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Abstract—Active Vibration Control (AVC) is an important 

problem in structures. One of the ways to tackle this problem is to 

make the structure smart, adaptive and self-controlling. The objective 

of active vibration control is to reduce the vibration of a system by 

automatic modification of the system’s structural response. This 

paper features the modeling and design of a Periodic Output 

Feedback (POF) control technique for the active vibration control of 

a flexible Timoshenko cantilever beam for a multivariable case with 

2 inputs and 2 outputs by retaining the first 2 dominant vibratory 

modes using the smart structure concept. The entire structure is 

modeled in state space form using the concept of piezoelectric 

theory, Timoshenko beam theory, Finite Element Method (FEM) and 

the state space techniques. Simulations are performed in MATLAB. 

The effect of placing the sensor / actuator at 2 finite element 

locations along the length of the beam is observed. The open loop 

responses, closed loop responses and the tip displacements with and 

without the controller are obtained and the performance of the smart 

system is evaluated for active vibration control. 

Keywords—Smart structure, Timoshenko theory, Euler-Bernoulli 

theory, Periodic output feedback control, Finite Element Method, 

State space model, Vibration control, Multivariable system, Linear 

Matrix Inequality

I. INTRODUCTION 

IEZOELECTRIC materials are capable of altering the 

structure’s response through sensing, actuation and 

control. Piezoelectric elements can be incorporated into a 

laminated composite structure, either by embedding it or by 

mounting it onto the surface of the host structure [10], [31]. 

Vibration control of any system is always a formidable 

challenge for any control system designer. Active control of 

vibrations relieves a designer from strengthening the structure 

from dynamic forces and the structure itself from extra weight 

and cost. The need for intelligent structures such as smart 

structures arises from the high performance requirements of 
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such structural members in numerous applications. Intelligent 

structures are those which incorporate actuators and sensors 

that are highly integrated into the structure and have structural 

functionality, as well as highly integrated control logic, signal 

conditioning and power amplification electronics [8]. 

A vibration control system consists of 4 parts, viz., actuator, 

controller, sensor and the system or the plant, which is to be 

controlled. When an external force extf  is applied to the 

beam, it is subjected to vibrations. These vibrations should be 

suppressed quickly. Fully active actuators like the 

Piezoelectrics, MR Fluids, Piezoceramics, ER Fluids, Shape 

Memory Alloys, PVDF, etc., can be used to generate a 

secondary vibrational response in a mechanical system. This 

could reduce the overall response of the system plant by the 

destructive interference with the original response of the 

system, caused by the primary source of vibration [6], [8], 

[18], [21]. 

Feedback control of vibrations in mechanical flexible 

systems has numerous applications, like in aircrafts, active 

noise and shape control, acoustic control, earthquakes, control 

of space structures and in control of flexible manipulators.  

Active control of unwanted disturbance consists of canceling 

the disturbance by the deliberate addition of a second 

disturbance, equal in magnitude but opposite in direction. 

Applying forces whose magnitudes and phases are determined 

by a controller can control vibrations of single and multiple 

Degree Of Freedom (DOF) systems. The inputs to the 

controller are displacements or velocities measured at various 

points in the system. 

Extensive research in modeling of piezoelectric materials in 

building actuators and sensors for structure is reported here. 

Investigations of Crawley and Luis [8] emphasized on the 

derivation of sensor / actuator modeling of piezo-electric 

materials. Moreover, the control analysis of cantilever beams 

using these sensors / actuators have been studied by Bailey 

and Hubbard [6]. Culshaw [10] gave a brief introduction to 

the concept of smart structure, its benefits and applications. 

Hanagud, et al., [21] developed a Finite Element Model 

(FEM) for an active beam with many distributed piezoceramic 

sensors / actuators coupled by signal conditioning systems and 

applied optimal output feedback control. Fanson et al., [18] 

performed some experiments on a beam with piezoelectrics 

using positive position feedback.   

Hwang and Park [22] presented a FE model for 

piezoelectric sensors and actuators. Choi et al. [12] discussed 
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about the control techniques of flexible structures using 

distributed piezoelectric sensors / actuators. An effective 

vibration control scheme using periodic output feedback 

technique was presented by Manjunath and Bandyopadhyay in 

[26]. The effect of failure of one of the actuators in a 

multivariable smart system and its control using the periodic 

output feedback control law was discussed in [27] by 

Manjunath and Bandyopadhyay.  

 The outline of the paper is as follows. A brief review of 

related literature about the types of beam models is given in 

Section 2.  Section 3 gives a brief introduction to the modeling 

technique (sensor  / actuator model, finite element model, state 

space model) of the smart cantilever beam. A brief review of 

the controlling technique, viz., the periodic output feedback 

control technique and the design of the controller to control 

the first two modes of vibration of the system is discussed in 

Section 4. POF controller design is discussed in Section 5.  

Simulation results are presented in Section 6 followed by the 

concluding section, appendix, nomenclature and references. 

II. REVIEW OF BEAM MODELS AND PIEZO ACTUATION

The study of physical systems such as beams frequently 

results in partial differential equations, which either cannot be 

solved analytically, or lack an exact analytic solution due to 

the complexity of the boundary conditions. For a realistic and 

detailed study, a numerical method must be used to solve the 

problem. The finite element method is often found the most 

adequate. Over the years, with the development of modern 

computers, the finite element method [34] has become one of 

the most important analysis tools in engineering. Basically, the 

finite element method consists of a piecewise application of 

classical variational methods to smaller and simpler sub 

domains called finite elements connected to each other in a 

finite number of points called nodes. A precise mathematical 

model is required for the controller design for vibration 

control to predict the structure’s response. Two beam models 

in common use in the structural mechanics are the Euler-

Bernoulli beam model and the Timoshenko beam model, 

which are considered here below. 

A. Euler-Bernoulli Model 

This model often called as the classical beam model 

accounts for the bending moment effects on stresses and 

deformations. The effect of transverse shear forces on beam 

deformation is neglected. Its fundamental assumption is that 

cross sections remain plane and normal to the deformed 

longitudinal axis before and after bending. This assumption is 

valid if length to thickness ratio is large and for small 

deflection of beam. However, if length to thickness ratio is 

small, the plane section will not remain normal to the neutral 

axis after bending and the total rotation θ  will be due to the 

bending stress alone. This rotation occurs about a neutral axis 

that passes through the centroid of the cross section of the 

beam as shown in Fig. 1.  

