
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

1

Online computing system for
octuple-precision computation with Fortran

Takemitsu Hasegawa and Yohsuke Hosoda

Abstract—Computations with higher than the IEEE 754 standard
double-precision (about 16 significant digits) are required recently.
Although there are available software routines in Fortran and C for
high-precision computation, users are required to implement such
routines in their own computers with detailed knowledges about
them. We have constructed an user-friendly online system for octuple-
precision computation. In our Web system users with no knowl-
edges about high-precision computation can easily performoctuple-
precision computations, by choosing mathematical functions with
argument(s) inputted, by writing simple mathematical expression(s)
or by uploading C program(s). In this paper we enhance the Web
system above by adding the facility of uploading Fortran programs,
which have been widely used in scientific computing. To this end we
construct converter routines in two stages.

Keywords—Fortran, numerical computation, octuple-precision,
Web.

I. I NTRODUCTION

H IGHER than the IEEE-754 [9] 64-bit double-precision
(about 16 significant digits) computations on computers

are recently needed in scientific applications, say in high-
energy physics [5] and numerical mathematics [7], see Bailey
and Borwein [1]. Software packages for high-precision com-
putation have been available [2], [4], [8], [10], [11], see [1]
for detail. These packages require users to implement them
on their own computers and to write individual programs with
ample knowledges about the use of the packages. This means
that it is not easy for non-experts on high-precision numerical
computation to write programs by using the packages.

To facilitate the programming for high-precision computa-
tions we have constructed an user-friendly system on the Web
for octuple-precision (about 72 significant digits) computation
[6]. Our system makes use of the octuple-precision computa-
tion system (’octo C++’) in C++ constructed by I. Ninomiya,
see§ II. Our system provides users with some facilities on
the Web: one can 1) choose mathematical functions with ar-
guments inputted, 2) write simple mathematical expression(s)
in the form of the Web page and 3) upload the C program,
see§ III.

Fortran has a long history to be a widely used programming
language in scientific computations on computers. In this paper
we enhance our Web system above by adding the facility
of uploading programs written in Fortran [12]. This facility
enables users to perform the octuple-precision computation
simply by writing a Fortran program in the IEEE 754 standard

Dedicated to the memory of Professor Ichizo Ninomiya.
T. Hasegawa is with Department of Information Science, University of

Fukui, Fukui, 910-8507, Japan e-mail:hasegawa@fuis.fuis.u-fukui.ac.jp.
Y. Hosoda is with University of Fukui.
Manuscript received November 11, 2011

double-precision arithmetic. Our system doesn’t require users
to have any knowledges of the octuple-precision arithmetic.
To this end we construct converter routines in two stages. In
the first stage the Fortran program uploaded is converted into
C program and the routine in the second stage converts the C
program into octo C++ program, see§ IV.

II. N INOMIYA ’ S OCTO SYSTEM INC++

Ichizo Ninomiya constructed a software package for
octuple-precision (72 significant digits) computation in C++
(’octo C++’, or ’octo system’). His packages perform com-
putations very efficiently because fundamental mathematical
functions such assin x and ex are approximated in terms of
the minimax approximation. Two data types of floating-point
numbers, namely, octuple-precision real (’octo’) and octuple-
precision complex (’ocmplx’) are available. Four arithmetic
operations (’+,−, ∗, /) of two octuple-precision numbers are
possible. Fundamental mathematical functions are provided.
A routine (’print’) for outputting octuple-precision numbers is
also available.

A. Octuple-precision real floating-point number

An octuple-precision real floating-point number(’octo real’)
R is composed of eight 4-byte (8×4×8 = 256 bits) unsigned
integers. The first bit is for the signS followed by 15 bits for
the exponentE and 240 bit for the mantissaM ,

R = (−1)S(1 + M) × 2E−16383.

By R one can express a floating-point number of more than 72
significant digits with the mantissaM of 240+1 bits including
one hidden bit. Table I compares the significant digits of
the IEEE 754 single-precision (float) and double-precision
(double) and present octuple-precision (octo) numbers.

TABLE I
COMPARISON OF DATA TYPES OF FLOAT, DOUBLE AND OCTO

data sign exponent mantissa significant

type (bit) (bit) (bit) digits

float 1 8 23 7

double 1 11 52 15

octo 1 15 240 72

1) Declaration and conversion of data types:One can
declare variables and arrays in the octo type and convert the
data types between integer, float, double and octo. By writing

octo a, b[5];
we can declare an octo real variable ’a’ and an array ’b[5]’.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

2

To convert ’a’ above into integer, float and double types we
write

int(a); float(a); double(a);
respectively. To convert ’i’, ’f’ and ’d’ defined by

int i; float f; double d;
into the octo type we write

octo(i); octo(f); octo(d);
respectively.

