
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

236

 

 

  
Abstract—In this paper, a particle swarm optimization (PSO) 

algorithm is proposed to solve machine loading problem in flexible 
manufacturing system (FMS), with bicriterion objectives of 
minimizing system unbalance and maximizing system throughput in 
the occurrence of technological constraints such as available 
machining time and tool slots. A mathematical model is used to 
select machines, assign operations and the required tools. The 
performance of the PSO is tested by using 10 sample dataset and the 
results are compared with the heuristics reported in the literature. The 
results support that the proposed PSO is comparable with the 
algorithms reported in the literature. 
 

Keywords—Machine loading problem, FMS, Particle Swarm 
Optimization. 

I. INTRODUCTION 
MS operational decisions consist of pre-release and post-
release decisions. FMS planning problems also known as 

pre-release decisions take into account the pre-arrangement of 
parts and tools before the process of FMS begins. FMS 
scheduling problems, which come under the category of post-
release decisions, deal with the sequencing and routing of the 
parts when the system is in operation [1]. The machine 
loading problem in a FMS is specified as to assign the 
machine, operations of selected jobs, and the tools necessary 
to perform these operations by satisfying the technological 
constraints (available machine time and tool slots constraint) 
in order to ensure the minimum system unbalance and 
maximum throughput, when the system is in operation [2]. An 
attempt has been made to solve the objective function 
simultaneously to bring the outcomes in close proximity to the 
real assumption of the FMS environment. 

II. LITERATURE REVIEW 
Since the objective of this paper is to propose an efficient 

evolutionary search heuristic to solve problem pertaining to 
job selection and machine loading in random FMS to optimize 

 
S. G. Ponnambalam is with the Monash University, Sunway Campus, 

46150 Bandar Sunway, Malaysia (phone: +60-3-55146203; fax: +60-3-
55146207; e-mail: sgponnambalam@eng.monash.edu.my).  

Low SengKiat was with Monash University, Sunway Campus, 46150 
Bandar Sunway, Malaysia. He is now working as Instrumentation and Control 
Engineer at Kencana Petroleum, Malaysia. 

the system imbalance and throughput simultaneously, only the 
relevant literature are reviewed in this section. 

Tiwari and Vidyarthi [1] proposed a Genetic Algorithm 
(GA) based heuristic to solve the machine loading problem of 
a random type FMS. The proposed GA-based heuristic 
determines the part type sequence and the operation- machine 
allocation that guarantee the optimal solution to the problem, 
rather than using fixed predetermined part sequencing rules. 

Swarnkar and Timari [2] proposed a generic 0-1 integer 
programming formulation and a hybrid algorithm based on 
tabu-search and simulated annealing (SA) is employed to 
solve the problem. 

Prakash et al. [3] proposed a special Immune Algorithm 
(IA) named "Modified immune algorithm (MIA)". This 
method is capable of learning and memory acquisition. This 
method improves some issues inherent in existing IAs and 
proposes a more effective immune algorithm with reduced 
memory requirements and reduced computational complexity. 

Chan et al. [4] proposed a fuzzy goal programming 
approach to model the machine tool selection and operation 
allocation problem of flexible manufacturing systems. The 
model is optimized using an approach based on artificial 
immune systems and the results of the computational 
experiments are reported. 

Tripathi et al. [5] proposed a multi-agent-based approach 
for solving the part allocation problems in flexible 
manufacturing systems (FMS) that can easily cope with the 
dynamic environment. 

Akhilesh Kumar et al. [6] extended the simple genetic 
algorithm and proposed a new methodology, constraint based 
genetic algorithm (CBGA) to handle a complex variety o f 
variables and constraints in a typical FMS-loading problem.  

Yogeswaran et al. [7] proposed a hybrid algorithm using 
genetic algorithm and simulated annealing {GASA) algorithm 
for his problem. They also proposed efficient machine loading 
heuristics. 

