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Abstract—Many computational techniques were applied to 

solution of heat conduction problem. Those techniques were the 
finite difference (FD), finite element (FE) and recently meshless 
methods.  FE is commonly used in solution of equation of heat 
conduction problem based on the summation of stiffness matrix of 
elements and the solution of the final system of equations. Because 
of summation process of finite element, convergence rate was 
decreased.  Hence in the present paper Cellular Automata (CA) 
approach is presented for the solution of heat conduction problem. 
Each cell considered as a fixed point in a regular grid lead to the 
solution of a system of equations is substituted by discrete systems of 
equations with small dimensions. Results show that CA can be used 
for solution of heat conduction problem. 

 
Keywords—Heat conduction, Cellular automata, convergence 

rate, discrete system.  

I. INTRODUCTION 
N general, partial differential equations are much more 
difficult to solve analytically than are ordinary differential 

equations. They may sometimes be solved using a Bäcklund 
transformation, characteristics, Green's function, integral 
transform, Lax pair, separation of variables, when all else fails 
(which it frequently does) numerical methods such as finite 
differences, finite element and meshless methods [1, 2] is 
used.  

Cellular Automata (CA) is a simple mathematical model 
which provides powerful and interesting tools for describing 
complex space-time phenomena. Since their introduction by 
Stanislaw Ulam [3, 4 and 5] and the work of John Von 
Neumann [6] to provide a formal framework for investigating 
the behavior of complex and adaptive systems, many other 
scientists have applied CA method to a wide range of 
problems. Stephen Wolfram [7, 8, 9, 10 and 11] in the 
publication of his book "A new kind of science" gave a 
classification of CA and developed a very good study 
establishing that CA’s evolution may reproduce behaviors of 
many continuous systems. In recent years, CA has already 
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become a very popular tool for simulating the behavior of 
complex physical processes [12, 13 and 14]. Gürdel and 
Tatting [15] used cellular automata for design of truss 
structures with linear and nonlinear response. Missoum et.al 
[16] worked on optimization of nonlinear trusses using a 
displacement based approach. Missoum et.al [17] addressed 
nonlinear topology design of trusses using cellular automata. 
Cortés et.al [18] employed cellular automata for the topology 
optimization of truss structures using Accelerated 
Simultaneous Analysis and Design (ASAND). Tovar et.al [19] 
studied optimality conditions of the hybrid cellular automata 
for structural optimization. Setoodeh et.al [20, 21 and 22] 
worked on optimal design of variable stiffness fiber reinforced 
composites using cellular automata. In civil and mechanical 
engineering, the heat flow component of greatest concern in 
the conductive heat flow. This is especially of concern in the 
design of structures that will affect the thermal region of the 
soil. That includes warm foundations, hockey rinks, 
refrigerated storage, pipelines, etc. 

In the present paper CA is used for the solution of heat 
conduction problem. In what follows in section 2 CA 
approach is first explained. Then in sections 3 the construction 
of CA formulation for solution of heat conduction problem 
presented. In section 4 some numerical examples are solved 
with this approach and the results compared with exact 
analytical solution and finally in section 5 some concluding 
remarks are addressed. 

II. CELLULAR AUTOMATA 

A. Introduction 
Cellular automaton is a decentralized computing model for 

carrying out complex computation with local information, also 
is dynamic system in which space and time are discrete. In this 
approach each cell is considered as a fixed point in a regular 
grid. The state of each cell is updated at discrete time steps, 
based upon conditions in previous time steps. All of the cells 
are updated every time step, thus the state of the entire grid is 
updated every time step. In the CA approach, the physical 
domain is decomposed into a grid of cells. Each cell is 
governed by rules that depend on the neighboring cells only. 
All computations are done locally, and the connectivity of 
cells can be directly mapped into inter-processor connectivity. 
When the correct update rules are used, CA is hoped to 
converge to the correct global state (solution) of the problem. 
Each cell contains some initial states and the same sets of 
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rules are applied for each cell. The rules specify how these 
states are to be changed at the next computer clock interval. 
The logical rules of a cell specifies the new state of that cell 
on the next clock period, based on the cells current state, and 
on that of all the cell’s immediate neighbors. The number of 
neighbors that influence a given cell is what we call the 
connectivity of the cellular automata. In other words, the 
number of neighbors that connect (or influence) a given cell is 
called the CA connectivity. The connectivity can be any 
positive integer number.  