Crawley, et al. [8] have developed analytical models of 

beams with piezoelectric actuators. These models illustrate the 

mechanics of Euler-Bernoulli beams with surface mounted 

actuators and the analytical results have been verified by 

carrying out experiments. In practical situations, a large 

number of modes of vibrations contribute to the structure’s 

performance. Since the shear forces, axial displacement are 

neglected in Euler-Bernoulli theory, slightly inaccurate results 

may be obtained. Timoshenko Beam Theory is used to 

overcome the drawbacks of the Euler-Bernoulli beam theory 

by considering the effect of shear and axial displacements.  
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Fig. 1  Euler-Bernoulli beam model 

B. Timoshenko model 

This model corrects the classical beam model with first-

order shear deformation effects. In this model, the cross 

sections of the beam remain plane and rotate about the same 

neutral axis as the Euler-Bernoulli model, but do not remain 

normal to the deformed longitudinal axis. The deviation from 

normality is produced by a transverse shear that is assumed to 

be constant over the cross section. Thus, the Timoshenko 

Beam model is superior to Euler-Bernoulli model in precisely 

predicting the beam response.  The total slope of the beam in 

this model consists of two parts, one due to bending θ , and 

the other due to shear β . Chandrashekhara and Varadarajan 

[9] have presented a finite element model of a composite beam 

using a higher-order shear deformation theory. Piezoelectric 

elements have been used to produce a desired deflection in 

beams with Clamped-Free (C-F), Clamped-Clamped (C-C) 

and simply supported beams.  

Aldraihem et al. [1] have developed a laminated beam 

model using two theories; namely, Euler-Bernoulli beam 

theory and Timoshenko beam theory. Here, the piezoelectric 

layers have been used to control the vibration in a cantilever 

beam. Donthireddy and Chandrashekhara [17] presented a 

new technique of modeling and shape control of composite 

beam with embedded piezoelectric actuators. A finite element 

model was designed for the dynamic analysis of Timoshenko 

beam by Thomas and Abbas [35]. Doschner and Enzmamam 

[16] presented a new type of controller for the vibrations of a 

Timoshenko beam.  Closed form of solutions for the 

deflection control of laminated composite beams were 

presented by Abramovich [2]. In [25], Manjunath and 
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Bandyopadhyay  discussed the vibration control of beams 

modeled using Timoshenko beam theory and using different 

aspect ratios of the beam.   

Recently, shear piezoelectric actuators have been used to 

generate deflection and to reject vibration in beams. The idea 

of exploiting the shear mode to create transverse deflection in 

beams was first suggested by Sun and Zhang [32].  A finite 

element approach was used by Benjeddou, et al. [7] to model 

a beam with shear and embedded piezoelectric elements. The 

finite element model employed the displacement field of 

Zhang and Sun [40]. It was shown that the finite element 

results agree quite well with the analytical results. Raja, et. al. 

[30] extended the finite element model of Benjeddou’s 

research team to include a vibration control scheme. It was 

observed that the shear actuator is more efficient in rejecting 

vibration than without considering the shear for the same 

control effort.

Aldraihem and Khdeir [3] proposed analytical models and 

exact solutions for beams with shear piezoelectric actuators. 

The models are based on Timoshenko beam theory and 

Higher-Order Beam Theory (HOBT). Exact solutions were 

obtained by using the state-space approach. The deflections of 

beams with various boundary conditions were investigated.  

The effect of shear coefficient was discussed in the 

Timoshenko beam theory by Cooper [11].  Deflection analysis 

of the beam with extension and shear piezoelectric patches 

was reported by Ahmed and Osama [4]. An improved two-

node Timoshenko beam model was presented by Friedman 

and Kosmataka [23] which is used in our work.  Azulay et al.

[5] have presented analytical formulation and closed form 

solutions of composite beams with piezoelectric actuators.

Timoshenko beam theory is used in the present work to 

generate the FE model [28] of a MIMO cantilever beam with 

surface mounted sensors and actuators as collocated pairs, i.e., 

one above and below the corresponding finite elements of the 

beam. Further, the periodic output feedback control design 

and its application to control the first two structural vibration 

modes of the smart flexible Timoshenko cantilever beam is 

considered.

III. MATHEMATICAL MODELING OF SMART BEAM

Few researchers have well established a mathematical finite 

element E-B model. These models do not consider the shear 

effects, axial effects, etc.,.. Modeling of smart structures by 

shear deformable (Timoshenko) theory is limited.  In our 

work, the effect of shear has been considered in modeling   

Consider a aluminum cantilever beam as shown in Fig. 2 

divided into 4 finite elements as shown in Fig. 3. The 

piezoelectric element is bonded on two discrete sections (two 

finite elements) of the surface of the beam as surface mounted 

sensor / actuator pairs.  The piezoelectric element is obtained 

by sandwiching the regular beam element between two thin 

piezoelectric layers.  The bottom layer is acting as a sensor 

and the top layer is acting as an actuator as shown in the Fig. 

2.

Fig. 2   A regular flexible beam and a smart Aluminum Timoshenko 

cantilever beam embedded with surface mounted 

The element is assumed to have two structural DOF’s 

),( θw  at each nodal point and an electrical DOF : a 

transverse deflection and an angle of slope or rotation. Since 

the voltage is constant over the electrode, the number of DOF 

is one for each element.  The electrical DOF is used as a 

sensor voltage or actuator voltage.  Corresponding to the two 

DOF’s, a bending moment acts at each nodal point, i.e., 

counteracting moments are induced by the piezoelectric 

patches.  The bending moment resulting from the voltage 

applied to the actuator adds a positive finite element bending 

moment, which is the moment at node 1, while subtracting it 

at node 2.  

In modeling of the smart beam, the following assumptions 

are made. The mass and stiffness of the adhesive used to bond 

the sensor / actuator pairs to the master structure is being 

neglected. The smart cantilever beam model is developed 

using 2 piezoelectric beam elements, which includes sensor 

and actuator dynamics and remaining beam elements as 

regular beam elements based on Timoshenko beam theory 

assumptions. The cable capacitance between the piezo patches 

and the signal-conditioning device is considered negligible 

and the temperature effects are neglected.  The signal 

conditioning device gain is assumed as 100.  

An external force input extf  (impulse) is applied at the free 

end of the smart beam.  The beam is subjected to vibrations 

and takes a lot of time for the vibrations to dampen out.  These 

vibrations are suppressed quickly in no time by the closed 

loop action of the controller, sensor and actuator. Thus, there 

are two inputs to the plant. One is the external force input extf

(impulse disturbance), which is taken as a load matrix of 1 

unit in the simulation and the other input is the control input u

to the actuator from the POF controller. The dimensions and 

properties of the aluminum cantilever beam and piezoelectric 

sensor / actuator used are given in Tables 1 and 2 respectively.  