The machine loading problem of a flexible manufacturing 
system is well known for its complexity. This problem 
encompasses various types of flexibility aspects pertaining to 
part selection and operations assignments along with 
constraints ranging from simple algebraic to potentially very 
complex conditional constraints. In this paper, a particle 
swarm optimization algorithm is proposed to solve this 

Solving Machine Loading Problem in Flexible 
Manufacturing Systems Using Particle Swarm 

Optimization 
S. G. Ponnambalam, and Low Seng Kiat 

F 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

237

 

 

problem. The literature survey clearly supports the proposal of 
an efficient heuristic to this problem. Besides that, the 
justification to adopt particle swarm optimization is mainly 
due to its performance in solving scheduling problems. The 
advantages of PSO are that PSO is easy to implement and 
there are only few parameters to adjust. So far, PSO has not 
been tried to solve the machine loading problem. Problem 
Environment 

The FMS under consideration in this paper consists of a 
number of multifunctional CNC machines, tools with the 
potential to execute several operations. The jobs are available 
in batches and arrive in random sequences with different 
requirements for processing. The batch size, number of 
operations, processing time and number of tool slots needed 
for each job is known initially. There are-two types of 
operations accessible for a job namely: 

Essential operation – job can be only performed in a 
particular machine 

Optional operation – job can be performed in a number of 
machines available 

Optional operation gives the flexibility in routing of the 
jobs. The FMS considered has four multifunctional machines 
with each having 480mins of available processing time (8hrs 
= 1 shift) and 5 tool slots. The notations used in this paper are 
given in Table I. 

III. OBJECTIVE FUNCTION AND CONSTRAINTS 
The objective functions and the constraints are discussed in 

this section. These are adapted from reference [2]. 
Minimize system unbalance: equals to the sum of the idle 

time remaining on the machines after allocation of all feasible 
jobs. The value of system unbalance must be either 0 (100% 
utilization of the system) or a positive value. 
 

1_ 1

M
M H UT OTj jjMaximize F

M H

⎛ ⎞× − −∑ ⎜ ⎟
⎝ ⎠=

=
×

                (1) 

                 
Maximize throughput: is equals to the sum of batch size for 

all the selected jobs during the planning horizon.  
 

1

1

_ 2

N

i i
i

N

i
i

B x
Maximize F

B

=

=

×
=

∑

∑
                            (2) 

 

Thus the overall objective function is: 

( )
1 1_

1

M N
M H UT OT B xj j i ij iMaximize COF NM H Bii

× − −∑ ×∑
= == +

× ∑
=

       (3) 

 
 
 

 

TABLE I 
NOTATIONS 

symbol Meaning 
i index of job; 1 ≤ i ≤ N 
j index of machines; 1 ≤ j ≤  M 
N number of jobs, swarm size 
M number of machines 
Bi batch size of job i 
Xi = 1 if job i is selected or = 0 otherwise 
H length of scheduling period 
UTj underutilized time in machine j 
OTj overutilized time in machine j 
SU system unbalance 
TH Throughput 
RTMj remaining time on machine j 
RTSj remaining tool slot on machine j 
S randomly generated job sequence 
AS assigned jobs 
UAS unassigned jobs 
RTMj Remaining time on machine j 
RTSj Remaining number of tool slots in 

machine j 
t Iteration number 

t
kP  Position of thk particle at time step t , 

)N,1k( =  
t
k

eP  Position of the best previous position of 
the thk particle at time step t . 

( )t
k

ePZ  Objective function value of the 
sequence represented by the position of 
the particle t

k
eP . 

tG  The global best particle position at time 
step t having the minimum objective 
function value, i.e. min ( ){ }N,1k;PZ t

k
e = . 

t
xv  Velocity of the particle x at time step t . 

||v|| t
x  Length of the list of transpositions of the 

particle x at time step t . 
1C , 2C , 3C  Learning coefficients 

 
The objective function prescribed in equation (3) is 

subjected to the constraints detailed below.  
• System unbalance: equals to the sum of the idle time 

remaining on the machines after allocation of all feasible 
jobs. System unbalance should be bigger than or equals to 
0 (100% of utilization of the system). 

• Tool slots: number of slots needed for the operation of the 
jobs to be performed on a machine must be always be less 
than or equals to the tool slots available in that machine. 

