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Design of Nonlinear Observer by Using Augmented
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Abstract—The objective of this study is to propose an observer
design for nonlinear systems by using an augmented linear system
derived by application of a formal linearization method. A given
nonlinear differential equation is linearized by the formal linearization
method which is based on Taylor expansion considering up to the
higher order terms, and a measurement equation is transformed into
an augmented linear one. To this augmented dimensional linear
system, a linear estimation theory is applied and a nonlinear observer
is derived. As an application of this method, an estimation problem of
transient state of electric power systems is studied, and its numerical
experiments indicate that this observer design shows remarkable
performances for nonlinear systems.
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I. INTRODUCTION

ESTIMATION problems of nonlinear system have been
well studied and the design technique via linearization

approaches is attractive ways by reason of making use of the
linear theories [1]–[6]. Formal linearization [7], [8] is one of
interesting approaches to solve nonlinear problems.

In this paper, we consider an observer design for nonlinear
systems to be applied the formal linearization method [8].
A given nonlinear system is transformed into an augmented
linear system by using the higher polynomials of both the state
and measurement equations.

We introduce a linearization function which consists of
polynomials of the state variables, and an augmented mea-
surement equation which consists of polynomials of the mea-
surement variables. The nonlinear state differential equation
and the augmented measurement equation are linearized by
the formal linearization method which is based on Taylor
expansion considering up to the higher order. As a result,
an augmented linear system is obtained from them. By this
linear system, we can apply linear system theories and derive
a nonlinear observer. Inversion is simple because of the
original state variable involved in the linearization function.
As an application of this method, a nonlinear observer for
an estimation of the transient sate of electric power systems is
synthesized. Numerical experiments indicate that this observer
design shows remarkable performances for the nonlinear sys-
tem.
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II. STATEMENT OF PROBLEM

Consider a nonlinear system described by a state differential
equation

Σ1 : ẋ(t) = f(x(t)), x(0) = x0 ⊂ Rn (1)

where t denotes time, · = d/dt, x is an n×1 state vector, and
f is a sufficiently smooth nonlinear function. Assumed that a
measurement equation is given by

y(t) = h(x(t)) ⊂ Rm (2)

where y is an m×1 vector of independent outputs with m < n,
and h(x) is a sufficiently smooth nonlinear function.

Our goal is to estimate the state vector from measurement
data by using the formal linearization method.

III. NONLINEAR OBSERVER

The objective of this study is to develop a nonlinear observer
by the formal linearization method using Taylor expansion [8].
We quote the previous method to linearize a state differential
equation, present a new linearization method for a measure-
ment equation, and then synthesize a nonlinear observer.

A. Fromal Linearization for Nonlinear State differential Equa-
tion

In order to linearize the given nonlinear state differential
equation (Eq. (1)), an N -th order linearization function φ(·) =
φ

(
x(·)) which consists of polynomials is defined by

φ = [φ1, φ2, · · · , φi, · · · , φαmax ]T

= [T(10···0)(x), T(01···0)(x), · · · , T(0···01)(x),
T(11···0)(x), T(101···0)(x), · · · , T(10···1)(x),

T(20···0)(x), T(02···0)(x), · · · , T(r1···rn)(x)]T (3)

where

T(r1···rn)(x) =
n∏

i=1

xri
i ,

1 ≤ r1 + r2 + · · · + rn ≤ N,

αmax : the number of combination of {r1, · · · , rn}.
Deriving the derivative of each element of φ along with the
solution of the given nonlinear system (Eq. (1)) becomes

φ̇α(x) = Ṫ(r1···rn)(x)
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= (
d

dt
xr1

1 )xr2
2 · · ·xrn−1

n−1 xrn
n + · · · + xr1

1 xr2
2 · · ·xrn−1

n−1 (
d

dt
xrn

n )

=
n∑

k=1

rkfk(x)
T(r1···rn)(x)

xk
, α = α(r1, · · · , rn). (4)

Note that Taylor expansion up to the N -th order derives

fk

(
x(t)

)
= [pk 1, pk 2, · · · , pk αmax

]φ(x)

+ pk 0 + higher order (5)

where

pk j =
∂(r1+r2+···+rn)