2) Arithmetic operations:Arithmetic operations of four
types, namely, addition, subtraction, multiplication anddivi-
sion of two octo real numbers are possible like those of double
precision numbers. The mixed-mode operation of two numbers
with different types of precisions are possible. The power of
an octo variable is also available. To computeai we write

opow(a, i);
3) Mathematical constants:Important constants frequently

used likeπ, log(2) and
√

2 and table functions likeζ(n) are
available in octo type.

4) Mathematical functions:More than fifty octo real func-
tions such assin(x), log(x), exp(x), 10x and Γ(x) are
available.

5) Output routine ’print’: The routine ’print’ outputs
computed results in about 72 significant digits. If we write

x = octo(pi) * octo(pi) + osqrt(2);
print(0, 0, 72, 1, x);

then we get the output result ofπ2 +
√

2 as follows,

1.12838 17963 46245 36676 36179 72408 58492

13883 37128 26177 38699 59002 91142 10777e+01

Above ’print’ routine feeds 0 line before printing octo-real ’a’
in 0 blank followed by 72 significant digits with 5 consecutive
digits together followed by 1 blank and finally followed by the
exponent e+01.

B. Octuple-precision complex floating-point number

We can declare octuple-precision complex (’ocmplx’) vari-
able c and array w[7] by writing

ocmplx c, w[7];
The arithmetic operations,+,−,×, /, of two ’ocmplx’ num-
bers are possible. The mixed-mode operation of ’ocmplx’
numbers, integers and double-precision numbers are possible.
The power of ’ocmplx’ variable is available, say, we compute
zi by writing

copow(z, i);
Octuple-precision complex functions such assin(z), |z| =√

x2 + y2 (wherez = x + iy) andexp(z) are provided.

III. O NLINE SYSTEM FOR OCTUPLE-PRECISION

COMPUTATION

In this section we review our online system for octuple-
precision computation. Our system consists of client and server
system, see Figure 1. On the server machine a CGI(Common
Gateway Interface) program written in Perl receives a request
from an user in the input form on the Web page. Then the CGI
sends it to the computation program to ask for the computation
requested. If the computation is successful, then the CGI sends
the computed results to the client.

Fig. 1. Online octo system consisting of client and server system

The web pages on the server machine consists of an user-
interface page, a manual page and a list of available functions.

A. User-interface

The user-interface page has input forms of three types.
1) Choosing functions:The first form allows one to choose

a mathematical function in the pull-down menu, say, ’ocos’
and to input an argument, say, ’pi/5’. Then one gets a com-
puted result ofcos(π/5) in 71 significant digits as follows,

8.09016 99437 49474 24102 29341 71828 19058

86015 45899 02881 43106 77243 11352 63023e-01

This result could be stored on the server and used again in the
succeeding computation of other functions.

2) Writing mathematical expressions:The second form
allows one to write simple mathematical expressions. If you
write

osqrt(3.5) + oexp(2) / otan(pi/3)
then you get a computed result of

√
3.5 + e2.0/ tan(π/3)

6.13690 22211 61827 62558 89858 19692 67738

46106 00579 81936 89626 84375 28758 08091e+00

3) Uploading C programs:The third form is for some
experts on the programming in C or C++. In this form one can
upload a C(C++) program in the double-precision arithmetic.
The system converts the uploaded program into an octo C++
program and implement it on the server to get computed results
in 72 significant digits. If the computation is successful, then
the results are sent back to the client.

B. Manual page and list of functions

A manual page in Japanese briefly illustrates how to input
arguments of functions, possible data types and arithmeticop-
erations and that nested mathematical expressions are possible.
A list of available functions is provided. Figure 2 depicts a
subset of the function list.

C. Computation process on the server

1) CGI program: The CGI program on the server receives
data or a program file from the client and sends the results
to the client. Assume that one selects a mathematical function
in the pull-down menu on the web page and inputted value(s)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

3

Fig. 2. A part of the list of available octo functions

of the argument in an input form on the web. Then the CGI
starts by checking if some errors exist in the argument. If
no error is detected, the CGI sends the inputted data to the
computation program written in C++. On the other hand, when
one writes simple mathematical expressions in a form on the
web, the CGI program performs the similar procedure to send
a computed result in 72 significant digits to the client.

2) Computation program:The compiled executable file
’a.out’ of the computation program on the server has three
arguments. The first argument receives the selected function
name. The second argument receives the inputted value of
the function argument, namely, the value of the function
argument transformed by CGI program into a form suitable
for the computation program. The third argument receives
an user-decision result if computed results are stored in the
server to be used in the succeeding computation or not. If
the above procedure is successful, then ’a.out’ is executedto
transform the inputted strings into octuple-precision floating-
point numbers or octo arithmetical expressions to perform the
octo computation.

