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On the Optimal Number of Smart Dust Particles
Samee Ullah Khan and Cemal Ardil

Abstract—Smart Dust particles, are small smart materials used
for generating weather maps. We investigate question of the optimal
number of Smart Dust particles necessary for generating precise,
computationally feasible and cost effective 3–D weather maps. We
also give an optimal matching algorithm for the generalized scenario,
when there are N Smart Dust particles and M ground receivers.
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I. INTRODUCTION

SMART Dust are small maple leaf like structures. On board
are miniature sensors for temperature, moisture and wind

profile monitoring. To relay the information they are also
equipped with signal emitters. Since these leaves are very
light weighted they descend slowly towards the earth’s surface,
and as they do, they constantly send out information about
temperature, moisture and wind directions. Each leaf costs
around US $30, and is released into the atmosphere by a small
auto plane [1].

The potential applications for these ‘Smart Dust Particles’
as pointed out in [1], are to trace wind profiles in the Bay area,
and since in reality these particles fall in a 3–D environment,
a possibility of constructing a 3–D weather map also exists.

A lot of research has been done towards the development of
their functionality and structure which is summarized in [1],
but still there exist some problems related to Smart Dust. In
order to construct a 3–D weather map, we are faced with two
major difficulties [2], [3].

1) How to map the signals from various senders to
receivers, with drift or other atmospheric constraints?

2) What is the optimal number Smart Dust particles needed
to generate a precise, computationally feasible and cost
effective 3–D weather map?

We investigate both the above stated problems. We present
an O(n · m) algorithm to optimally match N senders and M
receivers in the generalized scenario, by showing the problem
equivalence to maximal–Bipartite Graph Matching Problem.
In [3], they made the conjecture that the number of Smart
Dust particles should be n ∼ 1/ε, where ε is the drift error.
We prove this conjecture for the case of N senders and 2
receivers, by employing signal phase difference.

The direction from which the signal is received is known
but not the distance, i.e. the particles can not be mapped
correctly to the 3–D map, which is to be constructed from the
information gathered during the particles’ decent. The error in
the mapping, is primarily due to the wind drifts experienced by
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the particles. An asymptotically optimal matching algorithm
was given in [3], which solves the matching problem, but poses
another problem of determining the optimal number of Smart
Dust particles that are to be released into the atmosphere.
An upper bound on the number of particles to be released
is important in order to generate an accurate, computationally
feasible and cost effective 3–D map. We divide the paper as
follows. First we will give another solution to the optimal
matching of the signals between the senders and receivers,
after which we will develop the mathematics necessary to
obtaining the optimal number of Smart Dust particles and
prove the conjecture made in [3].

II. THE PROBLEM OF OPTIMAL MATCHING

As mentioned earlier, there exists the problem of uniquely
mapping signals from various Smart Dust particles to the
ground receivers. In general this matching is solvable in
O(2n · logn) [3]. Here, we will give another approach
by transforming the problem to ‘Maximal–Bipartite Graph
Matching Problem’ (BGMP). Our approach is slower by a
factor of log, then the solution proposed by our predecessors,
but now we are able to match M receivers and N senders.
Before we transform the problem to BGMP, we will quote
some lemmas that are necessary for the transformation.

We can define the Bipartite Graph Matching problem as
follows: A graph G = (V, E) having a set of nodes L and
a set of nodes R such that L ∩ R = φ, L ∪ R = V , and ∀
(u, v) ∈ E, u ∈ L and v ∈ R.

Lemma 1: A matching of a graph G = (V, E) is a subset
of edges such that no two edges are incident to the same node.

Proof: A matching M in a graph G = (V, E) is a subset
of E such that there is no {u, v1, v2} ∈ V such that v1 �= v2

and either (u, v1) ∈ M and (u, v2) ∈ M , or (v1, u) ∈ M and
(v2, u) ∈ M .

It turns out that using the approach of augmented paths,
converges to a much simpler solution. Augmenting Path actu-
ally takes a non-maximum maximal matching and extends it
by changing the pairing of some of the nodes. An augmenting
path starts at an unmatched node, then alternately takes un-
matched and matched edges back and forth until an unmatched
node on the right is reached.

Lemma 2: A matching in graph G is maximum if and only
if there is no augmenting path with respect to it.

Proof: It is clear that given a Matching M , if we have
an augmented path P , then an improvement can be brought
to M . This can be simply done by replacing in M the edges
of P ∩ M by P − M . This new M would be larger than the
previous. Conversely, if M is not maximum, and there exists a
larger matching M ′, by considering the connected components
of M∪M ′. These connected components are either alternating
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paths or alternating circuits with respect to M . At least one
such component must contain more edges of M ′ than of M .
This component is an augmenting path with respect to M [4],
[5].

Lemma 2 suggests the following algorithm for computing a
maximum matching: start with a feasible matching M , try to
find repeatedly an augmenting path P , and replace M by their
Symmetric Difference Graph [6]. If there is no more path, we
have found our maximal matching.