B. Neighborhood 
Two particular 2D neighborhoods, which are often used, 

are the Moore neighborhood and the Von Neumann 
neighborhood although there are many other possible 
variations.   

Von Neumann Neighborhood: A diamond -shaped 
neighborhood that can be used to define a set of cells 
surrounding a given cell 0 0( , )x y that may affect the evolution 
of a two-dimensional cellular automaton on a square grid. The 
von Neumann neighborhood of range r is defined by: 

 
Von Neumann neighborhoods for ranges r = 0, 1, 2, and 3 

are illustrated in Fig.1. The number of cells in the Von 
Neumann neighborhood of range r is the centered square 
number 2 ( 1) 1r r + +  , the first few of which are 1, 5, 13, 25, 

41, 61,… [12].  
 

 
Fig. 1 Von Neumann Neighborhood (r = 0, 1, 2, and 3) 

 
Moore Neighborhood: A square shaped neighborhood that 

can be used to define a set of cells surrounding a given cell 
0 0( , )x y that may affect the evolution of a two-dimensional 

cellular automaton on a square grid. The Moore neighborhood 
of range is defined by, 

0 0( , ) 0 0{( , ) : , }Moore
x yN x y x x r y y r= − ≤ − ≤  (2) 

Moore neighborhoods for ranges r = 0, 1, 2, and 3 are 
illustrated in Fig.2. The number of cells in the Moore 

neighborhood of range r is the odd squares
2(2 1)r + , the first 

few of which are 1, 9, 25, 49, 81,... .  

 
Fig. 2  Moore Neighborhood (r = 0, 1, 2, and 3) 

 

C. CA grid 
A CA space consists of a grid of cells; each can be in one 

of N finite states at any time. The grid can be of any size and 
shape. It can have any number of dimensions although one 
and two-dimensional cellular automata are the most common. 
The cells can also be of various shapes as long as they can be 
tessellated. Fig.3 shows a two dimensional ground truss and 
it’s sample cell. 

 

D. Update rules 
This can be anything from simple on or off (1 or 0) states, 

to a large set of structured variables such as arrays. Each of 
the cells can be in one of several states. One cell determines 
its next state based on the state of itself and its neighborhood 
using a rule set. The number of possible states depends on the 
automaton. The cells can change from state to state. The 
cellular automaton's rules determine how the states change. It 
works like this: When the time comes for the cells to change 
state, each cell looks around and collects information on its 
neighbor’s states. Based on its own state, its neighbor’s states, 
and the rules of the CA, the cell decides what its new state 
should be. Usually all the cells change state at the same time. 
Standard implementation of CA requires that two copies of the 
array of cell sates are kept, one to represent iteration t, and the 
other to represent iteration t+1. The values of the cell states at 
t+1 are calculated from the cells at t, which are commonly 
referred to as parallelism in CA. At the end of each iteration, 
the labels of the arrays are swapped, and the process is 
repeated. This is here referred to as Jacobi iteration, where all 
of the new values are calculated from the old values. The 
Jacobi iteration while convergent can be inefficient. In an 
alternative method, referred to here as Gauss-Seidel iteration 
method, the new values are calculated using old and updated 
values wherever available. This method may lead to faster 
convergence of the CA method. This means that only one 
copy of the array is kept. 

0 0( , ) 0 0{( , ) : }Von Neumann
x yN x y x x y y r= − + − ≤  (1) 
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III. CA FORMULATION FOR SOLUTION OF THE TWO 
DIMENSIONAL QUASI-HARMONIC EQUATIONS 

A. Two dimensional quasi-harmonic equations  
The steady state behavior of many physical phenomena can 

be described in two-dimensions by the following quasi-
harmonic equation: 

( ) ( ) 0x yK K Q
x x x y

φ φ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (3) 

in which φ  is the unknown function and ,x yK K  and Q  
are material parameters which can be functions of x and y. it is 

noted that, since xK and yK  can be generally different, we 
permit orthotropic material behavior. A number of field 
problems governed by the equation and the physical 

interpretations of , ,x yK K φ  and Q  are listed in Table. 1.  

