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A New Design Partially Blind Signature Scheme
Based on Two Hard Mathematical Problems
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Abstract—Recently, many existing partially blind signature
scheme based on a single hard problem such as factoring, discrete
logarithm, residuosity or elliptic curve discrete logarithm problems.
However sooner or later these systems will become broken and vul-
nerable, if the factoring or discrete logarithms problems are cracked.
This paper proposes a secured partially blind signature scheme based
on factoring (FAC) problem and elliptic curve discrete logarithms
(ECDL) problem. As the proposed scheme is focused on factoring
and ECDLP hard problems, it has a solid structure and will totally
leave the intruder bemused because it is very unlikely to solve the two
hard problems simultaneously. In order to assess the security level
of the proposed scheme a performance analysis has been conducted.
Results have proved that the proposed scheme effectively deals with
the partial blindness, randomization, unlinkability and unforgeability
properties. Apart from this we have also investigated the computation
cost of the proposed scheme. The new proposed scheme is robust and
it is difficult for the malevolent attacks to break our scheme. .

Keywords—Cryptography; Partially Blind Signature; Factoring;
Elliptic Curve Discrete Logarithms.

[. INTRODUCTION

LIND signature is a type of digital signature and was

introduced by Chaum [1]. In this signature the content
of a message is blinded before it is delivered, hence the
name blind signature. These signatures are usually employed
in privacy-related protocols, and is significantly used in a lot of
applications such as electronic voting, electronic cash schemes
of which ambiguity is one of the biggest challenges. The
definitions of security and partial blind signature can be found
in Juels [2], Pointcheval [3], and Pointcheval and Stern [4],
[5]. Abe and Fujisaki [6] were the pioneers of the concept of
partial blind signatures. The partial blind signature provides
a signer with common agreed information which is clearly
evident in spite of the blinding process. This concept of the
blind signature eradicates some drawbacks of the fully blind
signatures where the signer will not have any control over
the elements except those, which are bound by the public
key. The partial blind signatures are very vital in designing
proficient electronic cash systems, where the banks can have
a single public key for different coin values. Furthermore,
the size of the database would not increase infinitely over
time, while storing the previously spent coins to detect double-
spending. Fan and Lei [7] have proposed the partially blind
based on quadratic residue problem in which there is no need
for modular exponentiation and inverse computations to be
performed by the signature requesters. Furthermore, it needs
several modular additions and multiplications for receivers to
get and verify a signature in their protocol. The blind signature

N. Tahat is with the Department of Mathematics,Faculty of Sciences, The
Hashemite University, Zarqa 13115, Jordan email: nedal @hu.edu.jo.

schemes proposed in the literatures, Fan and Lei [7] minimizes
the number of computations for the signature requesters or
users by nearly 98 under a 1024-bit modulus, however it does
not reduce the load of computation for the signer. Hence
their scheme is principally appropriate for mobile signature
requesters and smart-card users. Hwang [8] have stated that
Fan and Lei [7] schemes was unable to meet the intractability
property of a blind signature. Nevertheless Chien [9] have
proposed a partially blind signature scheme based on RSA
that is capable of minimizing the computation load. Moreover
Maitland and Boyd [10] have first integrated these two
blind signatures and proposed a practically secured restrictive
partially blind signature scheme, which satisfies the partial
blindness and restrictive blindness. Their scheme was based on
the model proposed by Abe and Okamoto [11] and has em-
ployed Brand’s restrictive blind signature scheme. Huang and
Chang [12] have proposed a novel and competent, partially
blind signature based on discrete logarithm and the Chinese
remainder theorem. However later, Zhang and Chen [13] have
proved that the scheme proposed by Huang and Chang is
not secured, where any malevolent requester can confiscate
the embedded public common information from the signer’s
signature and get a partially blind signature with special public
information. As of now the question of designing a partially
blind signature based on the elliptic curve discrete logarithm
and factoring, is still open. In this paper, we have proposed
a new blind signature based on the elliptic curve discrete
logarithm and factoring problems. The reminder of the paper
is organized as follows: the next section presents the basic
concept and definition of partial blind signature (PBS) and
introduces the notations that are used throughout the rest of the
paper. In section III we have presented our new scheme. The
section IV elucidates details of the security and performance
evaluation and finally section V provides the conclusion of the

paper.

II. PRELIMINARIES
A. The Model of Partially Blind Signature Scheme

In partially blind signature scheme there are two types of
participants, a signer and a signature requester. The following
are the processes of the two participants of the scheme:

« Suppose a requester would request a partially blind sig-
nature from the signer, then the requester will notify the
signer.

o After that, the requester provides the blinded data/mes-
sage and the common information and sends them to
the signer. At this stage, the signer will decide on this
common information.
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« If the signer agrees on this common information, then
he/she signs the blinded data with this common informa-
tion embedded on the signature

o For the partial blindness property, the requester derives
the signature from the signed data, but he/she cannot
remove or change the embedded common information.
So the agreed common information should be genuinely
shared among the requester, the signer and the verifiers.

