
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

875

Adaptive Distributed Genetic Algorithms
and Its VLSI Design

Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki

Abstract—This paper presents a dynamic adaptation scheme for
the frequency of inter-deme migration in distributed genetic al-
gorithms (GA), and its VLSI hardware design. Distributed GA,
or multi-deme-based GA, uses multiple populations which evolve
concurrently. The purpose of dynamic adaptation is to improve
convergence performance so as to obtain better solutions. Through
simulation experiments, we proved that our scheme achieves better
performance than fixed frequency migration schemes.

Keywords—Genetic algorithms, dynamic adaptation, VLSI hard-
ware.

I. INTRODUCTION

TO obtain drastic performance improvement, it is effective
to implement genetic algorithms (GAs) in VLSI hard-

ware. The structure of GA computation and problem represen-
tation forms a good basis for VLSI hardware. VLSI hardware
implementations of GAs have already been widely studied,
some of which concerned specific problems such as pattern
matching, scheduling, the traveling salesman problem and
image filtering, and some of which are problem-independent.

Their extensions towards parallel GA and distributed GA
are also being studied to obtain much better performance
improvement. Parallel GA evaluates fitness values of multi-
ple genotypes simultaneously, and thus realizes fine-grained
parallel processing. Distributed GA, or multi-deme-based GA,
uses multiple populations which are evolving concurrently, and
thus realizes coarse-grained parallel processing.

We designed and developed GAP, a general-purpose GA-
VLSI with parallel and distributed GA implementations [1].
The distributed GA configuration of GAP is composed of mul-
tiple GAPs working concurrently. It is important in distributed
GA that some of the genotypes should be “migrated” between
demes occasionally in order to prevent isolated evolution and
premature convergence. We used the simplest scheme for
migration: in every evolution cycle, newly created genotypes
are migrated to the next deme.

In this paper, we present a dynamic adaptation scheme for
the frequency of inter-deme migration. In short, each processor
observes the convergence status of its deme, i. e. observes
the gradient of the convergence curve, and determines how
often to communicate for migration. The purpose is to reflect
convergence properties and adapt dynamically so as to obtain
better solutions.

K. Kobayashi is with InterDesign Technologies Inc., Tokyo 105-0014,
Japan. N. Yoshida is with Department of Information and Computer Sciences,
Saitama University, Saitama 338-8570, Japan (e-mail: yoshida@mail.saitama-
u.ac.jp). S. Narazaki is with Department of Computer and Information
Sciences, Nagasaki University, Nagasaki 852-8521, Japan.

Manuscript received July 15, 2009; revised September 7, 2009.

We present GAP/D, a multi-deme-based distributed-GA
VLSI design, and through simulation experiments, we prove
that our scheme achieves better performance than fixed fre-
quency communication schemes without affecting the overall
convergence properties.

Section 2 summarizes the design of the original GAP. Sec-
tion 3 describes its extensions to parallel GA and distributed
GA. Section 4 explains dynamic adaptation scheme for inter-
meme migration, and Section 5 proves its effect by preliminary
software-based simulations. Section 6 presents some experi-
ment results, and Section 7 contains some concluding remarks.

II. DESIGN OF GAP

Our GA-VLSI system is composed of two modules:
a general-purpose problem-independent part for selection,
crossover and mutation operations, and a problem-dependent
part for fitness evaluation. GAP is the problem-independent
module, working together with FEP (Fitness Evaluation Pro-
cessor) dedicated to problem-dependent fitness evaluation (Fig.
1).

GAP contains some modules for random number generation
and population control along with modules for selection,
crossover and mutation. FEP must be designed for a given
specific problem. GAP and FEP are connected via a population
memory. In this system, the below modules are the most
innovative. Their details are found elsewhere [1].

Population Memory:
Many other GA-VLSIs have employed the conven-
tional generational GA. In that scheme, the whole
population is updated at once when a generation pro-
ceeds. Two sets of population memories are required
for the current and next generations respectively, and
there is overhead for transferring or switching one
memory to the other when a generation proceeds.
GAP employs the steady-state GA [2]. In this
scheme, the population is updated continuously;

Fig. 1. Basic GAP architecture.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

876

there is actually no concept of generations.
Genotypes are passed from GAP to FEP as soon
as they are created, and then passed back from
FEP to GAP as soon as they are evaluated. Genetic
operations and fitness evaluations are overlapped in
this way, and the whole system works in a pipeline
fashion. Only a single set of population memories
is required.

Selection Module:
Most other GA-VLSIs employ the roulette wheel
selection scheme for genotype selection. The roulette
wheel selection is the most straight-forward scheme:
the greater a genotype’s fitness is, the more likely that
genotype will be selected. However, as can easily be
seen, this scheme is a bottleneck for VLSI hardware
in respect to both circuit size and performance.
In theoretical research on GA, some alternative
selection schemes which are better with regard
to convergence properties have been studied
and examined [3]. Investigating such theoretical
researches, we have introduced a selection scheme
which is suitable for VLSI hardware. It is named
the “simplified tournament selection”, since it is
a simplified version of the tournament selection
scheme.