Two main types of boundary condition are of interest: 

1. The value of the unknown to be specified at nodal points 
on the boundary (Dirichlet boundary condition) 

Pφ φ=

 

(4) 

2.  That a boundary “loading” exists of the form 

( ) 0x x y y aK L K L q
x y
φ φ α φ φ∂ ∂

+ + + − =
∂ ∂

 

(5) 

in which ,q α  and aφ  are constants and ,x yL L  are the 
direction cosines between the outward normal , n , and the x 
and y axes respectively. This is termed the Cauchy boundary 
condition. If both boundary conditions (A) and (B) exist in a 
problem, mathematically the boundary conditions are said to 
be mixed. The physical significance of this second boundary 
condition is best illustrated by considering the isotropic case 

x yK K K= =  and referring to the particular situation of heat 

conduction in a two-dimensional medium. In this case φ  is the 
temperature at any point and K is the thermal conductivity of 
the material. The, boundary condition (B) reduces to  

( ) 0aK q
n
φ α φ φ∂

+ + − =
∂  

(6) 

where / nφ∂ ∂  is the temperature gradient in a direction 
normal to the surface at the point under consideration. 
 

B. Finite element discretisation with Galerkin method 
 If we adopt a finite element discretisation, then the 

unknown function φ  may be approximated as  

1

M

m m
m

Nφ φ φ
=

≈ = ∑
 

(7) 

Suppose, 
x yk k k= =  (8) 

Therefore, 

( ) ( ) 0k k Q
x x x y

φ φ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂  
(9) 

Boundary Conditions: 
0 φφ φ− = Γ  

qk q
n
φ∂

= − Γ
∂  

Approximation the unknown function with the weak form 
lead to, 

( )
e
q

el l
l l

N Nk k dxdy N Qdxdy N q d
x x y y

φ φ

Ω Ω Γ

∂ ∂∂ ∂
+ = − Γ

∂ ∂ ∂ ∂∫ ∫ ∫
 

(10) 

With inserting the approximation, 
K Fφ =  (11) 
Where, 

( )l

e

e e e
e m l m
lm

N N N NK k k dxdy
x x y y

Ω

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂∫
 

(12) 

l
e e

q

e e e
l lf N Qdxdy N q d

Ω Γ

= − Γ∫ ∫
 

(13) 

Triangular elements: The nonzero contribution to K φ  
from the element e, with nodes i, j, k 

2 2

2 2

0

( ) ( )

( ) ( )
e
y

e ee e e e e e e e
j ji i i i i k i k

e e e e e ee e e eh j j j j j je e i i k k

e
i

N NN N N N N N N N
x y x x y y x x y y

N N N N N NN N N Nk k
x x y y x y x x y y

N
x

φ

⎡ ⎤∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + +⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∂ ∂
∂

∫0

2 2( ) ( )

e
x

i
h

j

k
e ee e e e e e e
j jk i k k k k k

dxdy

N NN N N N N N N
x y y x x y y x y

φ
φ
φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎡ ⎤∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥+ + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

∫

 

(14) 

Shape function derivatives, 
e

e i
i

N
x

β ∂
=

∂                

e
e i
i

N
y

γ ∂
=

∂  

(15) 
 

Assume k, Q and q  are constant within an element 
Then noting that, 

e

e dxdy
Ω

Δ = ∫  
(16) 
 

It follows that  

 
TABLE I 

PHYSICAL SITUATIONS GOVERNED BY THE QUASI-HARMONIC 
EQUATION  

Physical 
problem Unknown φ  ,x yK K

 
Q  

Heat 
conduction Temperature Conductivity Internal heat 

generated 

Gas Diffusion Concentratio
n Diffusivity 0Q =  

Seepage Pressure 
head Permeability 0Q =  

Compressible 
flow 

Velocity 
potential Density 0Q =  

Magneto 
statics 

Magnetic 
potential Reluctivity Current density 

Torsion Stress 
function (Shear modulus) Twist 

Torsion Warping 
function Shear modulus 0Q =  

Reynolds film 
lubrication Pressure 

(Film 
thickness)/viscos
ity 

Lubricant supply 

 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:3, No:11, 2009

460

 

 

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

e e e e e e e e e e
i i i j i j i k i k

i
e e e e e e e e e e e e e e

i j i j j j j k j k j

e e e e e e e e e e k
i k i k j k j k k k

k k

β γ β β γ γ β β γ γ φ
φ β β γ γ β γ β β γ γ φ

φβ β γ γ β β γ γ β γ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Δ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  

(17) 
 

The element contribution to the load vector 

e e
q

e e e
l l lf N Qdxdy N qd

Ω Γ
= − Γ∫ ∫  

(18) 
 

f is calculated using 

e

e ee e e e
l i i iN Qdxdy X Yα β γ

Ω
= + +∫  

(19) 
 

Where, 

3
e i j kx x x

X
+ +

=
      3

e i j ky y y
Y

+ +
=

 
(20) 
 

the result, 
2 21 1 ( ) ( )

3 2
ee e e

i i j i jf Q q x x y y= Δ − − + −
 

2 21 1 ( ) ( )
3 2

ee e e
j i j i jf Q q x x y y= Δ − − + −

 
1
3

e e e
kf Q= Δ

 

(21) 
 

i nd j area assumed to lie on qΓ
. 