A secure FDRS must satisfy the following properties:

1) Partial blindness: It allows a user to acquire a signature
on a message without revealing anything about the
message to the signer. Blindness property ensures that
no one can derive a link between a view and valid blind
signature except the signature requester. A view of the
signer is defined to be the set of all messages that the
signer has received and generated when issuing the sig-
nature. Based on this blindness property, blind signatures
have been widely used in untraceable electronic cash
systems.

2) Randomization: The signer will inject one or more
randomizing factors into the blinded message so that the
attackers cannot predict the exact content of the message
signed by the signer. In a secure randomized signature
scheme, a user cannot remove the signer’s randomizing
factor.

3) Unlinkability: In a secure blind signature scheme, it is
computationally infeasible for the signer to link a signa-
ture shown for verification to the instance of the signing
protocol that has produced that signature. This property
is usually referred to as the unlinkability property.

4) Unforgeability: It means that only the signer can gener-
ate the valid signatures.

B. Elliptic Curve

Elliptic curve cryptosystem have attracted much attention in
recent years because of the relatively small size of keys they
require. An elliptic over GF(p) is the set of points (x,y) with
x,y € GF(p) satisfying the equation

y2:x3+ax+b (1)

Where a,b € K and 4a® +27b* # 0. The set E(K) consists of
all points (x,y),x,y € K which satisfy the defining ( 1) together
with a special point O called the point at infinity. Let G be a
point on the elliptic curve defined in (1) and if n the smallest
positive integer is satisfying the equation nG = O, then we
say that G has an order n and is called the base point. Refer
[14], [15], [16], [17] for complete discussion on elliptic
curves specifically on how two elliptic points are added and
multiplication between a constant and an elliptic point. The
hard problems of ECDL and FAC are the following

o ECDL: Let G and C be two elliptic curve points on ( 1).
Then find a positive integer d such that dG = C.

o FAC: Is the problem to find the prime divisor p and ¢
for a positive integer n = pg, where p and g are positive
distinct large primes.

III. THE NEW SCHEME

This section explains about our proposed PBS scheme
based on the elliptic curve discrete logarithm problems. The
scheme can be divided into five phases: initialization, key
generation, requesting, signing and extraction and Signature
verification. The signer publishes the necessary information in
the initialization. In the requesting phase, a requester submits
the blinded data and the common information to the signer.
In the signing phase, the signer signs the blinded data with
this common information imposed on it and then sends the
result back to the requester. Finally, the requester extracts the
signature from the signed data in the extraction phase. The
details of the proposed partially blind signature scheme are
described as follows.

A. Initialization

Let p be a large prime number and p — 1 have two prime
factors p and G, n= pg, so thatn/(p—1) . a,b € GF(p) which
confirm the elliptic curve. The root points of Elliptic curve
construct a circulating subgroup. G is a generating element
for the subgroup and its rank equals to n. h(.) is a secure
hash function. The public parameters are p,n,G and the secret
parameter are p and .

B. Key Generation

Selects a random integer x € [1,n— 1] and computes
y=xG

Next select at random an integer e € ij(n) and calculate an
integer d satisfying the congruence

ed = 1(mod@(n))

Finally, publishes (e,y) as a pair of public key whereas kept
(d,x) as a pair of secret key of the scheme.

C. Requesting

Suppose requester A wants to obtain a signature on message
h(m). Firstly, he must notify the signer and then:

o A signer selects an integer r € [1,n— 1] and compute
R=rG= (x1,%2)

where i = x; (modn) and then send R to the requester A.
o After receiving R prepares the common information a,
according to a pre-defined format. Then the value a is a
common input of both the requester A and the signer.
o The requester A also randomly select two blinding factors
o, € [1,n—1] and computes

R = oR+BG=(y1,y2), whereu =y;(modn)

c o 'h(m)iau~?(modn)

and then send (c,a) to the signer.
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D. Signing and Extraction
The signer signs blindly the message h(m) as follows:
o The signer computes and sends

§ = (oxa® 4 rii)(modn)

to the requester A
« The requester A computes and sends

s= (5u (@) o+ Bu?)((5))
to the signer

o The signer computes and sends g =
requester A.

o The requester A computes u = s
nature is given by (a,R,u) .