D. Converter routine for C or C++ program

Users can upload their C or C++ program in the double-
precision arithmetic. To this end we have constructed a con-
verter routine to translate the inputted program in C(C++) into
an octuple-precision program.

1) Before translation:The converter routine starts by stor-
ing character strings of the inputted program file line by
line into an array ’scrline’. Scanning characters in ’scrline’
one by one with blanks and tabbing characters skipped the
converter stores the detected types of the characters into a
class of ’int’ type. By using the detected types of characters the
converter translates the inputted program into octo-program in
C++. Three header lines required by octo-system are included

#include<iostream>
#include”octo.h”
#using namespace std;

before the translation starts, as follow.
2) Translation process: Double-precision floating-point

numbers are converted into octo numbers, say,

a = 15.24 ⇒ a = octo(1524) ∗ opow(octo(10),−2)

Mathematical functions are translated into the ones of octo
type, say,

sqrt(5) ⇒ osqrt(octo(5))

The output routine ’printf’ is translated by using ’print’,say,

printf(“a=%d, b=%f\n”,a, b);

⇒ printf(“a=%d”, a); printf(“, b=”);

print(0, 5, 70, 1, d); printf(“
”);

3) Security check:It is important to protect the server from
attacking outside, or malicious user-programs. The converter
stops the translation and an alarm message is given on the
web page if thirty five functions such as system functions and
exec functions are detected.

4) Protection against endless loop:Successfully translated
program file is compiled and executed to perform the octuple-
precision computation. If the execution doesn’t terminatein
a prescribed time period, the computation is forced to stop
and an error message is given on the web page to avoid the
possible happening of an endless loop.

IV. FACILITY OF UPLOADING FORTRAN PROGRAM

In this section we enhance our online system described in
the previous section by adding the facility of uploading Fortran
programs in the double-precision arithmetic. To this end we
construct a converter program to translate Fortran programs
uploaded by clients into the octo C++ program. Our converter
consists of two steps. The first step makes use of the ’f2c’ [3]
to translate the Fortran program into C program. The second
one translates the C program into the octo C++ program.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

4

A. Complex variables and arithmetic operations

The arithmetic operations of complex variables are possible
in Fortran and C++. But, ordinarily the C language doesn’t
accommodate to such operations. In this connection, the ’f2c’
routine manages to translate Fortran programs including the
complex arithmetic into the corresponding C program. To this
end the routine makes use of reserved character strings and
variable names as shown below.

1) Reserved names for complex variables:The ’f2c’ re-
serves some character strings and variable names in the trans-
lated C program to accommodate the complex variables and
arithmetic as well as integer and real ones used in the Fortran
language. For example, ’integer’, doublereal’ and ’doublecom-
plex’ are used for ’INTEGER’, DOUBLE PRECISION’ and
’DOUBLE COMPLEX’ in Fortran.

2) Arithmetic operations of complex variables:The ’f2c’
translates every complex variable(and constant) in Fortran by
storing the real and imaginary parts of the variable separately
in C program, for example,

d=e in Fortran⇒ d .r=e.r; d.i=e.i;

Other Fortran statements such as

d=cmplx(b,c), d=d*e, d=d*2.3, d=(1.2, 3.4), b=real(e)

are translated into the corresponding statements in C.

TABLE II
COMVERSION OF COMPLEX DIVISIONS FROMFORTRAN TO C AND OCTO

C++

Fortran C by the f2c octo C++

a = a / b; c.div(&q 1, &a,&b); q 1 = a / b;

a.r = q1.r, a.i = q1.i; a = q 1;

c = c / d; z.div(&z 1,&c, &d); z 1 = c / d ;

c.r = z 1.r, c.i = z1.i; c = z 1;

Table II shows how the divisions of two complex variables
in Fortran are translated into those in octo C++ via in C. The
statements in the third column show the divisions translated
from C into octo C++. The second and third rows show the

integer a, g(5)
real b
real*8 c
complex d, i
complex*16 e
character h
data g / 2, 4, 6, 8, 10 /
a = 5
b = 6.7

©1 d = (2.4,−3.5)

h = ’m’
i = (−3.3, 4.4)

©2 d = d / i
©3 i = abs(i)
©4 write(*,*) b

write(*,*) g
end

Fig. 3. An example of Fortran program to be converted

case of the division of two variables in complex type and in the
fourth and fifth rows are that in double complex type. These
two types of the division shown in the second column are not
available in octo C++. We design our converter routine to cope
with these divisions.

3) Conversion of complex functions:The ’f2c’ routine
converts ’CABS(N)’ in Fortran to ’cabs(&n)’ in C. Further,
we convert this to ’coabs(n)’ in octo C++.