A. Finite Element Modeling of the regular beam element 

A regular beam element is shown in Fig. 2. The 

longitudinal axis of the regular beam element lies along 

the X -axis. The element has constant moment of inertia, 

modulus of elasticity, mass density and length [5], [23], [41]. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

274

TABLE I 

PROPERTIES OF THE FLEXIBLE CANTILEVER BEAM ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (m) 
bl

0.5

Width (m) b 0.024

Thickness (mm)
bt

1

Young’s modulus (GPa)
bE 193.06

Density (kg/m3)
bρ 8030

Damping constants βα , 0.001. 0.0001 

TABLE II 

PROPERTIES OF THE  PIEZO - SENSOR / ACTUATOR  ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (m) 
pl 0.125

Width (m) b 0.024

Thickness (mm)
sa tt , 0.5

Young’s modulus (GPa)
pE 68

Density (kg/m3)
pρ 7700

Piezo strain constant (m /V)
31d 12

10125
−×

Fig. 3.  A MIMO smart Timoshenko beam 

Fig. 4  A SISO smart Timoshenko beam 

The displacement relation in the zyx and, directions of the 

beam can be written as  

,)(),(),,,( −
∂
∂== x

x

w
ztxztzyxu βθ     (1)          

,0),,,( =tzyxv    (2) 

),,(),,,( txwtzyxw =  (3) 

where w is the time dependent transverse displacement of the 

centroidal axis (along z axis),θ is the time dependent 

rotation of the cross-section about y  axis, u is the axial 

displacement along the x  axis, v is the lateral displacement 

along the y axis which is equal to zero.  The total slope of the 

beam consists of two parts, one due to bending, which is 

)(xθ and the other due to shear, which is )(xβ . The axial 

displacement of a point at a distance z from the centre line is 

only due to the bending slope and the shear slope has no 

contribution to this. The strain components of the beam are 

given as 

,
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where , ,xx yy zzε ε ε are the longitudinal strains or the tensile 

strains in the 3 directions, i.e., in the , ,x y z directions.  

The shear strains γ induced in the beam along the 3 

directions (viz., along , ,x y z directions) are given by  

,
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The effect of shear strains along y and z directions is equal 

to zero. Thus, the stresses in the beam element are given as 

,
x

zEE xxxx ∂
∂== θεσ          (10) 

,
2

1 +
∂
∂=+

∂
∂== θθγσ

x

w

x

w
GG xzxz  (11) 

where E  is the young’s modulus of the beam material, G  is 

shear modulus (or modulus of rigidity) of the beam material, 

xzσ is the shear stress, xxσ is the tensile stress and  is the 

shear coefficient which depends on the material definition and 

on the cross sectional geometry, usually taken equal to 
6

5 .

The strain energy of the beam element depends upon the 

linear strain , the shear strain γ  and is given by  

22

2

1

2

1 +
∂
∂+

∂
∂= θθ

x

w
KGA

x
IEU  (12) 

and the total strain energy is finally written as  
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where I  is the mass moment of inertia of the beam element, 

A  is the area of cross section of the beam element and L  is 

the length of the beam. 

The kinetic energy T  of the beam element depends on the 

sum of the kinetic energy due to the linear velocity w and due 

to the angular twist θ  and is given by 
22

2

1

2

1

∂
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∂
∂=

t
I

t

w
AT

θρρ  (14) 

and the total kinetic energy is finally written as                              
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where ρ  is the mass density of the beam material.  

The total work done due to the external forces in the system 

is given by 

,

0

dx
m

qw
W

d

TL

e =
θ

   (16) 

where dq represents distributed force along the length of the 

beam and m represents the moment along the length of the 

beam.  

The equation of motion is derived using the concept of the 

total strain energy being equal to the sum of the change in the 

kinetic energy and the work done due to the external forces 

and is given by  

( ) =−−=∏
2

1

.0

t

t

dtWTU eδδδδ    (17) 

Here, TU δδ , and eWδ are the variations of the strain 

energy, the kinetic energy, work done due to the external 

forces and T is kinetic energy, U is strain energy, W is the 

external work done, L is the length of the beam element and t
is the time.   

Substituting the values of strain energy from (13), kinetic 

energy from (15) and external work done from 16) in (17) and 

integrating by parts, we get the governing equation of motion 

(Timoshenko beam equations) of a general shaped beam 

modeled with Timoshenko beam theory as 

2
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The R.H.S. of (18) is the time derivative of the linear 

momentum, whereas the R.H.S. of (19) is the time derivative 

of the moment of momentum.  

For the static case with no external force acting on the 

beam, the governing equation of motion (Timoshenko beam 

equations) reduces to   

0=
∂

+
∂
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x

x

w
AG θ

  (20) 

and

0=+
∂
∂−

∂
∂
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θ

θ

x

w
AG

x

x
IE

.   (21) 

From (21), it can be seen that this governing equation of the 

beam based on Timoshenko beam theory can only be satisfied 

if the polynomial order for w  is selected one order higher 

than the polynomial order for θ .

Let w be approximated by a cubic polynomial and θ  be 

approximated by a quadratic polynomial as 

,4

4

2

321 xaxaxaaw +++=  (22) 

2

321 xbxbb ++=θ .  (23) 

Here, in (22) and (23), x is the distance of the finite element 

node from the fixed end of the beam, ia and

jb )( 4,3,2,1=i and )( 3,2,1=j are the unknown coefficients 

and are found out using the boundary conditions at the beam 

ends ),0( Lx = as

at

0,,0 1 === θwwx  (24) 

and at

22 ,, θθ −=== wwLx . (25) 

After applying boundary conditions from (24), (25) on (22), 

(23), the unknown coefficients ia  and jb can be solved.

Substituting the unknown coefficients ia  and jb in (22), 

(23) and writing them in matrix form, we get, the transverse 

displacement, the first spatial derivative of the transverse 

displacement, the second spatial derivative of the transverse 

displacement and the time derivative of (22) as  

[ ] [ ][ ]qwNtxw =),( , (26) 

[ ] [ ] [ ]qθNtxw =′ ),( ,        (27) 

[ ] [ ][ ]qaNtxw =′′ ),( ,    (28) 

[ ] [ ] [ ]qwNtxw =),( , (29) 

where q is the vector of displacements and slopes, q is the 
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time derivative of the modal coordinate vector, [ ]TwN ,

[ ]T
Nθ , [ ]T

aN are the mode shape functions (for 

displacement, rotations and accelerations) taking the shear φ
into consideration and are given as 
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where [ ] [ ]′= wNNθ , [ ] [ ]″= wa NN , L is the length of beam 

element and φ  is the ratio of the beam bending stiffness to 

shear stiffness and is given by 

=
AG

EI

L2

12φ . (33) 

The mass matrix of the regular beam element (also called as 

the local mass matrix) is the sum of the translational mass and 

the rotational mass and is given in matrix form as  
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Substituting the mode shape functions [ ]wN , [ ]θN  into  

(34) and integrating, we get the mass matrix of the regular 

beam element as  

[ ] [ ] [ ] ,IA MMM b
ρρ +=  (35) 

where [ ]AM ρ and [ ]IM ρ in (35) is associated with the 

translational inertia and  rotary inertia (with the shear) as
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The stiffness matrix [ ]bK of the regular beam element (also 

called as the local stiffness matrix) is the sum of the bending 

stiffness and the shear stiffness and is written in matrix form 

as

[ ]
[ ]

[ ] [ ]

[ ]

[ ] [ ]
.