∂xr1
1 ∂xr2

2 · · · ∂xrn
n

fk(x)
∣
∣
x=x̂0

,

pk 0 = fk(x)
∣
∣
x=x̂0

, j = j(r1, · · · , rn),

and x̂0 is an operating point of the nonlinear system. From
Eqs. (4) and (5), it follows that

φ̇α(x) = r1

(
[p11, p12, · · · , p1 αmax ]φ(x) + p10

)

×xr1−1
1 xr2

2 · · ·xrn
n + r2

(
[p21, p22,

· · · , p2 αmax ]φ(x) + p20

)
× xr1

1 xr2−1
2 · · ·xrn

n +

· · · + rn

(
[pn1, pn2, · · · , pn αmax ]φ(x) + pn0)

)

×xr1
1 xr2

2 · · ·xrn−1
n + higher order

= [Gα 1, · · · , Gα β , · · · , Gα αmax ]φ(x) + Gα 0 + εα(x) (6)

where

Gα β =
n∑

k=1

rkpk β(s1−r1,s2−r2,···,sk−rk+1,···,sn−rn),

β = β(s1, · · · , sn) ,

pk β =
{

pk j (β = j)
0 (β �= j) .

The εα(x) is the error term whose order includes higher
than N . Using the above functions (Eq. (5)), φ̇ of Eq. (4)
is approximated by

φ̇(x) ≈ Aφ(x) + b (7)

where
A = [Gi j ] ⊂ Rαmax×αmax ,

b = [Gi 0] ⊂ Rαmax .

Thus a formal linear state differential equation is derived by

Σ2 : ż(t) = Az(t) + b , (8)

z(0) = φ
(
x0

)
.

B. Fromal Linearization for Measurement Equation

With the measurement equation (Eq. (2)), measurement data
are exploited in order to develop the approximation error of
the linearization.

Let us define a new N -th order measurement vector Y (·) =
Y (y(·)) which consists of polynomials by

Y = [Y1(y), Y2(y), · · · , Yi(y), · · · , Yα′
max

(y)]T

= [T(10···0)(y), T(01···0)(y), · · · , T(0···01)(y),
T(11···0)(y), T(101···0)(y), · · · , T(10···1)(y),

T(20···0)(y), T(02···0)(y), · · · , T(r1···rm)(y)]T (9)

where

T(r1···rm)(y) =
m∏

i=1

yri
i ,

1 ≤ r1 + r2 + · · · + rm ≤ N,

α′
max : the number of combination of {r1, · · · , rm}.

From this augmented measurement vector, the measurement
equation (Eq. (2)) is reconstructed as

Yα′(y) = T(r1···rm)(y) =
m∏

i=1

yri
i

= hr1
1 (x)hr2

2 (x) · · ·hrm
m (x), α′ = α′(r1, · · · , rm). (10)

Applying Taylor expansion up to the N -th order derives

Yα′ = [qα′ 1, · · · , qα′ β , · · · , qα′ αmax ]φ(x)

+ qα′ 0 + higher order (11)

where

qα′ β =
∂(s1+r2+···+sn)

∂xs1
1 ∂xs2

2 · · · ∂xsn
n

hr1
1 (x)hr2

2 (x) · · ·hrm
m (x)

∣
∣
x=x̂0

,

qα′ 0 = hr1
1 (x)hr2

2 (x) · · ·hrm
m (x)

∣
∣
x=x̂0

.

From Eqs. (9) and (11), the augmented measurement equation
becomes

Y ≈ Cφ(x) + d (12)

where

C = [qi j ] ⊂ Rα′
max×αmax ,

d = [qi 0] ⊂ Rα′
max .

Thus a formal linear measurement equation is derived by

Y (t) = Cz(t) + d . (13)
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C. Design of Nonlinear Observer
To the linearized system (Eqs. (8) and (13)), a linear

estimation theory is applied so that the identity observer [9]
is synthesized as

˙̂z(t) = Aẑ(t) + b + K(t)
(
Y (t) − Ŷ (t)

)
, (14)

Ŷ (t) = Cẑ(t) + d,

ẑ(0) = φ(ˆ̂x(0))

where ˆ̂x(0) is an initial value of the observer, K(t) is an
observer gain as

K(t) =
1
2
P (t)CL(t).