• Unique job routing: despite the flexibility existing in the 
selection of the machine for optimal operations, once a 
machine is selected, the operation has to be completed on 
the same machine. 

• Non-splitting of job: once a job is considered for 
processing, all the operations are to be completed before 
undertaking a new job. 

• Sharing of the tool slots is not considered. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

238

 

 

• Number of pallets and fixtures used in the system are 
sufficient and readily available. 

• Parts are readily available on machines so material 
handling time is negligible. 

IV. PROPOSED ALGORITHM 
PSO is a population-based, bio-inspired optimization 

method. It was originally inspired in the way crowds of 
individuals move towards predefined objectives, but it is 
better viewed using a social metaphor. Individuals in the 
population try to move towards the fittest position known to 
them and to their informants, that is, the set of individuals that 
are their social circle [8]. The objective is to maximize a 
fitness function. The structure of the proposed PSO algorithm 
is presented in Fig. 1. 
 

;0t →  
( )N,1kfor =  

 Generate t
kP ; 

 Evaluate ( )t
kPZ ; 

 t
k

t
k

e PP →   

max  t t
kG P having→ ( ){ }N,1k,PZ t

k
e = ; 

( )N,1kfor =  

 Initialise t
kv ; 

 
 
//iterative improvement process 
do {  
 ( )N,1kfor =  

  update Position 1t
kP + ; 

  update velocity 1t
kv + ; 

 Apply local search on all particle positions; 
 Evaluate all particles; 
 update 1t

k
eP +  and 1tG + , ( )N,1k = ; 

 1tt +→ ; 

    } ( )maxttwhile <   
tGOutput   

 

Fig. 1 The proposed PSO algorithm 
 

V. OPERATIONS PERFORMED TO UPDATE POSITION AND 
VELOCITY 

Various operations performed for computing particle 
velocity and updating particle positions are explained below: 

Subtraction (position - position) operator: Let x1 and x2 be 
two positions representing two different sequences. The 
difference x2 – x1 is a velocity v. For example, subtracting two 
positions in the velocity update equation results in a velocity 
which is a set of transpositions. 

Addition (position + velocity) operator: Let x be the 
position and v be the velocity. New position xi is found by 
applying the first transposition of v to p, i.e., xi= x + v then the 
second one to the result etc. 

Addition (velocity + velocity) operator: Let v1 and v2 be 
two velocities. In order to compute v1 + v2, we consider the 
list of transpositions which contains first the 'ones' of v1, 
followed by the 'ones' of v2. 

Multiplication (Coefficient X velocity) operator: Let c be 
the learning coefficient and v be the velocity, c x v results in a 
new velocity. 

VI. NUMERICAL ILLUSTRATION 
A numerical illustration of the proposed PSO algorithm is 

presented in this section. The readers are advised to refer [2] 
for the test problems used to evaluate the proposed algorithm. 
A sample test problem is shown in Table II. 
 

 
 

A. Initialization 
Parameters such as swarm size, number of generations (t), 

constants Cl, C2 and C3 must be initialized. The job/machine 
data (test problem) will be inputted in this phase. The swarm 
size used is equivalent to the number of jobs. The termination 
condition and the Cl, C2, C3 are identified after conducting 
sensitivity analysis.  

B. Particle Generation 
The seed sequence is created using the widely used SPT 

rule. Subsequently the swarm is generated from circular 
perturbation method [7]. The searching phase is iterated to the 
predetermined number of iterations. Lastly, the final optimum 
result will be obtained via the global best variable. 

C. Velocity Initialization 
After the swarm is initialized, each potential solution is 

assigned a velocity randomly. Length of velocity of each 

TABLE II 
SAMPLE PROBLEM 

Jo
b 

B
at

ch
 S

iz
e 

N
um

be
r  

of
 

O
pe

ra
tio

ns
 

O
pe

ra
tio

n 

M
ac

hi
ne

 