B. Output routine

The ’f2c’ converts output statements in Fortran to C as
follows,

write(*,*) a ⇒
s wsle(&io 7));

do lio(&c 3,&c 1,(char *)&a,(ftnlen)sizeof(integer));

e wsle();

We convert these statements to octo C++ as follows

⇒ printf(“%d”,a); printf(“\n”);

Fig. 4. A program in C translated by the ’f2c’ routine from theFortran
program in Fig 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

5

Fig. 5. An octo C++ program translated from the C program in Fig 4

Our converter uses the ’for’ loop to convert the output routine
for arrays, see©4 and the following sentences in Fig 5 below.

C. An example of translation

Fig 4 shows a program in C translated by the ’f2c’ routine
from a Fortran program shown in Fig 3. On the other hand,
Fig 5 shows a program in octo C++ translated by our converter
routine from the program shown in Fig 4. The sentence on a
complex constant marked by©1 in Fig 3 is translated into©1 in
Fig 4 and further into©1 in Fig 5. Similarly, the sentences
marked by©2 ∼ ©4 in Fig 3 are translated.

V. CONCLUSION

We constructed an use-friendly online system for octuple-
precision computation. Our system makes use of Ninomiya’s
octuple-precision computation system written in C++(octo
C++). Our Web system requires users no knowledges about
high-precision computation. By our system users can perform
octuple-precision computation simply by choosing mathemat-
ical functions with values of arguments inputted, by writing

simple mathematical expressions in the Web form and by
uploading their own C or C++ program in double-precision
arithmetic. Furthermore, we added a facility of uploading
Fortran programs. To this end we constructed a converter
routines from Fortran to octo C++.

In summary, our system enables remote users to perform
octuple-precision computation without any knowledges about
high-precision computations,

ACKNOWLEDGEMENTS

We thank Ichizo Ninomiya (Emeritus Professor of Nagoya
University) for providing us with his software packages for
octuple-precision computation. This research is supported in
part by Grants-in-Aid for Scientific Research (C)21540123 of
JSPS (Japan Society for the Promotion of Science).

REFERENCES

[1] D. H. Bailey and J. M. Borwein,High-precision computation and
mathematical physics, http://crd.lbl.gov/̃dhbailey/dhbpapers/dhb-jmb-
acat08.pdf, 2009

[2] R. Crandall and J. Papadopoulos,Octuple-precision floating point on
Apple G4, http://image.apple.com/acg/pdf/oct3a.pdf, 2002.

[3] S. I. Feldman, D. M. Gay, M. W. Maimore and N. L. Schryer, A Fortran-
to-C Converter,Computing Science Technical ReportNo. 149, 1990,
http://www.netlib.org/f2c

[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann: MPFR:
A multiple-precision binary floating-point library with correct rounding,
ACM Trans. Math. Soft., 33, 2007, 13:1–13:15.

[5] J. Fujimoto, N. Hamaguchi, et al., Numerical precision control and
GRACE, Nucl. Instr. Meth. Phys. Res. A, 559, 2006, 269–272.

[6] T. Hasegawa, Y. Hosoda and K. Hirai, An online system for octuple-
precision computation,Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing and Networks(PDCN2011),
Innsbruck, 2011, 70–74.

[7] Y. Hatano, I. Ninomiya, H. Sugiura and T. Hasegawa, Numerical eval-
uation of Goursat’s infinite integral,Numerical Algorithms, 52(2), 2009,
213-224.

[8] A. H. Karp and P. Markstein, High-precision division andsquare root,
ACM Trans. Math. Soft., 23, 1997, 561-589.

[9] M. L. Overton, Numerical Computing with IEEE Floating Point Arith-
metic, Philadelphia: SIAM, 2001.

[10] D. M. Smith, A multiple-precision division algorithm,Math. Comp., 65,
1996, 157–163.

[11] D. M. Smith, Algorithm 786 Multiple-precision complexarithmetic and
functions,ACM Trans. Math. Soft., 24, 1998, 358-367.

[12] http://netnumpac.fuis.fukui-u.ac.jp/˜tanabe/cgi-bin/test/index.html

Takemitsu Hasegawa Takemitsu Hasegawa received the Doctor of Engineer-
ing degree in applied physics from Nagoya University, Japanin 1975. He
is an emeritus professor at University of Fukui, Japan. He was a professor
of Department of Information Science at University of Fukuifrom 1995
to 2010 after working as an associate professor at University of Fukui
and as a research associate at Nagoya University. His research interests
include numerical analysis, high performance computing, online system for
mathematical software library and Web computation.

Yohsuke Hosoda Yohsuke Hosoda received the Doctor of Engineering
degree in computer science from Nagoya University, Japan in1994. He is
a professor of Department of Information Science at University of Fukui. His
research interests include numerical analysis such as ill-posed system of linear
equations, inverse problem and numerical linear algebra.

