(s0,781,7%52, Q2,da, d3, Qs, [*as, lag, Qu, ys, 70, Qo,
ag,ra1, Q, 13z, 1229, I3, 14,154, 50). Therefore, C, is mu-
tually independent of the first » MIHCs Cy, C1, - - -, C}.—1 and
passes the fixed edge (ag,ray).

Finally, we consider the last MIHC of C'C' N5 beginning at
so- Let wy, zo and w4 be any three vertices in GG, G2 and
G4, where wy is not adjacent to ag and zy is not adjacent to
r3s3. There exist two hamiltonian paths R3 and R, joining
from 723 to r3s3 and Isy to wy in G3 and G4. And using the
1-vertex-fault-tolerant hamiltonian connected property of Gy,
G4 and G, there exist three hamiltonian paths Ry, R; and
Ry of Gg— {so}, G1 — {rs1} and G — {r?ss} from rwy to
ag, Taj to wy and rws to zg, respectively. We let C.pq =
<807 l54, R47 Wy, TWo, RQ, ap,Trai, R1, wi,rwa, R27 22,TZ23, R37
383, 7289,751, 50). S0, Cy.y1 is mutually independent of the
first r + 1 MIHCs Cy, C, ---, C;. and passes the fixed edge

(ag,ra1). See Figure 3 for an illustration. [ |
Ci
0<i<r1 G, G, G; Gy
o A ara P i P »Oigj Py wr Py Ibiby B
c Go—{lx) Gi—{ly) — Gy—{xylsy) Go—{so} Gi—{rsi} Py,
sorsir’s;  Or diirds Q5 FPajlag Qi v Q0 ajra, O /*x,% Ixsxy Isg sy
oroto o+O - 1O 1 OO
Cpep Gy Go—{so} G—{rs;} Go—{rs5} G; sy
5ot 154 R, wirwg Ry i rar R, w,irw; R, zrm R; r';;é st s

Fig. 3. An illustration of Theorem 3 .

Theorem 4: Suppose that CC Ny, is constructed by k r-
regular graphs G; with n vertices for 0 < ¢ < k—1. If each G;
is 1-vertex-fault-tolerant hamiltonian connected and contains
r MIHCs passing through a fixed edge from any vertex of G;,
then CC Ny, contains r + 2 MIHCs passing through a fixed
edge.

Proof: W.L.O.G., we let so be the beginning vertex and
68, Ué, e 76671 be the r MIHCs beginning at so and passing
through the fixed edge (o, bo) in Go. Hence we can write C,,
as (sg, A%, ag, by, B, s0) for 0 < i <7 — 1. We will construct
the 42 MIHCs beginning at sg passing through a fixed edge
in CC Ny

Consider the first 7 MIHCs of CC Ny, beginning at so. We
choose distinct vertices u;, v; € G; for 2 < i < k—3 such that
(’l/z',l, ul) S E(CCNk) for3 <i < k—3. Let Ul(UQ,kag) =
<’U,Q7 PQ, V2,U3, Pg, V3, , Uk—3, Pk_g7 ’Uk_3>, where }DZ is a
hamiltonian path of C; between u; and v; for 2 <1i < k — 3.
Let w; and wug_o be any two vertices in G; and Gj_o,
respectively. There exist three hamiltonian paths P, Pjr_o
and Pj_; joining from ra; to uq, rvg_o to ug_o and rug_1
to lbp—1 in G, Gi_o and Gj_1, respectively. Set C; =
(s0, A", ag, ray, Pr,uy, rug, Uy (rug, vk—3), vg—3, rg—2, Pe—2,
Ug—2, TUg—1, Pr—1,lbk_1, bo, B*,sg) for 0 < i < r — 1.
Then, the » MIHCs are Cy, C1, - -+, C,._1 which pass through
the fixed edge (ag,ra1).