U
ni

t P
ro

ce
ss

in
g 

Ti
m

e 

To
ol

 S
lo

ts
 

To
ta

l 
Pr

oc
es

si
ng

 
Ti

m
e 

1 15 1 1 4 10 2 150 

    2 12 2 180 

2 10 2 1 1 20 1 200 

   2 3 35 2 350 

3 12 1 1 1 22 3 264 

4 9 1 1 3,2 25 1 225 

5 16 2 1 4 30 2 480 

    2 25 1 400 

    3 27 2 432 

   2 1,4 16 1 256 

6 11 1 1 2 21 3 231 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

239

 

 

particle ||v||  is generated randomly between 0 and n. And the 
corresponding lists of transpositions ( ) ||v||,1q;j,i kqq =  are 
generated randomly for each particle. The above formulation 
permits exchange of jobs ( )11 j,i , ( )22 j,i  . . ( )||v||||v|| j,i   in the 
given order. Each particle keeps track of the its improvement 
and the best objective function value achieved by the 
individual particles so far is stored as local best solution 

⎟
⎠
⎞⎜

⎝
⎛

k
eP and the overall best objective function achieved by all 

the particles together so far is stored as the global best 
solution ( )kG . The iterative improvement process, as 
explained in Fig. 1 is continued afterwards.  

D. Velocity and Position Update 
Particles velocity is continuously updated using equation 4 

and the particles position is continuously updated using 
equation 5. 
 

( ) ( )1
1 1 2 2 3 3

t t e t t t
k k k k kv c U v c U P P c U G P+ = + − + −          (4)   

1+t
kP   = 1.t t

k kP v ++                                  (5) 
 

Where, 321 ccc ,, are integers and 3Uand,   UU  2  1 are 
random numbers between 0 and 1. 

For example, let t
kP represents a sequence {2,3,4,1} with 

C1=1, C2=2, C3=2, 2.0U1 = , 4.0U 2 = , 3.0U 2 = , 2||v|| =  

and v = ((1, 4),(2, 3)) and t
k

eP and tG be (1,4,3,2) and 
(3,1,4,2) respectively. Velocity of the particle k  at time 
step 1t + namely 1t

kv + is obtained using equation 4 as follows.  
 
1t

kv + =1x 0.2 [(1,4),(2,3)] ⊕ 2 x 0.4 [(1,4,3,2) - (2,3,4,1)] ⊕  
2 x 0.3 [(3,1,4,2) –(2,3,4,1)] 

Where [(1,4,3,2) – (2,3,4,1)] represents a velocity  such that 
applying the resulting velocity to the current particle (2,3,4,1) 
yields a position (1,4,3,2). 

Thus, 1t
kv + = 0.2 [(1,4), (2,3)] ⊕ 0.8 [(2,3), (1,4)] ⊕  

0.6 [(1,2), (1, 4)]  
=  ((1, 4),(2, 3),(1, 2)) 
 
Similarly, position of the particle k  at time step 
1t + namely 1t

kP + is obtained using equation 5 by applying 
1t

kv +  over t
kP as follows. 

1+t
kP = (2,3,4,1) + ((1,4), (2,3),(1,2)) 

 = (1,3,4,2) + ((2,3),(1,2))  
 = (1,4,3,2) + ((1,2)) 
 = (1,4,2,3). 

VII. LOCAL SEARCH MECHANISM 
The concept of the PSO algorithm is very simple and 

straight forward. It uses equations 4 and 5 to recursively 
update position of the particles till the termination criterion is 

met. In the present work, termination criterion is taken as 100 
iterations of the PSO algorithm.  

In some cases, it is found that PSO get stuck in local optima 
at an early stage and resulted in non-improvement during 
remaining iterations. In order to overcome the above problem 
and to improve its performance, two local search methods 
were adopted in the proposed PSO to improve the quality of 
the solution. They are the Job index Based Insertion Scheme 
(JiBIS) proposed by Varadharajan and Rajendran [9] and the 
Random Start Adjacent Swapping Scheme (RSASS) proposed 
by Chandrasekaran et al. [10].  
 

