International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

Reasoning with Dynamic Domains and Computer
Security

Yun Bai

Abstract— Representing objects in a dynamic domain is essential
in commonsense reasoning under some circumstances. Classical log-
ics and their nonmonotonic consequences, however, are usually not
able to deal with reasoning with dynamic domains due to the fact that
every constant in the logical language denotes some existing object
in the static domain. In this paper, we explore a logical formalization
which allows us to represent nonexisting objects in commonsense
reasoning. A formal system named N-theory is proposed for this
purpose and its possible application in computer security is briefly
discussed.

Keywords— knowledge representation and reasoning, common-
sense reasoning, computer security

I. INTRODUCTION

Classical logics and their nonmonotonic consequences have
been used as major formal methods in commonsense rea-
soning, knowledge representation, robotic dynamics modeling
and computer security. From a semantical point of view, a
common feature of these logics is that every syntactic term
in the language represents some real object in the problem
domain. For instance, an atom Bird(Tweety) represents a fact
that there is an object in our domain named Tieety which is
a bird. However, in some circumstances, it may be needed to
represent some knowledge that involves nonexisting objects in
our domain. For instance, a computer security domain to deal
with a not-yet joined user or application. As it will be shown
next, current logics have difficulties in dealing with this kind
of knowledge in reasoning.

Example 1: The flying horse paradox. We consider a
statement like

all existing objects are not flying horses. 1)

If we formalize this statement in first order logic, we may
probably write a sentence as follows:

Vady(y = x D ~Flying-horse(z)). ?2)
Now we consider another statement that
Pegasus is a flying horse. 3)
Obviously we may write a sentence
Flying-horse(Pegasus)
to represent statement (3) where Pegasus is supposed to be a
constant in our language.

However, sentence Flying-horse(Pegasus) is actually in-
consistent with (2). We note that formula Va3y(y = z) is a

Yun Bai is with School of Computing and Mathematics, University of
Western Sydney, NSW 1797, Australia, E-mail: ybai @scm.uws.edu.au

theorem in any first order theory [6]. So (2) can be reduced
to

Ve Flying-horse(z). 4)

Then from Substitution Axiom
Ve D pga] 5)

and (4), we can derive

—Flying-horse(Pegasus). (6)
But semantically, statement (3) does not really conflict with
statement (1) because we do not declare that Pegasus is an
existing object. Furthermore, if we assume that Pegasus be a
constant denoting some nonexisting object, epsitemically, we
should be able to state that Pegasus is a flying horse although
we have already explicitly stated that all existing objects are
not flying horses. Clearly, classical first order logic can not
represent nonexisting objects since every constant/term in the
language must be mapped to some real object in the domain.
u

Representing nonexisting objects is important in computer
security. For instance, a user may be required to be deleted
or added to the system. These kinds of actions are generally
difficult to represent within current formal theories of dynamic
modeling.

In this paper, we explore a logical formalization which
allows us to represent nonexisting objects in an agent’s
knowledge base. The paper is organized as follows. Section
2 proposes a formal system named N-theory where sentences
involving constants that denote nonexisting objects are allowed
to be presented. Section 3 discusses its semantics and property.
Section 4 investigates its possible application in computer
security. Finally, section 5 concludes the paper with some
remarks.

II. N-THEORY

The formal system we consider in this paper consists of the

following components:
- The language is an arbitrary first order language L

without function symbols. We also use a, b, ¢ --- to

denote metavariables for constants'.
- The logical axioms are:

(A1) ¢, where ¢ is a tautology (Propositional Axiom),
(A2) (VzpA Jz(x = a)) D py[al
(Restricted Substituition Axiom),
(A3) a = a (Identity Axiom 1),
(A4) a=Db D (p(a) D ¢(b)) (Identity Axiom 2).

lo(a) is called a sentence scheme which is viewed as a set of sentences

{¢(a) | a is any constant of L}.

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

- The inference rules are:

(I1) Infer ¢ from ¢ and ¢ D ¥ (Modus Ponens),
(I2) Infer Vzp from Jz(x = a) D p,[a]
(Restricted Universal Generalization).