P (t) satisfies the matrix Riccati differential equation as

Ṗ (t) = AP (t) + P (t)AT + Q(t)− P (t)CT L(t)CP (t) (15)

where Q(t), L(t) and P (0) are chosen to be arbitrary real,
symmetric, and positive definite. With the reference to the
exponential estimator [9], the error in the state estimate

e = z − ẑ

is uniformly asymptotically stable in the sense of Lyapunov.
From Eq.(3), the estimate of the nonlinear observer x̂(t)

becomes

x̂(t) = [I 0 · · · 0]φ(x̂(t)) = [I 0 · · · 0]ẑ(t) (16)

where I is an n × n unit matrix.

IV. NUMERICAL EXPERIMENTS

We carry out numerical experiments of an estimation of the
transient state of an electric power system [7]. The dynamic
equation of a synchronous machine under certain assumptions
is described by

Mδ̈ + Dδ̇ +
ese

′
f

xd
sin δ = Pin (17)

where δ is a load angle, M is a moment of inertia, D is a
damping coefficient, es is an infinite bus voltage, e′f is an
excitation voltage, xd is a synchronous reactance, and Pin is
a mechanical input power.

If the reactive power is measured, the measurement equation
is

y =
es

xd
(es − e′f cos δ). (18)

Putting x1 = δ and x2 = δ̇, the electric power system is
described by

⎧
⎨

⎩

ẋ1 = x2 = f1(x)

ẋ2 = − ese
′
f

Mxd
sinx1 − D

M
x2 +

Pin

M
= f2(x)

, (19)

y =
e2

s

xd
− ese

′
f

xd
cos x1 = h(x). (20)

Applying the above formal linearization in Sec. III, a formal
linear system is obtained by

ż(t) = Az(t) + b , (21)

Y (t) = Cz(t) + d , (22)

where an operating point x̂0 is set to satisfy f(x̂0) = 0 so
that

x̂0 =
(

sin−1 Pin

0

)

and the observer of this power system is
˙̂z(t) = Aẑ(t) + b + K(t)

(
Y (t) − Cẑ(t) − d

)
, (23)

ẑ(0) = φ(ˆ̂x(0)).

Throughout this experiments, the system parameters are set
as

M = 0.0265, D = 0.005, Pin = 0.8, es = e′f = xd = 1.0.

The initial values of the power system x(0) and of the observer
ˆ̂x(0) are

x(0) = [2, 0.8]T , ˆ̂x(0) = [0, 0]T .

Figs. 1 and 2 show the true value xi(t) and the estimated
values x̂i(t) for i = 1 and 2, respectively. x̂i(new) is the
result through this method when the order of the linearization
function is N = 3, and the parameters of the observer (Eq.
(15)) are

Q(t) = P (0) = I ⊂ R9×9, L(t) =

⎛

⎝
60 0 0
0 22 0
0 0 0.05

⎞

⎠ .

x̂i(old) is by the previous work [8] when the parameters of
the linearization are the same as N = 3, Q(t) = P (0) =
I ⊂ R9×9 , except for L(t) = 30. x̂i(Taylor) is the result
by the conventional first order Taylor expansion [10] and the
parameters of the identity observer are Q(t) = P (0) = I ⊂
R2×2, L(t) = 30.

Fig. 3 shows the integral square errors of estimation

J(t) =
∫ t

0

(
x(τ) − x̂(τ)

)T (
x(τ) − x̂(τ)

)
dτ

for the various order of the linearization function from N = 1
to N = 3. N = 3(old) is the error by the previous method [8].
When the order is N = 1, it’s result is the same as those of
the conventional first order Taylor expansion.

t

x 1
,x̂ 1 x1

x̂1(old)
x̂1(new)

x̂1(Taylor)

0 1 2 3 4
0

0.5

1

1.5

2

Fig. 1. Estimates x̂1(t) of the power system by various methods
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t
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x̂2(Taylor)
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Fig. 2. Estimates x̂2(t) of the power system by various methods
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Fig. 3. Integral square errors of estimation by various N

V. CONCLUSIONS

We have developed an observer design for a nonlinear
system by using a formal linearization method. Introducing
an augmented measurement vector, the given nonlinear state
and measurement equations make up an augmented linear
system to be applied the linear estimation theory. Numerical
experiments show that our method is better than the previous
works and the accuracy is improved as the order of the
linearization function increases.
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