Now, we consider the (r + 1)-th MIHC of CCN} be-
ginning at sp. We choose distinct vertices ¢;,d; € G; for
2 < 4 < k — 3 such that (¢;_1,d;) € E(CCNy) for
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3 < i < k — 3. Since G; is 1-vertex-fault-tolerant hamil-
tonian connected for 2 < ¢ < k — 3, let Uy(ca,dk—3) =
(c2,Q2,dz,c3,Q3,d3, "+, cr—3,Qr—3,dr_3), where Q; is a
hamiltonian path of C; — {I*~*~'z;} between c; and d; for
2 <1< k—3.In Gip_1, choose a vertex x,_; which is
adjacent to ls;_1 and xg_1 # lbg_1. Since Gj_1 is 1-vertex-
fault-tolerant hamiltonian connected, there is a hamiltonian
path Tj_1 of Gi_1 — {lsp—1} between lay_1 and zp_1.
W.L.O.G., T}, can be written as (lax—1, Qk—1,Yk—1,Tk—1)-
Let dj_o be any vertex in Gy_o — {lx},_2,1%a)_2}. Using
the 1-vertex-fault-tolerant hamiltonian connected property of
Gy, G1 and Gj_o, there exist three hamiltonian paths o,
Q1 and Qy—2 of Go — {so}, G1 — {rs1} and Go — {lz>}
from ryg to ag, ray to ¥ 2z, and dj_s to [%aj_o, respec-
tively. And let X¢ = (I 329, (¥ 423, -+, lx)_2). Let C, =
(50,751,728, Up (1252, ldg—2), ldp—2), dj—2, Qr—2, ar—2,
lag—1, Qr—1,Yr—1,7Y0, Qo, ao, a1, Q1, 1" 2wy, 1¥3x5, X,
lxg—2,2K_1,l85_1, So). Therefore, C, is mutually indepen-
dent of the first » MIHCs Cy, C4, ---, C,_1 and passes the
fixed edge (ag,ray).

Finally, we construct the last MIHC of C'C'N}, beginning
at sg. We choose distinct vertices w;,z; € G; for
2 < i < k — 3 such that (w;_1,2;) € E(CCNy) for
3 <1< k-—3. Since G; is 1-vertex-fault-tolerant hamiltonian
connected for 2 < i < k — 3, let Uy(wa,zx—3) =
(o, Ro, 22, w3, R3, 23, -+, w—3, Rk—3, 2,—3), Where R; is
a hamiltonian path of C; — {r's;} between w; and z; for
2 <1i<k—3. Let wy, wg—o and z;_; be any three vertices
in G1, Gi_o and Gj_1, where z;_1 is not adjacent to ag.
There exist a hamiltonian path Rj_, joining from 1%s,_5 to
Wg—o in G_s. Using the 1-vertex-fault-tolerant hamiltonian
connected property of Gg, G; and Gj_1, there exist three
hamiltonian paths Ry, Ry and Ri_1 of Go—{so}, G1—{rs1}
and Gi_1 — {lsg—1} from 7z to ag, ra; to wy and rwy_; to
2x_1, respectively. Let Sgp = (r*3s_3, 7% 255 _o,--- 1rs51),
and zr_s be adjacent to r*3s._5. We let Cry1 =
(50, Isk—1,1*sk—2, Ry—2, Wy—2, "wi—1, Rk—1, 21,720, Ro,
ag, ray, Ry, wy, rws, Us(Twy, 21_3), 2k_3, 7" 3s4_3, Sg, 81,
s0). To avoid the collision of Uj(rus,vg—3) and
Us(rwa, 25_3), which means |Sg|+|Ri_3| < |B?|+|Pr_1]+
|Pi—1|, we have (k—3)+(n—1) <14+n+n = k<n+5.
So, C,41 is mutually independent of the first » + 1 MIHCs

Cy, C1, -++, C, and passes the fixed edge (ag,ra1). See
Figure 4 for an illustration. u
G
0<i<rl G, G, Gis Gz (%)

A alra P, wing P Pus viwme: | Pea | Weairws P Ibbo B s,
C * Gei—{Pxs) a-{lua) Grr—txenlser) Go—{s0} Gi-{rs)} M Ises
sorsd rs; TN i O Paglie 00 wlme G0 adra 01 gl Xg ng xug 5

Cout Gi Guy=(lsea). . Gols] Gi~(rs)) . GorlPsa) -
ol s R widloow Ru oz R aolra Ri b R
|

Fig. 4. An illustration of Theorem 4 .

III. CONCLUSION

Let kK > 4, n > 6, r > 2 be integers and G; be a r-
regular graph with n vertices for 0 < ¢ < k£ — 1. In this
paper, we prove that under a much weaker condition than [5],

given any vertex u of the cycle composition network CCNj, =
CCN(Gy, Gy, . .., Gg—1; M), there exist (r 4+ 2) hamiltonian
cycles in CCNy, beginning at u such that the (r+2) cycles are
mutually independent. The result is optimal since each vertex
of the cycle composition network has exactly (r+2) neighbors.
It is known that many well-known interconnection networks,
such as k-ary n-cubes, recursive circulant graphs G(cd™, d),
generalized recursive circulant graphs G(hg, hg—1,-..,h1),
circulant graphs C'(n : ¢1, ¢a, . .., ¢) and so on, belong to the
family of the cycle composition networks. To our knowledge,
the above results of G(cd™,d), G(hg,hk—1,...,h1) and
C(n : c1,ca,...,cr) have not been published yet. Our study
has established the existence of MIHCs in these three families
as long as the conditions of Theorem 4 are verified.
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