Note that (A2) and (I2) represent the major difference
between our system and standard first order logic. Condition
Jz(x = a) indicates that constant a denotes some existing
object, which is needed in (A2) and (I2) to guarantee that
a universally quantified sentence can only be substituted by
or generalized from its existing instances. A N-theory is a
pair <T,C>, where T is a set of sentences of £ and C
is a nonempty set of constants of £. The logical axioms of
<T,C> are (Al)-(A4) and inference rules of <T,C> are
(I1) and (12). Furthermore, <7',C'> also has following two
domain-independent nonlogical axioms:

(A5) Jz(x = a), where a € C' (Denotation Axiom),
(A6) foranyac Candb ¢ C,a#b
(Disjoint Name Axiom).

Definition 1: A sentence ¢ is N-free (i.e. nonexisting object
free) with respect to a N-theory <7, C> if ¢ is not a logical
or domain-independent nonlogical axiom, and

(i) for any non-equality predicate symbol P occurring in ¢,

each constant ¢ occurring in P(---) is in C}
(ii) for any equality = occurring in ¢, there is at most one

constant not belonging to C' taken by =~.

If we view a N-theory <T',C> as an agent’s knowledge
base, then each constant specified in C' denotes some existing
object in the agent’s domain while all other constants not in
C denote nonexisting objects with respect to this domain. On
the other hand, a N-free sentence <7T',C'> represents some
properties on existing objects in the agent’s domain. Each N-
free sentence has a clear semantics under the interpretation
of <T,C>. Note that a N-theory may also include sentences
that are not N-free with respect to this theory. If a N-free
sentence ¢ with respect to <7',C> is also included in 7', we
say that ¢ is a N-free sentence of <7T',C>.

Besides logical axioms (A1)-(A4) and domain-independent
nonlogical axioms (AS5) and (A6), all other sentences in
<T,C> are called domain-dependent nonlogical axioms. In
the rest of the paper, whenever there is no confusion in the
context, we will only present domain-dependent nonlogical
axioms in a N-theory. It is clear that if C' is the set of
all constants of £, then N-theory <T,C> is reduced to a
classical first order theory.

Definition 2: Given a N-theory <7',C'> and a sentence ¢.
@ is a N-theorem of <T,C>, denoted as <T',C>Fx o, if

(i) ¢ is alogical axiom or a domain-independent nonlogical

axiom;

(ug pisa "N-free sentence of <T,C>

(1ii) ¢ is the conclusion of an inference rule (I1) or (I2) where
all of the hypotheses of the rule are also N-theorems of
<T,C>.
<T,C> is N-inconsistent if there exists some sentence ¢ such
that <T',C>Fpn ¢ and <T', C>F N —¢; otherwise <T', C> is
N-consistent.

2For instance, if @ = b occurs in , then at most one of a and b does not
belong to C.

Example 2: Consider a N-theory <T', { Prancer}>
where T = {Horse(Pegasus), Horse(Prancer),
VeHorse(z) D Runfast(z)}.

Since Horse(Pegasus) is not a N-free sentence of this N-
theory, we have <T,{Prancer}>t/n Runfast(Pegasus)
and

<T,{Prancer}>Fn Runfast(Prancer). &

III. SEMANTICS AND PROPERTIES OF N-THEORY

In this section, we briefly investigate the semantics of N-
theory and its properties. We propose non-classical structures
named N-structures for the language of N-theory where
some constants are allowed to denote nonexisting objects with
respect to the domain of quantification of the structure.

Definition 3: A N-structure M of L is any ordered pair
(D, F), where D is a set (to be called the domain) and F is

a unary function such that:
(i) F is total to assign every n-placed predicate symbol P

a set of ordered n-placed tuples of elements of D;
(ii) F is partial to assign every defined constant an clement

of D.

Note that a N-structure M is usually associated with a set
of constants of £ where each constant in the set is defined in
M (i.e. mapped to some element in the domain of M) and all
other constants of £ are then undefined in M. Clearly, if the
set of defined constants is identical to the set of all constants of
L, a N-structure is reduced to a classical first order structure
of L.

We define a model for a N-theory.