0

0

0

dx

N
x

N

N
x
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IE
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∂
∂

∂
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∂
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=

θ

θ

θ

θ
(38)

Substituting the mode shape functions [ ]wN , [ ]θN  into (38) 

and integrating, we get the stiffness matrix of the regular beam 

element as [ ]bK  which is given by  

[ ] ( )
( ) ( )

( ) ( )+−−
−−−
−−+

−

+
=

22

22

3

4626

612612
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612612

1
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L

IE
K b

φφ

φφ
φ

   (39)     

 Note that when φ  is neglected, the mass matrix and the 

stiffness matrix reduce to the mass and stiffness matrix of a 

Euler-Bernoulli beam and is shown in the appendix.  

B. Finite Element Modeling of piezoelectric beam element 

The regular beam elements with the piezoelectric patches 

are shown in Fig. 2. The piezoelectric element is obtained by 

bonding the regular beam element with a layer of two 

piezoelectric patches, one above and the other below at two 

finite element positions as a collocated pair.  The bottom layer 

acts as the sensor and the top layer acts as an actuator. The 

element is assumed to have two structural degrees of freedom 

at each nodal point, which are, transverse deflection w , and an 

angle of rotation or slope θ  and an electrical degree of 
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freedom, i.e., the sensor voltage.  

The effect of shear is negligible in the piezoelectric patches, 

since they are very very thin and light as compared to the 

thickness of the beam. So the piezoelectric layers are modeled 

based on Euler-Bernoulli beam theory [28], [29] and the 

middle aluminum layer, i.e., the regular aluminum beam is 

modeled based on Timoshenko beam theory considering the 

effect of shear [25].

The mass matrix of the piezoelectric element is finally 

given by  

[ ] ,

422313

221561354

313422

135422156

420
22

22

−−−
−
−
−

=

pppp

pp

pppp

pp

ppp

llll

ll

llll

ll

lA
M

p ρ  (41) 

where

pρ   is the mass density of piezoelectric beam element, 

pA   is the area of the piezoelectric patch = bta2 , i.e., the 

area of the sensor as well as actuator, 

b    being the width of the beam and  

pl    is the length of the piezoelectric patch.  

Similarly, we obtain the stiffness matrix [ ]piezoK of the 

piezoelectric element as 

[ ]
−−−

−
=

4
6
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6
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IE
K

, (41) 

where
pE is the modulus of elasticity of piezo material,

pI is

the moment of inertia of the piezoelectric layer with respect to 

the neutral axis of the beam and given by 

[ ] ( ) 2
3

212

1 +
+= ba

aap

tt
tctcI , (42) 

where bt  is the thickness of the beam and at  is the thickness 

of the actuator also equal to the thickness of the sensor.

It is assumed that there is continuity of shear stress at the 

interface of the patches and the substrate beam.  

C. Mass and stiffness of beam element with piezo patch 

The mass and stiffness matrix for the piezoelectric beam 

element (regular beam element with piezoelectric patches 

placed at the top and bottom surfaces) as a collocated pair is 

given by  

[ ] [ ] [ ] [ ]pMMM IA ++= ρρM  (43) 

and

[ ] [ ] [ ]pb KK +=K . (44) 

Assembly of the regular beam element and the piezoelectric 

element is done by adding the two matrices. It is assumed that 

the rotations and displacements are the same in all the layers 

of the structure.

D. Piezoelectric strain rate sensors and actuators 

The linear piezoelectric coupling between the elastic field 

and the electric field of a PZT material is expressed by the 

direct and converse piezoelectric constitutive equations as 

,f

T EedD += σ   (45) 

,f

E Eds += σε  (46) 

where  is the stress,  is the strain, 
fE  is the electric field, 

D  is the dielectric displacement, e is the permittivity of the 

medium, Es is the compliance of the medium, and d  is the 

piezoelectric constant [31]. 

1) Sensor Equation 

 The direct piezoelectric equation is used to calculate the 

output charge produced by the strain in the structure. The total 

charge )(tQ developed on the sensor surface (due to the 

strain) is the spatial summation of all point charges developed 

on the sensor layer and the corresponding current generated is 

given by  

dxNcezti

pl

T
a q=

0

31)( , (47) 

where
a

b t
t

z +=
2

, 31e  is the piezoelectric stress / charge 

constant, q  is the time derivative of the modal coordinate 

vector and 
T
aN is the second spatial derivative of the mode 

shape function of the beam.  

This current is converted into the open circuit sensor 

voltage sV using a signal-conditioning device with gain 

cG and applied to an actuator with the controller gain 
cK .

The sensor output voltage obtained is as 

dxNczeGV

pl

T
ac

s
q=

0

31
 (48) 

or can be expressed as a scalar vector product

qp
TtV s =)(  , (49) 

where
T

p is a constant vector. The input voltage to the 

actuator is )(tV a
and is given by 

=
pl

dxNczeGKtV T

acc

a

0

31)( q . (50) 

The cable capacitance between the piezo sensor / actuator 

and the signal conditioning device has been considered 

negligible and the temperature effects have been neglected. 

Note that the sensor output is a function of the second spatial 

derivative of the mode shape. 
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2) Actuator  equation 

The actuator strain is derived from the converse 

piezoelectric equation. The strain developed by the applied 

electric field ( )fE  on the actuator layer is given by 

a

a

fA
t

tV
dEd

)(
3131 ==ε . (51) 

When the input to the actuator )(tV a
is applied in the 

thickness direction, the stress is 

.
)(

31

a

a

pA
t

tV
dE=σ  (52) 

The resultant moment 
AM  acting on the beam is 

determined by integrating the stress through the structure 

thickness as 

)(31 tVzdEM a
pA = ,  (53) 

where z , is the distance between the neutral axis of the beam 

and the piezoelectric layer. Finally, the control force applied 

by the actuator is obtained as  

)(31 tVdxNzcdE a

l

pctrl

p

= θf  (54) 

or can be expressed as

)(tV a
ctrl hf = ,   (55) 

where [ ]T
Nθ  is the first spatial derivative of mode shape 

function of the beam and T
h is a constant vector which 

depends on the piezo characteristics and its location on the 

beam. If an external force 
extf acts on the beam, then, the total 

force vector becomes 

ctrlext
t fff += .   (56) 

E. Dynamic equation of the smart structure 

The dynamic equation of the smart structure is obtained by 

using both the regular and piezoelectric beam elements (local 

matrices) given by (35), (39), (40), (41), (43) and (44).  The 

mass and stiffness of the bonding or the adhesive between the 

master structure and the sensor / actuator pair is neglected.  