Lemma 3: Let G = (V, E) be a graph and |V | = n and
|E| = m. The bipartite matching algorithm runs in worst case
time O(n · m) for a given graph G = (V, E).

Proof: The algorithm executes the search and augment
procedures at most n times [4]. The augment procedure clearly
requires O(n) time. For each node i, the search procedure
performs one of the following two operations at most once: it
finds an even edge, or it finds an odd one. The latter operation
of course requires constant time per execution. The former
operation requires O|Adj(i)| (where Adj(i) is the list of
adjacent nodes of i), so a total of O(

∑
v∈V |Adj(i)|) = O(m)

time for all the nodes are needed [5].
Each time we augment the matching, its cardinality in-

creases by one. If the algorithm terminates, we have a maxi-
mum matching according to Lemma 3.

First we try to find an augmenting path using a labelling
technique which starts at an unmatched node p and then
uses a search algorithm to identify all reachable nodes. If
the algorithm finds an unmatched node, it has discovered an
augmenting path. If there is no such unmatched node, there is
no augmenting path starting at node p.

We will grow a search tree rooted at node p such that each
path in the tree from node p to another node is an alternating
path. We refer to this tree as an alternating tree and nodes in
the tree are labelled nodes and the others are unlabelled. The
labelled nodes are of two types: even or odd. The root node is
labelled with even. Notice that whenever an unmatched node
has an odd label, the path joining the root node to this node
is an augmenting path.

Theorem 1: Optimal Matching of Smart Dust Particles, is
equivalent to the Maximal–BGMP.

Proof: Without the loss of generality we can see that
the problem comprises of two sets of nodes: Senders S i

and Receivers Ri [7], [8]. The senders send out information
to the receivers (in general they can be N), these relay of
information form the edges, going to the receivers. Since with
the atmospheric and other constraints, all we know is the
angles that the edges make with the surface where the receivers
are but not the length of the edges. From Lemma 1, we are
clear that if we find such a matching, the problem is equivalent
to that of the BGMP. Although, we are only interested in
matching a set of edges to the senders, but a more realistic
question would be: How many such nodes (particles) can be
matched to the receivers? (Lemma 2). Thus, it leads to the
formulation of the Maximal–BGMP, and O(n · m) would be
needed to match every sender to receiver(s) (Lemma 3).

Vidal et al. used only two receivers to solve a more practical
problem [3]. Our generalized transformation is for N senders
and M receivers, but of course the same would hold for N

senders and 2 receivers.

III. OPTIMAL NUMBER OF SMART DUST PARTICLES

We will now address the question asked by Vidal et al.
For a given measurement accuracy ε, what is the optimal
number of leaves Smart Dust particles?
They conjectured that it would be n ∼ 1

ε . Here, we will
develop the necessary mathematics needed for this problem
and finally formulate the formal proof to their conjecture.

Consider two different Receivers R1 and R2 on the hori-
zontal separated by distance d. Both receive signals from the
Sender S with the same wavelength λ. The sender S is at
some vertical distance making an angle θ with the vertical
axis passing through the horizontal mid–point d

2 . Assuming
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Fig. 1. Two Receivers and one Sender

that with the drift and other atmospheric constraints at any
given time t, the two lengths L1 and L2 do not match.
If so then we can find the difference of the arrival of the
signals (phase difference). We can formulate Figure 1, as
a set of complex numbers. By doing so we are able to
represent the physical quantities associated with the complex
numbers. The vectors become L1e

iφ1 and L2e
iφ2 with real

part as L1cosφ1 and L2cosφ2. By adding them together we
get LeiφL=L1e

iφ1+L2e
iφ2 . We will now find the length of L,

the complex conjugate would be the same expression as that of
the normal vector addition, except that the signs are reversed.
We get:

L2 = L2
1 + L2

2 + L1L2(ei(φ1−φ2) + ei(φ2−φ1)) (1)

Now, eiθ +e−iθ = cosθ+isinθ+cosθ−isinθ = 2cosθ. Thus
we obtain:

L2 = L2
1 + L2

2 + 2L1L2cos(φ2 − φ1) (2)

The resultant ensures the effects of both the receiver’s capa-
bilities L2

1 and L2
2, along with their correction factor. This

correction factor, is the interference effect. Note that this
model would also result in a negative correction factor. This
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can be rectified by rotating the receivers clockwise by π,
resulting in a positive factor again. But in general since the
particles, would be so densely populated, there would be
enough positive factors, to cancel out the effect of the negative
factors.

We will now induce errors, which are due to the drift or
other unknown factors. Once such a scenario is reached, the
location of the sender S is not represented by a single point,
but by a sphere of radius ε. Figure 2 shows such a scenario.