Random Number Generation Module:
This module generates a sequence of pseudo-random
bit strings using the theory of linear cellular automata
(CA). The CA scheme was proved theoretically to
generate better random sequences, in the sense that
the sequences had a longer cycle length, than the
scheme of linear feedback shift registers (LFSR)
which has been widely used [4].
From the VLSI implementation standpoint of view,
the CA scheme spends more gates than the LFSR
scheme. However, the randomness of the random
number generation is one of the most crucial in GA
implementation, and the CA scheme was proved to
be better in this respect. Consequently, we employed
the CA scheme.

III. EXTENSIONS TO PARALLEL AND DISTRIBUTED GA

As problems to be solved become more complicated, FEPs
turn into bottlenecks for the overall GA system performance.
Therefore, multiplication of FEPs in a system can be effective
for improving performance.

In the research area of theories and software for GA, there
have already been many studies on parallel and distributed
processing for GA. Parallel GA evaluates fitness values of mul-
tiple genotypes simultaneously, and thus realizes fine-grained
parallel processing. Distributed GA, or multi-deme-based GA,
uses multiple populations which are evolving concurrently, and
thus realizes coarse-grained parallel processing.

The basic architecture of GAP hardware design facilitates
extensions for parallel GA and distributed GA.

Fig. 2. Parallel and Distributed GAP architecture.

Parallel GA for GAP:
The simplified tournament selection scheme creates
two new genotypes and evaluates their fitness
values in every evolution cycle. Therefore, two FEP
chips can be connected to a GAP, as shown in
Fig. 2, and they evaluate the fitness values of the
two new genotypes simultaneously. The dispatch
module controls these two FEPs. This parallel GA
configuration is expected to double the performance
of fitness evaluation.

Distributed GA for GAP:
The distributed GA configuration of GAP is com-
posed of multiple GAPs working concurrently. It
is important in distributed GA that some of the
genotypes should be “migrated” between demes
occasionally in order to prevent isolated evolution
and premature convergence. At first, we used the
simplest scheme for migration: in every evolution
cycle, newly created genotypes are migrated to the
next deme. GAP chips are connected to each other in
a ring form. Newly created genotypes are transferred
to the population memory in the next GAP chip
via the emigration and immigration modules. This
configuration contributes to convergence.

IV. DYNAMIC ADAPTATION FOR MIGRATION FREQUENCY

Isolated evolution in each deme tends to get trapped into
a dead-end. This is known as premature convergence, and
is prevented by migrating genes occasionally among demes.
There are some parameters for inter-deme migration, and “how
often to migrate” is the most critical.

Regarding migration frequencies, most distributed GA sys-
tems migrate genes in every generation or at randomly chosen
intervals. These migration schemes are so simple that they
cannot reflect convergence properties, nor adapt dynamically
so as to obtain good solutions. A too low frequency leads to
premature convergence, whereas a too high frequency spoils
the effect of parallel evolution, and system performance due
to communication overhead.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

877

Fig. 3. GAP/D architecture.

The essence of our idea is very simple in its principle. A
processor observes the gradient of the convergence curve of
its deme, and performs migration when the gradient gets flat,
i. e. its deme is about to converge. On each generation t,
the processor computes an average fitness value f(t) and its
gradient

g(t) =
f(t) − f(t − Δt)

Δt

It then checks whether g(t) ≤ gth or not against a certain
pre-defined threshold gth, and performs migration when this
condition stands (Fig. 3).

There is a related study for dynamic adaptation based on
population distribution [5]. A processor observes standard de-
viation σ of gene fitness in its demes, and performs migration
when σ gets low. However, this scheme disregards absolute
values of gene fitness, thus sometimes causes premature con-
vergence towards the low level of fitness. Also, this scheme
involves intensive computation, and difficult to fit for hardware
implementation.

V. PRELIMINARY EVALUATION

To verify the effectiveness of the dynamic adaptation
scheme for migration frequencies, we performed some prelim-
inary experiments using software implementation over LAN.
For simplicity, it is generational GA, and network communi-
cation is broadcast-based.

Fig. 4 shows one result of the experiments, in which each
of four lines stands respectively for:

• single: single deme
• 4 cluster: four demes on a single host
• dist, fix: four demes on four hosts,

with fixed migration frequency
• dist, var: four demes on four hosts,

with adaptive migration frequency

Here, the sample problem is the Rastrigin function min-
imization, which is from the standard set on benchmark

300

350

400

450

500

550

0 5 10 15 20 25

be
st

 fi
tn

es
s

generation

Distributed GA (best result) Rastrigin

single
broadcast(4cluster,fix)

broadcast(dist,fix)
broadcast(dist,var)

Fig. 4. Software simulation of adaptation.

problems for GA system evaluation [6]. It is to find a vector
�x which minimizes

f(�x) = 3.0n +
n∑

i=1

{x2
i − 3.0cos(2πxi)}

We observe some bends in the line of GA with adaptive mi-
gration frequency around the generations 8 and 13. Comparing
the four lines, we also see that the distributed GA with fixed
migration frequency suffers from premature convergence, and
the adaptive migration frequency scheme improves it up to
almost comparable to the single GA.