The mass and stiffness of the entire beam, which is divided 

into 4 finite elements with the piezo-patches placed at 

positions 2 and 4  is assembled using the FEM technique and 

the assembled matrices (global matrices), M and K are

obtained.  The equation of motion of the smart structure is 

finally given by 
t

ctrlext fffKqqM =+=+ ,  (57) 

where fffqKM ,, t
ctrlext ,,, are the global mass matrix, 

global stiffness matrix of the smart beam, the vector of 

displacements and slopes, the external force applied to the 

beam, the controlling force from the actuator  and  the  total  

force  coefficient  vector  respectively.

The generalized coordinates are introduced into (57) using 

a transformation gTq = in order to reduce it further such that 

the resultant equation represents the dynamics of the first two 

vibratory modes of the smart flexible cantilever beam. T  is 

the modal matrix containing the eigen vectors representing the 

first two vibratory modes. This method is used to derive the 

uncoupled equations governing the motion of the free 

vibrations of the system in terms of principal coordinates by 

introducing a linear transformation between the generalized 

coordinates q and the principal coordinates g .  Equation (57) 

now becomes

21 ctrlctrlext fffgTKgTM ++=+ ,  (58)  

where 1ctrlf  and 2ctrlf are the control force coefficient vectors 

to the actuators from the controller. Multiplying (58) by 
T

T on both sides and further simplifying, we get 

****
21 ctrlctrlext fffgKgM

* ++=+ ,  (59) 

where TMTM
T=* , TKTK* T= ,

ext

T

ext fTf =*  and 

ictrl

T

ictrl fTf =* , 2to1=i .

Here, the parameters 
***

1,,, ctrlext ffKM
*

, *
2ctrlf  represents  

the generalized mass matrix, the generalized stiffness matrix, 

the generalized external force vector and the generalized 

control force vectors respectively.  The generalized structural 

modal damping matrix *
C is introduced into (59) by using 

***
KMC βα += , (60) 

where α and β are the frictional damping constant and the 

structural damping constant used in *
C . The dynamic 

equation of the smart flexible cantilever beam developed is 

obtained as 

**
ctrlext ffgKgCgM

*** +=++ , (61) 

where
***

21 ctrlctrlctrl fff += .

F. State Space Model of the Smart Structure 

The state space model of the smart flexible cantilever beam 

is obtained as follows [25], [36]. 

Let ===
4
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2

1

2

1

x

x

x

x

x

x
gg , (62) 

Thus, 4231 , xxxx ==  (63)   

and (61) now becomes  
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x
ffKCM +=++ ,  (64) 

which can be further simplified as   
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The generalized external force coefficient vector is

,)(

,*

trfT

ext
T

ext

T

fTf

=

=
  (66) 

where )(tr  is external force input (impulse disturbance) to the 

beam.  

The generalized control force coefficient vector is

,)(

,)(

,2to1;*

tu

tV

if

ii
T

a
ii

T

ictrl
T

ictrl

hT

hT

Tf

=

=

==

  (67) 

where the voltages )(tV a
i are the input voltages to the 

actuators 1 and 2 from the controllers respectively, and are 

nothing but the control inputs  )(tui  to  the  actuators, ih  is  

a  constant  vector  which  depends  on  the  actuator  type, its 

characteristics and its position  on the beam and  is  given  by   

[ ]
[ ]00........11

,00........11 18311

−=

−= ×

c

p

a

zbdEh
 (68) 

for one piezoelectric actuator element (say, for the piezo patch 

placed at the finite element position numbering 2), where 

cp azbdE =31 being the actuator constant.  So, using (63), 

(66) and (67) in (65), the state space equation for the smart 

beam is represented as 

+
−−

=
×

−−
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(69)

,* )(
0

)14(

1 tr
fT

×

−+
TM

   

i.e., )()()( trtutx EBAX ++= . (70) 

 The sensor voltage is taken as the output of the system and 

its equation (output equation) is modeled as 

2to1,)()( === itytV i
T

i
s

i qp  ,   (71) 

where
T

ip is a constant vector which depends on the type of 

the piezoelectric sensor, its characteristics (i.e., the sensor 

constant  cS ) and on the position of the sensor location on the 

beam. The constant vector for the sensor placed at finite 

element position numbering 4 is and is given by   

[ ]
[ ],11........00

,11........00 81312

−=

−= ×

c

c
T

S

bzeGp
 (72) 

where cc SbzeG =31  is the sensor constant.

Thus, the sensor output for a MIMO case is given by   

,)(
4

3===
x

x
ty TTT

TpgTpqp  (73) 

which  can  be  written  as                                

=
×
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)42(2
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0

x

x
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y
T

T

p

p
 (74) 

for a multivariable case with 2 inputs and 2 outputs. 

i.e., .)()()( tutxty T
DC +=  (75) 

which is the output equation. 

The multivariable state space model (state equation and the 

output equation) of the smart structure developed for the 

system in (70) and (75) thus, is given by 

,)()()(

,)()()(

tutxty

trtutx

T DC

EBAx

+=
++=

  (76) 

with

)44(

11 ****
0

×
−− −−

=
CMKM

A
I

, D  = Null Matrix,

                    B = 

)24(2

1

1

1 **

00

×

−−
hTMhTM

TT

, (77) 

C
T  =

)42(2

1

0

0

×
T

T

p

p
,

)14(

1*

0

×
−=

fTM
E T ,

where )(and)(,,,,,),(),( tytxtutr EDCBA represents

the external force input, the control input, system matrix, input 

matrix, output matrix, transmission matrix, external load 

matrix, state vector, system output (sensor output).

By making 2 piezoelectric elements as active sensors / 

actuators at a time and by making other elements as regular 

beam elements, control of this MIMO state space model is 

obtained using the periodic output feedback control technique 

which is considered in the next section. The characteristics of 

smart flexible MIMO cantilever beam are given in Table 3. 