Job Index Based Insertion Scheme 
Let us consider a six job problem, whereby the current 

particle has the sequence, {3,2,5,1,4,6}. Hence, this sequence 
shall be the first SEED sequence. Element 1 is inserted into all 
positions within the sequence as the current index number is 
1. The fitness value is evaluated for all particles in the 
population. 
Iteration 1  
Sequence 1 = {1,3,2,5,4,6}. Fitness (1)= 1.24  
Sequence 2 = {3,1,2,5,4,6}.   Fitness (2) = 1.56 
Sequence 3 = (3,2,1,5,4,6).     Fitness (3) = 1.63 
Sequence 4 = {3,2,5,1,4,6}.  Fitness (4) = 1.18 // Current 
SEED 
Sequence 5 = {3,2,5,4,1,6}.  Fitness (5) = 1.79 // SEED for 
next iteration 
Sequence 6 = {3,2,5,4,6,1}. Fitness (6) = 1.50  
Then element 2 is inserted into all positions and evaluated. 
Iteration 2 
Sequence 1 = {2,3,5,4,1,6}  Fitness (1) = 1.55 
Sequence 2 = {3,2,5,4,1,6}     Fitness (2) =1.59 //Current 
SEED 
Sequence 3 = {3,5,2,4,1,6}  Fitness (3) = 1.27  
Sequence 4 = {3,5,4,2,1,6}     Fitness (4) = 1.33 
Sequence 5 = {3,5,4,1,2,6}  Fitness (5) = 1.88 //SEED for 
next iteration 
Sequence 6 = {3,5,4,1,6,2}  Fitness (6) = 1.52 

similarly, after going through n = 6 iterations and fitness 
improvements, the JIBIS local search is intended to improve 
the fitness of the current particle executed in the PSO 
algorithm for every PSO iteration. 

 
Position Based Local Search (PBLS) 
A position based local search improvement algorithm is 

applied for the quick search of optimal solution. This local 
search is applied after finding local best and global best 
solutions.   
1) Select a Particle P; 
 2) Initialize i =1, j = i+1; Select i 
 3) Swap  i with j  to generate a  new sequence 
 4) Evaluate the new sequence; 
 5) if (new sequence is better) 
  replace P with the new sequence;  
  terminate the search process; 
 else 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

240

 

 

  swap j with i; 
       j=j+1; 
   if ( j = n) 
       i = i+1; j = i+1; 
  go to step 3   

VIII. RESULTS AND DISCUSSIONS 
The performance of the proposed PSO and the local search 

heuristics in terms of the objective function value and the 
CPU times for the ten problems over the best performing 
heuristic (GASA proposed by Yogeswaran et al. [7]) so far 
reported in the literature are presented in Table III. The 
objective function values obtained by the two algorithms are 
the same. The advantage of the proposed PSO is its shorter 
computational time. Table III clearly indicates the superior 
performance of position based local search. The average CPU 
time of GASA for the ten problems is 4.2842 and for PSO 
with PBLS is 0.59567. The saving in CPU time form PSO is 
about 80%, which is very significant. The results clearly 
indicate the comparable performance of the proposed PSO 
with the existing better performing heuristic. The performance 
of the proposed PSO is compared with the heuristics reported 
in the literature and the results are presented in Table IV. The 
results show the comparable performance of the proposed 
PSO over other heuristics.  
 

TABLE III 
PERFORMANCE COMPARISON BETWEEN PSO AND GASA 

Objective function 
value 

CPU time (s) Data set 

GASA [7] PSO+ PBLS GASA [7] PSO+PBLS PSO+JiBIS
1 1.5927 1.5927 7.9091 1.462 2.9301 
2 1.8516 1.8516 9.094 0.252 0.252 
3 1.9095 1.9095 3.479 0.718 1.6429 
4 1.5734 1.5734 0.67 0.209 0.2086 
5 1.6651 1.6651 2.152 0.770 0.9921 
6 1.8574 1.8574 3.401 0.603 2.26 
7 1.6874 1.6874 4.961 0.239 0.2389 
8 1.6529 1.6529 8.642 1.157 1.3261 
9 1.8391 1.8391 0.873 0.299 0.2989 

10 1.7723 1.7723 1.669 0.2496 0.2496 
 

IX. CONCLUSION 
It is clear from this research that the machine loading 

problem can be solved by using a PSO based heuristic that can 
tackle the problem in a synergistic way. By combining 
effective local search and PSO, resource allocation can be 
done efficiently. This research had also highlighted the 
efficiency of the local search algorithm in the optimization 
process. The local search algorithm reduced the time to reach 
the best fitness value by a considerate amount in some cases. 
The results presented in Tables III and IV clearly show that 
the PSO algorithm is comparable to the better performing 
algorithms reported in the literature and it obtains the best 
results obtained so far at a faster rate. The results reported in 
Table III are obtained from PSO with Job Index Based 
Insertion local search. 