VI. SIMULATION PLATFORM AND EXPERIMENTS

We designed the VLSI hardware of GAP using a hardware
description language “SFL” [7], assuming the CMOS 0.8 μm
process technology. We carried out logic simulation and logic
synthesis for preliminary evaluation of the design prior to
actual VLSI fabrication. The specification of the prototype is:

Population size: 256
Genotype bit length: 64
Fitness bit length: 24
Crossover probability: 1
Mutation probability: 1/32

The comparisons regarding the number of gates (circuit size)
and the number of steps per cycle (speed) between the original
GAP and the new GAP/D are as below:

gates clocks/cycle
GAP 53890 17
GAP/D 60477 21



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

878

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20000 40000 60000 80000 100000 120000 140000 160000

Fig. 5. Convergence on GAP.

We did some experiments using a well-known standard
example for GA experiments called “Royal-road function” [8],
which is simple but slow to converge. This problem is to
maximize the below R on the 64bit vector �x where “

∧
” is

logical “and”:

R(�x) = 64D + 32
1∑

k=0

Ck + 16
3∑

k=0

Bk + 8
7∑

k=0

Ak

Ak =
8k+7∧

i=8k

xi, Bk =
16k+15∧

i=16k

xi,

Ck =
32k+31∧

i=32k

xi, D =
63∧

i=0

xi

Fig. 5 shows the convergence of Royal-road function on
the original GAP, and Fig. 6 shows the convergence on the
new GAP/D, where the threshold is 32, and four curves
correspond to four demes respectively. We observed that the
former converges to the value of approximately 41,000, while
the latter converges to 50,000 at highest. This proves that the
adaptive migration scheme improves the quality of the solution
result.

VII. CONCLUDING REMARKS

We presented a dynamic adaptation scheme for the fre-
quency of inter-deme migration in multi-deme-based dis-
tributed GA on GA VLSI. Each processor observes the gra-
dient of the convergence curve, and determines how often to
migrate.

Using an example of function minimization problems, we
showed that our scheme achieves better performance than fixed
frequency migration schemes without affecting the overall
convergence properties.

This improvement causes some increases in the circuit size
and the execution speed. The increase in the circuit size is not
a serious issue. The increase in the execution speed from 17

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000 100000 120000 140000 160000

va
lu

e

step

Fig. 6. Convergence on GAP/D.

clocks to 21 clocks per cycle (approximately 124%) can be
acceptable, however, we had better improve the technique so
as to reduce the increase. It is left for further study.

REFERENCES

[1] N. Yoshida, T. Yasuoka, T. Moriki, and T. Shimokawa, “VLSI Hardware
Design for Genetic Algorithms and Its Parallel and Distributed Ex-
tensions”, Int. J. of Knowledge-Based Intelligent Engineering Systems,
Vol. 5, No. 1, 2001, pp. 14–21.

[2] L. Davis (ed.), Handbook of Genetic Algorithms, Van Nostrand Rein-
hold, 1991.

[3] H. Sato, I. Ono and S. Kobayashi, “A New Generation Alternation Model
of Genetic Algorithms and Its Assessment” (in Japanese), J. Japanese
Society for Artificial Intelligence, Vol. 12, No. 5, 1997, pp. 734-744.

[4] M. Serra, T. Slater, J. C. Muzi and D. M. Miller, “The Analysis of One-
Dimensional Linear Cellular Automata and Their Aliasing Properties”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 9, No. 7, 1990, pp. 767-788.

[5] M. Munetomo, Y. Takai, and Y. Sato, “An Efficient Migration Scheme
for Subpopulation-based Asynchronously Parallel Genetic Algorithms”,
Proc. 5th Int. Conf. on GA, 1993, p. 649.

[6] M. A. Potter and K. A. De Jong, “A Cooperative Coevolutionary
Approach to Function Optimization”, Proc. Third Conf. on Parallel
Problem Solving From Nature, 1994, pp. 249–257.

[7] Y. Nakamura, K. Oguri, et al., “High-Level Synthesis Design at NTT
Systems Labs”, IEICE Trans. on Inf. & Syst., Vol. E76-D, No.9, 1993,
pp. 1047–1054.

[8] M. Mitchell, and S. Forrest, “Fitness Landscapes: Royal Road Func-
tions”, Handbook of Evolutionary Computation (T. Back, D. Fogel, and
Z. Michalewicz, eds.), Oxford, 1997.