TABLE III 

CHARACTERISTICS OF THE SMART FLEXIBLE MIMO BEAM

Position of

sensor / actuator 
Eigen values 

Natural

Freq. (Hz) 

0.61 j± 123.68 19.68

Elements 2 , 4 

 2.35 j±  762.43 121.34

IV. DESIGN OF THE POF CONTROLLER

In the following section, we develop the control strategy for 

the multivariable representation of the developed smart 
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structure model using the periodic output feedback control law 

[13]-[15], [24], [37], [38] with 2 actuator inputs 1u , 2u and 2 

sensor outputs 1y , 2y for the MIMO smart structure plant as 

shown in Fig. 3. The problem of pole assignment by piecewise 

constant output feedback was studied by Chammas and 

Leondes [13]-[15] for LTI systems with infrequent 

observations. They have shown that by the use of a 

periodically time-varying piecewise constant output feedback 

gain, the poles of the discrete time control system could be 

assigned arbitrarily (within the natural restriction that they 

should be located symmetrically with respect to the real axis) 

using the POF technique. Since the feedback gains are 

piecewise constants, their method could easily be 

implemented, guarantees the closed loop stability and 

indicated a new possibility. Such a control law can stabilize a 

much larger class of systems. 

A. A brief review of the periodic output feedback control 

technique

Consider a LTI CT system [13]-[15], [24], [37], [38] given 

by 

,

,

Cxy

BuAxx

=
+=

 (78) 

which is sampled with a sampling interval of τ secs given by 

the discrete linear time invariant system (called as the tau 

system) as 

,)()(

,)()()1(

kxCky

kukxkx

=

Γ+Φ=+ ττ
 (79) 

where
pmn yux ℜ∈ℜ∈ℜ∈ ,, and τΦ , τΓ  and C are

constant matrices of appropriate dimensions.  The following 

control law is applied to this system.  The output y  is 

measured at the time instant τkt = , .....,2,1,0=k  We 

consider constant hold function because they are more suitable 

for implementation.  An output-sampling interval is divided 

into N sub-intervals of length Nτ=∆  and the hold 

function is assumed to be constant on these sub-intervals as 

shown in the Fig. 5.  Thus, the control law becomes 

( ) ( ) lNl

l

KKlklk

kyKtu

=∆+≤≤∆+
=

+,1

),()(

ττ
τ

 (80) 

for )1(.....,,2,1,0 −= Nl .  Note that a sequence of N gain

matrices { }110 .....,,, −NKKK , when substituted in (80), 

generates a time-varying piecewise constant output feedback 

gain )(tK  for τ≤≤ t0 .

Consider the following system, which is obtained by 

sampling the system in (78) at sampling interval of 

Nτ=∆ and denoted by ( )C,, ΓΦ  called as the delta 

system : 

,)()(

,)()()1(

kxCky

kukxkx

=
Γ+Φ=+

 (81) 

Assume ( )C,τΦ  is observable and ( )ΓΦ ,  is controllable 

with controllability index ν such that ν≥N , then it is 

possible to choose a gain sequence lK , such that the closed-

loop system, sampled over τ , takes the desired self-

conjugate set of eigen values. 

Define

,

1

2

1

0

=

−NK

K

K

K

K  (82) 
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==
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)()(

ττ
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τ

ττ

ku

ku

ku

kyk Ku , (83) 

then, a state space representation for the system sampled over 

τ is

),()(

),()()(

ττ
ττττ

kxCky

kukxkx N

=
+=+

 (84) 

where [ ]ΓΓΦ= − ,........,1N
.

Applying POF in (80), i.e., )( τkyK is substituted for 

)( τku , the closed loop system becomes  

( ) ( ) )( τττ kxCkx N
K+Φ=+ . (85) 

The problem has now taken the form of static output 

feedback [33], [39].  Equation (85) suggests that an output 

injection matrix G  be found such that

( ) 1<+Φ GCNρ , (86) 

where )(ρ denotes the spectral radius.  By observability, one 

can choose an output injection gain G  to achieve any desired 

self-conjugate set of eigen values for the closed-loop matrix 

( )GCN +Φ  and from ν≥N , it follows that one can find a 

POF gain which realizes the output injection gain G  by 

solving

G=K  (87) 

for K .  The controller obtained from this equation will give 

the desired behaviour, but might require excessive control 

action.  To reduce this effect, we relax the condition that 

K exactly satisfy the linear equation and include a constraint 

on it.

Thus, we arrive at the following in the inequality equations 

:

1ρ<K , (88) 

.2ρ<− GK (89)

Using the schur complement, it is straight forward to bring 

these conditions in the form of linear matrix inequalities [39], 

[19] as 
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Fig. 5  Graphical illustration of the POF control law 
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. (91) 

In this form, the LMI toolbox of MATLAB can be used for 

the synthesis of K [19], [39].  The POF controller obtained by 

this method requires only constant gains and is hence easier to 

implement. In the latter case, Werner and Furuta [37], [38] 

proposed a performance index so that G=K  need not be 

forced exactly.

This constraint is replaced by a penalty function, which 

makes it possible to enhance the closed loop performance by 

allowing slight deviations from the original design and at the 

same time improving the behaviour.  The performance index 

)(kJ is given by  

[ ]

( ) ( ),
0

0
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0
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uxkJ
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+=

∞
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∞
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 (92) 

where
nnmm PQR ×× ℜ∈ℜ∈ ,, are positive definite and 

symmetric weight matrices, lx and lu denote the states and 

the inputs of the delta system respectively and 
*

kNx denotes

the state that would be reached at the instant kN , given 

Nkx )1( − , if K is solved to satisfy (87) exactly, i.e., =*
kNx

( ) Nk
N xCG )1( −+Φ .

The first term represents the ‘averaged’ state and control 

energy whereas the second term penalizes the deviation of G .

A trade-off between the closed loop performance and 

closeness to the chosen design is expressed by the above cost 

function.

V. CONTROL SIMULATIONS OF THE BEAM

The FEM and the state space model of the smart cantilever 

beam is developed in MATLAB using Timoshenko beam 

theory.  The cantilever beam is divided into 4 finite elements 

and the sensor and actuator as collocated pairs are placed at 

finite element positions 2 and 4 respectively, thus giving rise 

to a single MIMO model of the smart structure plant.   

A fourth order state space model of the system is obtained 

on retaining the first two dominant modes of vibration of the 

system.  The POF control technique discussed in the previous 

section is used to design a controller to suppress the first two 

vibration modes of a cantilever beam through smart structure 

concept. Simulations are carried out in MATLAB.  The 

performance of the system is evaluated for vibration control.

An external force extf (impulse disturbance) of 1 Newton is 

applied for duration of 50 ms at the free end of the beam 

shown in Fig. 3 and the open loop response of the system is 

observed.  The first task in designing the POF controller is the 

selection of the sampling interval τ .