Definition 4: Given a N-theory <T,C>. M is a N-model
of <T,C> if

(1) every constant in C is defined in M and all other

__ constants of £ are not defined in M))
(i) every N-free sentence of <7T',C> is N-satisfied in M.

A sentence ¢ is N-entailed by <T,C>, denoted as
<T,C>EN ¢, if ¢ is N-satisfied in every N-model of
<T,C>.

Now we discuss the basic properties of /N-theory. Given
a N-theory <T,C> and a N-free sentence ¢ relating to
<T,C>. From Definition 1, it is observed that the only
possibility that some constant b ¢ C occurs in ¢ is in the
form of b =0, a = b or x = b where a € C. Whenever ¢ is a
N-free relating to a N-theory <T',C'>, we can equivalently
view ¢ to its corresponding ¢’ in which every constant belongs
to C. For example, if constant b ¢ C, the N-free sentence
Va(P(x) Vx = b) is equivalent to VzP(x). Therefore, we
assume that for any N-free sentence ¢ wrt <T',C>, every
constant occurring in ¢ belongs to C.

IV. APPLICATION IN COMPUTER SECURITY

Theoretically, any technique used to specify system security
should provide a language with sufficient expressiveness to
support the specification of complex concepts and procedures
but it should also accompany this expressiveness with flexi-
bility and mathematical precision and conciseness. A variety
of logic security approaches [3], [5], [7] have been proposed
for computer security since logic language has powerful ex-
pressiveness with precise syntax and semantics.

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:2, No:1, 2008

The security domain of a computer system contains security
rules to protect the system from malicious attempts. A security
domain for a real-time computer system is dynamic in the
sense that the security rules need to be up to date, and be
able to handle certain exceptions. For instance, when a new
user or application or a new authorization right adds to the
system, security rules regarding these new objects need to be
flexible and powerful enough to process and reasoning under
new circumstance.

In a security domain, we use access(a) to denote that a is
a constant object and has access right to the system. Currently
if we have objects a,b,c in a category group and all the
objects from this group have access right to the system, we
should have access(a), access(b) and access(c). If there’s an
exception that a cannot access the system, or the query asks
the access right of a non existing object d, how can we handle
these?

We propose to apply the N-theory just discussed to the
security domain and to reason about it. We believe the N-
theory can be properly justified to such a dynamic domain
and to solve the issue of deleting and adding new object to
the security domain.

V. CONCLUSION

In this paper, we presented the dynamic domain in logic
reasoning, especially representation and reasoning with nonex-
isting objects. Although the issue of nonexisting objects has
been studied by some philosophers, e.g. [2], with different
motivation and background, however, their approaches seem
hard to be used for our purpose in knowledge representation
and reasoning. We also note that the null-value concept inves-
tigated in relational database theory [1] is related to represent
nonexisting objects. But no proper logical formalization was
proposed to deal with this problem in database area.

We plan to investigate the application of reasoning in
dynamic domain in computer security. We will discuss how
access rights are represented, and use the N-theory presented
in this paper to handle reasoning in a dynamic security domain.

REFERENCES

[1] P. Atzeni and V. de Antonellis, Relational Database Theory, The Ben-
jamin/Cummings Publishing Company, Inc., 1993.

[2] E. Bencivenga, Free logic. Handbook of Philosophical Logic, Vol. 1II,
pp373-426, 1986.

[3] E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo, “A Logic-based
Approach for Enforcing Access Control”. Computer Security, vol.8, No.2-
2, pp109-140, 2000.

[4] A. Herzig, J. Lang and P. Marquis, Action representation and partially
observable planning using epistemic logic. Proceedings of IJCAIO3, 1067—
1072. 2003.

[5] N. Li, B. Grosof and J. Feigenbaum, “Delegation Logic: A Logic-based
Approach to Distributed Authorization”. ACM Transactions on Information
and System Security, Vol.6, No.1, pp128-171, 2003.

[6] J. Shoenfield, Mathematical Logic. Addison-Wesley. 1967.

[7] L. Wang, D. Wijesekera and S. Jajodia, “A logic-based framework for
attribute based access control,” Proceedings of the ACM Workshop on
Formal Methods in Security Engineering, pp45-55, 2004.