(modn)
s%(modn) to the

(modn).Then the sig-

E. Signature Verification

Calculates

u°G (mod n)
(h(m)a*y + u*R)(mod n)

w1

w2

The following theorem shows that if a signature (a,R,u) of
a message m is produced by the proposed partially blind
signature scheme, then it satisfies wi = wa.

Theorem 3.1. (a,R,u) is a signature of the message m
produced by a proposed new partially blind signature scheme,
then wy = wy and the protocol above is a blind scheme.

Proof. Note that

wi = u°(modn)

(@5)¢(modn)G

5°(5)¢(modn)G

s( )

su (@) o+ Bu?) ((5)) 1 (5)°G
((Sxa +ri)u* (@) o+ Bu?))G
(o h(m)au™2)xa® + ri)u* (@)~ o+ Bu’))G
a@®h(m)xG + ru*oG + pu’G)
2h(m)y + u® (R + BG)
h(m)a*y +u*R)(mod n)

= wp

(5u
(
(
(
(a
(

Which means that (a,R,u) is a valid signature of m. So, our
proposed protocol provides a partially blind signature scheme.

IV. SECURITY AND EFFICIENCY PERFORMANCE
A. Security

We discuss some security properties of our new partially
blind signature scheme. A secure partially blind signature
schemes should satisfy the following requirements [12]:

1) Partial blindness: The partial blindness property of all
signature issued by the signer must contain a clear common
information a according to the predefined format negotiated

and agreed by all the requester and the signer and the
requester will not be able to change or remove the embedded
information a while keeping the verification of signature
successful. In the proposed scheme, the signature-requester
has to submit the blinded data ¢ to the signer, and then the
signer computes and sends § = (oxa® + rii)(modn) to the
signature-requester. If the signature-requester can successfully
change or remove this common information a from the
corresponding signature (a,R,u), then he or she computes
§ = (oxa® + rid)(modn). However, it is difficult to derive the
secret key x. Also the signature-requester has to submit the
blinded data s to the signer then the signer computes and
sends p to the signature-requester. The signature-requester
cannot change or remove @ = s¢(modn) because it is difficult
to solve FAC problem. Hence, in the proposed scheme, the
signature-requester cannot change or remove the a and f
from the corresponding signature (a,R,u), of message m to
forge the unblind part of the signature.

2) Randomization: In the proposed scheme, the signer
randomizes the blinded data using the random factor r before
signing it in the signing phase. In the requesting phase, the
signer selects an integer r and sends R = rG to the recipient.
Then, the recipient sends ¢ to the signer and the signer
returns § = (oxa® + rid)(modn) to the signature-requester.
If the signature-requester tries to remove r from § , then
he has to derive x from y = xG . However, it is difficult to
determine x because that the derivation is ECDLP. Hence, in
the proposed scheme, the signature-requester cannot remove
the random r from the corresponding signature (a,R,u).

3) Unlinkability: For every instance, the signer can record
the transmitted messages (O;,s;) between the signature-
requester and the signer during the instance i of the protocol.
The pair (G;,s;) is usually referred to as the view of the
signer to the instance of the protocol. Thus, we have the
following theorem:

Theorem 4.1. Giving a signature (a,R,u) produced by the
proposed scheme, the signer can derive (d;,P;) for every
(64,s;) such that

6, = & 'h(m)i(u)~>(modn)

Si =

o0y = h(m)ﬁ(u)fz(modn)
G = o; 'h(m)i(u)"*(modn)
If s; = (5u? (i) "6+ B; 1) ((5)¢) " (mod n) then we have
() = (5 (i)~ & + B u?) (modn)
B,u/z = (si(i)efiuz(ﬁ)_l',-)(modn)
B = (59 —5u’ (@) &)u*(modn)

According to the above derivations, the signer can derive d;, Bi
for every record (G;,s;). Hence, giving a signature (a,R,u)
produced by the proposed scheme, the signer can always
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derive the two blinding factors th,- for every transmitted
record (G;,s;). This implies that the signer is unable to find
the link between the signature and its corresponding signing
process instance. So, our scheme can achieve the unlinkability

property.

4) Unforgability: The adversary (Adv) may try to derive
some forged signatures by using different ways. We have
proved that all the attacks fail on our scheme.

Attack 1: Adv tries to derive the signature (a,R,u) for a
given message, m by letting two integer fixed and finding the
other one. In this case, Adv randomly select (R,a) or (R,u)
or (u,a) and finds u or a or R respectively such that w; = wy.
For example, fixed the values (R,a) and tries to figure out the
value of u to satisfying wi = wy and vise-versa. Adv starts by
computing y = (h(m)a’y + u?R) and solve u(modn)G for p.
He can only find u if both FAC and ECDL are breakable. Say
that ECDL problem is breakable, then Adv knows u but still
cannot figure the value of u since he learns nothing about d.
In this case too, the breakable of FAC problem does not help
the Adv at all. The rests of two cases go similarly.