The maximum bandwidth for all the sensor / actuator 

locations on the beam are calculated (here, the second 

vibratory mode of the plant) and then by using existing 

empirical rules for selecting the sampling interval based on 

bandwidth, approximately 10 times of the maximum second 

vibration mode frequency of the system has been selected.  

The sampling interval used is 004.0=τ  seconds. Let 

( )C,, ττ ΓΦ  be the discrete time system (tau system) of the 

system in Fig. 3 given in (76) sampled at a rate of 

τ/1 seconds respectively.   

It is found that the DT systems are controllable and 

observable.  The ranks of the matrices are 4. The stabilizing 

output injection gains are obtained for the tau system such that 

the eigenvalues of ( )ii

N

i CG+Φ  lie inside the unit circle and 

the response of the system has a good settling time. The 

impulse response of the system with the output injection gain 

G is observed.

Let ( )C,, ΓΦ  be the discrete time system (delta system) of 

the system in Fig. 3 in (76) sampled at the rate of ∆/1 secs

respectively, where N/τ=∆ . The number of sub-intervals, 

N is chosen to be 10.

The periodic output feedback gain matrix K  for the smart 

system given is obtained by solving G=K  using the LMI 

optimization method [19], [39] which reduces the amplitude 

of the control signal u .  With the designed controller put in 

the loop, the closed loop impulse responses (sensor outputs 

1y and 2y ) with the periodic output feedback gain K of the 

system are observed.   

The variation of the control signal 1u and 2u with time for 

the MIMO model shown in the Fig. 3 are also observed.  The 

tip displacements are also observed with and without the 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

282

controller.

Simulations are also performed for the SISO based smart 

structure shown in the Fig. 4 and the open loop response, 

closed loop responses with G  and K , the control input and 

the tip displacements are also observed.  The MIMO and the 

SISO results are compared and the conclusions are drawn.  

The POF gain matrix K  for the MIMO model of the smart 

beam is given by  

[ ].
97.004.101.198.076.0

41.087.093.089.072.0

59.051.039.028.046.0

56.049.035.023.045.0
*10

21

2

TT

T

KK

K

=
−
−

−−−
−−−

=

 (93) 

VI. SIMULATION RESULTS

Fig. 6  Open loop, Closed loop responses (with output injection gain 

1G , POF gain 1K ), control input 1u  of the MIMO beam (piezo 

patch placed at finite element position 2) 

Fig. 7  Open loop, Closed loop responses (with output injection gain 

2G , POF gain 2K ), control input 2u  of  the MIMO beam (piezo 

patch placed at finite element position 4) 

The open loop response, the closed loop response with the 

output injection gain 1G , the closed loop response 1y with the 

POF gain 1K , the control input 1u  of the MIMO system for 

the sensor / actuator pair placed at finite element position 2 are 

shown in Fig. 6.  Similarly, the open loop response, the closed 

loop response with the output injection gain 2G , the closed 

loop response 2y with the POF gain 2K , the control input 2u

of the MIMO system for the sensor / actuator pair placed at 

finite element position 4 are shown in Fig. 7.   

The open loop response, the closed loop response with the 

output injection gain G , the closed loop response with the 

POF gain K , the control input u  of the SISO system is 

shown in Fig. 8. The tip displacements for the MIMO system 

and the SISO without and with the POF controller are shown 

in Figs. 9 and 10 respectively. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

283

[

Fig. 8  OL, CL responses (with output injection gain G and POF 

gain K ), control input u  for SISO beam with piezo patch placed at 

FE position 4 

Fig. 9 (a)   Tip displacements of the MIMO beam without the POF 

controller

Fig. 9 (b)   Tip displacement of the MIMO beam with the 

POF controller  

Fig. 10 (a)   Tip displacements of the SISO beam without the 

POF controller  

Fig. 10 (b)   Tip displacements of the SISO beam without and 

with the POF controller 
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VII. CONCLUSIONS

Periodic output feedback controller has been designed for 

the MIMO smart structure state space model. The beam was 

divided into 4 finite elements with sensor / actuator pair 

placed at finite element positions 2 and 4. The various 

responses are obtained for the designed state space model.  

Through the simulation results, it is shown that when the plant 

is placed with this controller, the plant performs well. It is also 

observed that modeling a smart structure by including the 

sensor / actuator mass and stiffness and by placing the sensor / 

actuator at two different positions introduces a considerable 

change in the structural vibration characteristics.

In this paper, for the multivariable case, it is observed that 

when the pair is kept at two different locations, the open loop 

and closed loop responses of the MIMO system is less 

oscillatory compared to the single input single output case. 

The response takes lesser time to settle than the SISO case. 

The control effort u required is also less. The impulse 

responses with the output injection gain G  and the POF gain 

K shows better performance. As the bending moment is 

distributed heavily near the fixed end for the fundamental 

node, this leads to a large strain (strain rate being very high) 

and results in high sensor output voltage.

The sensor voltage is greater when the pair is located near 

by the fixed end (FE position 2).  The control effort required 

gets reduced if sensor / actuator locations are moved towards 

the fixed end.  The sensor voltage is very less when the pair is 

located at the free end (FE position 4).  Hence, a large control 

effort is required to damp out the vibrations in this case.  Also 

it is inferred that, the sensor / actuator pair sensitivity depends 

on its placement position and the mode number. The output 

injection gain for the multivariable plant is obtained so that its 

poles are inside the unit circle and has a good settling time of 

less than 1 second. 

The pair kept at position 2 controls the two vibratory modes 

at that finite element position 2, while the pair kept at position 

4 also controls the two vibratory modes, but placed at that 

finite element position 4. A overall better performance of the 

system is obtained than in the SISO case [25]. In this case, the 

output takes lesser time to settle, vibrations are damped out 

quickly. The control effort required is less. In the SISO case 

[30], the response takes little more time to settle. Hence, it can 

be concluded that multivariable control of a smart structure is 

better compared to the single input single output control as 

• the two vibratory modes can be suppressed to a larger 

extent at two different finite element positions and  

• the response characteristics with  G  and with K  also are 

improved  

• the tip displacements are improved and the vibrations 

dampen out quickly in this case.  

• multiple interactions of the input and the output.    

MIMO dynamic analysis is able to identify pairs of modes 

that occur at nearly identical frequencies. SISO experiments 

are not actually reliable when it comes to accurate 

identification of mode pairs because they are unable to 

positively decipher mode pairs from signal noise in the 

measured Frequency Response Functions (FRF).  For 

example, mode pair at 19.26 Hz and 19.94 Hz of the first 

natural frequency in MIMO was originally interpreted as a 

single mode at 19.68 Hz in SISO.  