 

C. Heat flow through a conductor 
The general partial differential equation for conductive heat 

flow in a soil is given by, 
 

( ) ( )x y
T T Tc

x x y y t
λ λ ρ∂ ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂  

(22) 

Where xλ and yλ  are the thermal conductivity of the soil in 
x and y directions 

T is temperature 
c is the soil mass specific heat 
ρ  is the density of the soil 
The term c ρ  is referred to as the volumetric specific heat 

capacity of the soil. 
One method for modifying Eq. (22) uses an apparent 

specific heat term. The apparent specific heat includes the 
volumetric specific heat capacity and a term that accounts for 
the heat released or absorbed by phase change. So, equation 2 
can be as follows: 

( ) ( ) ( )u
x y f

T T Tc L
x x y y T t

θλ λ ρ ∂∂ ∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂ ∂ ∂  
(23) 

fL : Latent heat of fusion of water, 334
3/MJ m . 

θ : Volumetric water content at the initiation of freezing 
/u Tθ∂ ∂ : Change in unfrozen water content of the soil with 

temperature 

The tern /f uL Tθ θ∂ ∂  represents the amount of heat 
released or absorbed as the temperature of the soil change 
by T∂ . 

Eq. (4) reduce to Eq. (3) for cases where freezing or 

thawing are not occurring. The term /u Tθ∂ ∂ has been 

referred to the 2
im  by Newman [5] in analogy to the 2

wm  term 
used in seepage analysis in unsaturated soils. The flowchart of 
the CA approach for solution of elliptic PDE’s is shown in 
Fig.3. 

 

 
Fig. 3 Flowchart of the CA approach for solution of elliptic PDE’s 

IV. RESULTS AND DISCUSSION 
In this section a two dimensional numerical examples are 

solved using cellular automata to illustrate the efficiency and 
accuracy of the proposed method. The method's accuracy has 
been assessed by comparing the CA with analytical solution.  

Consider the following equation, 
2 2

2 22 2 2.4 0 , 0 , 1x y
x y
φ φ∂ ∂

+ + = ≤ ≤
∂ ∂  

(24) 

The boundary condition are : 

1

1

( , ) 0

( , ) 0
x

y

x y

x y

φ

φ
=

=

=

=                  

0

0

0

0

x

y

x

y

φ

φ

=

=

∂
=

∂
∂

=
∂  

(25) 

The boundary with trianglutation is shown in Fig. 4. 
Number of neighborhood nodes per nodes and number of 
neighborhood elements per element is calculated, then based 
on Galerkin descritization  
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Fig. 4 Regular triangular elements (Δx = Δy = 0.1) 

 
Figure 5 (a) , (b) and (c) shows temperature distribution in a 

square domain due to internal heat generation in bottom 
surface, diagonal line, and in y=0.5 respectively. 

 

 
(a) 

 
 

 
(b) 

 

(c) 
Fig. 5 Comparing CA and analytical solution (φ ) 

(a)OC (y = 0) (b) OB (diagonal) (c) y = 0.5 
(Temperature distribution in a square domain due to internal heat 

generation) 

V. CONCLUSIONS 
Cellular Automata (CA) approach is presented in this paper 

for the solution of heat conduction problem. The method is 
based on the cell neighborhood. Results show that CA can be 
used for solution of heat conduction problem. The proposed 
method is shown to lead to symmetric matrices with small 
dimensions. The efficiency and accuracy of the method is 
tested against some two dimensional heat flow problem and 
the results are presented and compared with the exact 
solutions. In addition CA is faster than FEM for the cases 
considered while producing the same results as FEM. A topic 
for future work is to use rectangular element and compare 
results with the present paper results. More research is 
warranted to show the efficiency of the method for solution of 
other type of PDE’s. 
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