π−(π/2+ cosh (ε/ L1))
ϕ1

L1

cosh (ε/L1)

Fig. 2. Receiver and Sender with drift error ε

For our convenience, we draw the wedge as a right angle
triangle, although this is not necessarily true in general. But
since the error is of random nature the assumption of wedge
being a right–angled triangle does not depict a worst case
scenario. Now, we are able to compute the drift in the angle
of reception for the receivers and now the vectors take the

form of L1e
i(cosh

( ε
L1

)
+φ1) and the angle for the receiver R1,

would be anything between φ1 to π − (π
2 + cosh( ε

L1
)) and

similarly for receiver R2. But due to the symmetry of the two
receivers, the effect of the error in the sender’s location, would
be cancelled out and it can be shown that a similar result is
obtained as in Equation 2.

We still have not yet been able to find the exact position
of the source. But this problem is answerable by finding the
phase difference φ1 − φ2 (the arrival of signals at receivers
R1 and R2). We will now derive a lemma, that is necessary
for the proof that the phase difference solves the problem for
finding the location of the sender S.

Lemma 4: If L1 �= L2 and receivers R1 and R2 are d
distance apart, then there would be a phase delay.

Proof: Let there be two receivers R1 and R2 at distance
d apart, receiving signals of the same amplitude from source
S. Due to the distance d and the setup angle θ over the axis at
point d

2 , one of the legs of the outer triangle would be larger
than the adjacent leg connecting the other receiver. Thus, there
would be an intrinsic relative phase delay α, i.e. if one signal
arrives at time t0, than the other signal would arrive at time
t0 + α.

Theorem 2: Finding the phase difference (φ1 − φ2) gives
the generalized formula of the optimal angle required for the
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Fig. 3. Receivers with a phase difference α between them

minimized interference (maximal number of senders Sn).
Proof: The phase relation from Lemma 4 and Figure 3 is

d·sinθ, which is the difference in the distance from the source
S to the two receivers R1 and R2. Since the sender’s location
is faulty, we use the factor of 2πε (the ball surrounding the
sender in Figure 1) as error. Thus, we obtain:

φ = φ2 − φ1 = 2πεdsinθ (3)

In the case where the phase difference φ = π
2 , it follows

from Equation 2, since cos π
2 = 0.

L2 = L2
1 + L2

2 (4)

In other words we have the exact additive distance.
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Fig. 4. N Senders and 2 Receivers

Equation 2, is none other than the well known Cosine law,
and the special case Equation 4, the well known Pythagorean
formula for the right–angled triangle. In fact, if φ �= π

2 ,
then for the case φ > π

2 , we have cosφ < 0. Thus,
the term 2L1L2cos(φ2 − φ1) < 0 in Equation 2, i.e. a
negative value (destructive interference) but as we had already
argued that would be of little effect, as we would have a
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geometric symmetry and therefore Equation 2, would look
like: L2 < L2

1 + L2
2. For the case φ < π

2 , since cosφ > 0, we
will have 2L1L2cos(φ2 − φ1) > 0 and thus it would follow
from Equation 2, that in the case φ < π

2 , L2 > L2
1 +L2

2, i.e. a
positive value (constructive interference). Thus, if we would
like to have an exact measurement of the angles at which the
sender should transmit data to the receiver(s), we have to set
φ = π

2 in Equation 3. Thus we arrive at,

sin θopt =
1

4dε
(5)

From Equation 5, we now derive some qualitative conclusions.
First as ε → 0, notice the denominator becomes small and
sin θopt increases. This implies that θ → π

2 . Therefore, lower
error rate are optimally better along the axis connecting the
receivers. If ε → ∞ the term 1

ε becomes very small and
sin θopt → 0. This implies that θopt → 0. Thus, higher values
of ε are better viewed optimally perpendicular to the axis
connecting the receivers. It is intuitively true that the value 4·d
in the denominator of Equation 5, would remain constant for
a given set of scenario. Therefore,it will have no effect on the
outcome of the result and we can eliminate them altogether.
Thus, we can say sin θopt = 1

ε . As there can be at most N
senders spread over the horizon as shown in Figure 4, the
number of senders, would be confined in a region of π. In
Figure 4, each of the senders can be optimized by Equation 5.
Optimizing the angle for each of the N senders would give the
globally optimized solution for the N senders and 2 receivers
problem. Thus, n ∼ 1

ε holds, and Vidal et al. made the correct
conjecture.

IV. CONCLUSION AND OPEN PROBLEMS

It might take some time before we can efficiently make
use of the Smart Dust. Its application towards weather maps
is much useful, but who knows maybe in the future humans
would make use of these materials in some different fashion.
We derived an approach for the maximal matching of these
particles to the receivers, and also proved the conjecture
made in [3]. Although, we do admit that the bound on this
number is very loose, and we hope that in the future someone
would come up with a tighter bound. Moreover, it would
be interesting to see, if experimentally proven results are
obtained.
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