Depending on the application, the smearing of the mode 

pairs into single modes may adversely affect the control 

algorithm, depending on the algorithm’s sensitivity to the 

identified resonant frequencies of the system.  MIMO 

excitation is better than SISO excitation as only exciting at a 

single point may cause poor distribution of input energy 

throughout the structure and may result in somewhat slightly 

disturbed frequency responses.  A multi input test provides 

better energy distribution and even better actuation forces.

Responses are obtained without control and are compared 

with the control to show the control effect. From the 

simulations, it was observed that without control the transient 

response was predominant and with control, the vibrations are 

suppressed. Thus, an integrated finite element model to 

analyze the vibration suppression capability of a smart 

cantilever beam with surface mounted piezoelectric devices 

based on Timoshenko beam theory is presented in this paper.   

The limitations of Euler-Bernoulli beam theory such as the 

neglection of the shear φ  and axial displacements have been 

considered here while modeling the beam. Timoshenko beam 

theory corrects the simplifying assumptions made in Euler-

Bernoulli beam theory and the model obtained can be a exact 

one. The designed POF controller requires constant gains and 

hence is easier to implement in real time.  

APPENDIX

When φ is neglected, the mass matrix reduces to  
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When φ is neglected, the stiffness matrix reduces to  
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The mode shape function φ  when neglected reduces to



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:6, 2007

285

[ ]

+−

−

+−

+−

=

2

32

3

3

2

2

2

32

3

3

2

2

23

2

231

bb

bb

bb

bb

T

w

l

x

l

x

l

x

l

x

l

x

l

x
x

l

x

l

x

N
.

ACRONYMS / ABBREVIATIONS

SISO Single Input Single Output   

MIMO Multi Input Multi Output  

FEM Finite Element Method  

FE Finite Element  

LMI Linear Matrix Inequalities 

MR Magneto Rheological  

ER Electro Rheological   

PVDF Poly Vinylidene Fluoride  

CF Clamped Free   

CC Clamped Clamped  

CT Continuous Time 

DT Discrete Time  

HOBT Higher Order Beam Theory  

RHS Right Hand Side  

LTI Linear Time Invariant  

POF Periodic Output Feedback 

EB Euler-Bernoulli  

PZT Lead Zirconate Titanate 

IEEE Institute of Electrical & Electronics Engineers 

IOP Institute of Physics 

ISSS Institute of Smart Structures and Systems  

SPIE Society of Photonics & Instrumentation Engineers 

NOMENCLATURE (LIST OF SYMBOLS)

extf  External force input  

l  Length of the beam 

b  Width of the beam  

bE  Young’s modulus of beam 

bρρ ,  Mass density of beam  

βα ,  Structural constants 

bt  Thickness of beam  

pl  Length of the piezoelectric patch 

at  Thickness of actuator  

st  Thickness of sensor 

pE  Young’s modulus of piezoelectric  

pρ  Mass density of piezoelectric 

31d  Piezoelectric strain constant  

31g  Piezoelectric stress constant 

θ  Bending angle (rotation about Y axis)

β  Shear angle 

ZYX and,  The 3 axis of 3D space   

u  Axial displacement along X  axis  

v  Lateral displacement along the Y axis

UT ,  Kinetic energy and strain energy 

xzσ , xxσ  Shear stress, Tensile stress    

Κ   Shear coefficient 

 Linear strain  

γ  Shear strain 

I   Mass MI of beam element  

A  Area of cross section of beam element 

w   Linear velocity   

dq  Distributed force along length of the beam  

m  Moment along the length of the beam  

eW    Work done due to the external forces   

W  External work done  

t   Time in secs 

ia   Unknown coefficients )( 4,3,2,1=i

jb   Unknown coefficients )( 3,2,1=j

q  Vector of displacements and slopes  

q  Time derivative of the modal coordinate 

vector fE  Electric field  

D   Dielectric displacement 

e  Permittivity of the medium  

Es  Compliance of the medium 

d   Piezoelectric constant  

)(tQ  Charge developed on the sensor surface  

)(ti  Current generated by the sensor surface 31e

 Piezoelectric stress / charge constant 

sV  Sensor voltage 
sV

cG  Signal-conditioning device with gain  

cK  Controller gain cK

)(ty  Output of the system (sensor output) 

)(tV a
 Actuator voltage  

)(tV s
 Sensor voltage 

ctrlf   Control force applied by the actuator   

tf  Total force coefficient vector 
*

M  Generalized mass matrix  
*

K  Generalized stiffness matrix 
*

C   Generalized damping matrix  

g   Principal coordinates 
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)(tu   Control input    

)(tr External input to the system 

)(tx  State vector  

)(tx  Derivative of the state vector  

nℜ n dimension space  

τ  Sampling interval 

G  Output injection gain  

υ   Controllability index of the system 

kk yu ,  Input and output at the 
thk instant   

00 , DC  Lifted system matrices   

321 ,, ρρρ  Spectral norms  

I  Identity matrix 

N  Number of sub-intervals  

L  Length of beam element 
pM  Mass matrix of the piezoelectric element  

pA  Area of the piezoelectric patch 

[ ]IM ρ  Mass matrix with rotary inertia           

φ   Ratio of beam bending stiffness to shear 

stiffness

[ ]TwN   Mode shape functions for displacement taking 

φ  into consideration 

pK  Stiffness matrix of piezoelectric element  

[ ]T
Nθ   Mode shape functions for rotations taking φ

into consideration 

[ ]T

aN   Mode shape functions for accelerations taking 

φ  into consideration 

bK  Stiffness matrix of the regular beam element 

(also called as the local stiffness matrix) 

bM  Mass matrix of the regular beam element (also 

called as the local Mass matrix) 

[ ]AM ρ  Mass matrix associated with translational 

inertia

, ,xx yy zzε ε ε  Longitudinal strains or the tensile strains in the 

3 directions 

ττ ΓΦ ,  System matrix, input matrix discretized at 

sampling interval of τ  secs 

ΓΦ ,  System matrix, input matrix discretized at 

sampling interval of ∆  secs 

DCBA ,,,  State space system matrices (CT)  

E  External load matrix which couples the 

disturbance to the system 

KM ,  Mass and stiffness of the regular beam element 

T
p  Constant vector, which depends on sensor 

characteristics

Th  Constant vector, which depends on actuator 

characteristics

M  Assembled mass matrices (global mass matrix) 

K  Assembled stiffness matrices (global stiffness 

matrix), Periodic output feedback gain 

T  Modal matrix containing the eigenvectors 

representing the 1st 2 modes 
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