Attack 2: It is assumed that Adv is able to solve ECDL
problem. In this case, Adv knows x and can generate or
calculate the numbers § and s. Unfortunately, he or she does
cannot compute @ = s¢(modn) because difficult solve FAC
problem and then cannot compute u = p§(modn)and fails to
produce the signature (a,R,u).

Attack 3: It is assumed that Adv is able to solve the FAC
problem. That means, he knows the prime factorization of n.
However, he or she cannot compute § since no information
is available for x, hence cannot compute s because it is
dependent on §, then he or she cannot compute u = ps(modn)
. Thus fails to produce the signature (a,R,u).

Attack 4: Adv may also try collecting ¢ valid signatures
(aj,Rj,uj) on message m; where j=1,2,,¢ and attempts to
find secret keys. In this case, intruder has ¢ equations given as
follows:

€ =

xh(m )a% + u%((x] ri+B1)

H
wo= xh(mz)a%—i-u%((xzrz“'BZ)
w = xh(m)a? +u?(oyr; +PBr)

In the above ¢ equations, there are 7+ 1 variables i.e. x and
rj which are not known by the Adv. Hence, x stays hard
to detect because intruder can generate infinite solutions of
the above system of equations but cannot figure out which
one is correct. In addition, Adv wishes to obtain secret keys
(x,d) using all information that available from system. In this
case,Adv needs to solve y = xG and d = e~ (mod ¢(n)) which
are clearly infeasible the difficulty of solving ECDL and FAC
problems.

B. Efficiency Performance

The performance of our scheme is described in terms of
number of keys computational complexity and communica-
tion costs. The following notations are used to analyze the
computationally complexity. 7,,,; defines the time complexity
for executing the modular multiplication; 7;,, means the time
for one exponentiation computation; 7;,, denotes the time for
one inverse computation; T,._,4; means the time complexity
for executing the addition of two elliptic curve points; Toe— 1
means the time complexity for executing the multiplication
on elliptic curve points; 7y, means the time complexity for
executing the modular square computation; 7;, denotes the
time for executing the adopted one-way hash function in one’s
scheme. The number of secret keys (SK) and public keys
(PK) of the scheme are respectively given by SK = 2 and
PK =2. The computational complexity for the key generation,
performed by signer, by requester and verification is given
in Table 1 and the last column converts various operation
units to T,y where Toyp ~ 2407, and Ty = 29T, are
given by Koblitz, Menezes and Vanstone [16]. Assuming

TABLE 1
THE COMPLEXITY IN UNIT T,,,; OF THE PROPOSED SCHEME

Efficiency Terms Time Complexity Complexity
in Ty
Computation for Tec—mut + Tt 29T + 2T5r
key generation
Computation for signer Toc—mut + 3T 272T + Ty
+Texp + Ty
Computation for requester 2T eyt + 11T 59T + 3T,
+Texp + T
Computation for verification Toxp + 3T oc—mui 3287 + 2T+ Ty,

+ Tt + 275 + Ty

the time complexity for 7;, and Tj,, are negligible, we found
that, the performed by signer 2727,,,, time complexity and the
performed by the requester 407,,,; time complexity. In Chien,
Jan and Tseng paper [9] RSA-Based partially blind signature
with low computations, the computational complexity for the
signer and the requester are 837,,,; and 7287, respectively.
When we compare our scheme with the scheme Chien and
Tseng is very clear to conclude that our scheme is more
efficient than Chien scheme. In addition, our scheme is based
on two hard problems which offer a longer security than Chien
and Tseng scheme [9]. The efficiency performance reveals
that our modular multiplication and multiplication on elliptic
curve points operations dominates our scheme. However this
operation does not interrupt the process of the scheme since it
can always speeded up, also there is no exponentiation com-
putation performed by the requester. Therfore, the proposed
method can provide more efficient services for both the signer
and the signature requester.

V. CONCLUSION

In this paper, we had presented a new partially blind
signature scheme based on ECDL and FAC problems and
its security is analysed in detail. The scheme based on two
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hard problems provides longer and higher level security than
scheme that based on a single hard problem. Moreover, the
presented scheme had satisfied all the security requirements
of partially blind signature, so it has obvious superiority over
normal partially blind signature based on only one hard mathe-
matical problem. The proposed scheme requires only minimal
operation both in signing and verifying logarithms and thus
makes it very efficient. We had tested the proposed scheme
against some possible attacks have also been considered and
proved that the scheme is secured from those attacks.
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