The future work is to fine tune the parameters of PSO and 

proposing efficient machine selection heuristics. The machine 
selection heuristics play a major role in achieving better 
results. 

REFERENCES   
[1] Tiwari M.K., Vidyarthi N.K., “Solving machine loading problem in 

flexible manufacturing system using genetic algorithm based heuristic 
approach”, International Journal of Production Research, vol. 38, no. 
14, pp. 3357-84, 2000. 

[1] Swarnkar.R, and Tiwari.M.K, “Modeling machine loading problem of 
FMSs and its solution methodology using a hybrid tabu search and 
simulated annealing based heuristic approach”, Robotics and Computer 
Integrated Manufacturing , vol. 20, pp. 199-209, 2003. 

[2] Prakash, A., Nitesh Khilwani, Tiwari M.K. and Yuval Cohen, “Modified 
Immune Algorithm for job selection and operation allocation problem in 
Flexible Manufacturing Systems”, Advances in Engineering Software, 
vol. 39, no. 3, pp. 219-232, 2008. 

[4] Chan F.T.S., Swamkar R. and Tiwari M.K., 2005, Fuzzy goal-
programming model with an artificial immune system (AIS) approach 
for a machine tool selection and operation allocation problem in a 
flexible manufacturing system, International Journal of Production 
Research, vol. 43, no. 19, pp. 4147-4163. 

[5] Tripathi A.K. and Tiwari M.K., Chan F.T.S., “Multi-agent-based 
approach to solve part section and task allocation problem in flexible 
manufacturing systems”, International Journal of Production Research, 
vol. 43, no. 7, pp. 1313-1335, 2005. 

[6] Akhilesh Kumar, Prakash, M. K. Tiwari, Ravi Shankar, and Alok 
Baveja, “Solving machine-loading problem of a flexible manufacturing 
system with constrained-based genetic algorithm”, European Journal of 
Operational Research, vol. 175, no. 2, pp. 1043-1069, 2006. 

[7] Yogeswaran, M.; Ponnambalam, S.G.; Tiwari, M.K, ”An hybrid 
evolutionary heuristic using genetic algorithm and simulated annealing 
algorithm to solve machine loading problem in FMS”, International 
Journal of Production Research, in-print, 2008. 

[8] J. Kennedy, R. Eberhart and Y. Shi, Swarm Intelligence, Morgan 
Kaufmann, San Mateo, CA, USA, 2001. 

[9] Varadharajan, T. K., and Rajendran, C, A multi-objective simulated-
annealing algorithm for scheduling in flowshops to minimize the 
makespan and total flowtime of jobs, European Journal of Operational 
Research, vol. 167, no. 3, pp. 772-795, 2005. 

[10] Chandrasekaran, S, Ponnambalam, S. G, Suresh, R. K, “Multi-objective 
particle swarm optimization algorithm for scheduling in flowshops to 
minimize makespan, total flowtime and completion time variance,”, 
Proceedings of IEEE International Congress on Evolutionary 
Computation 2007, IEEE CEC 2007, Singapore, September 25-28, 2007, 
pp. 4012-4018. 

[11] Shankar,K., and Srinivasulu,A., “Some solution methodologies for 
loading problems in flexible manufacturing system”, International 
Journal of Production Research, vol. 27, no. 6, pp. 1019-1034, 1989. 

[12] Mukhopadhyay S. K, Midha S, Murlikrishna, V., “A heuristic procedure 
for loading problem in flexible manufacturing systems”, International 
Journal of Production Research, vol. 30, no. 9, pp. 2213-28, 1992. 

[13] Tiwaii,M. K., Hazarika, B., Vidyarthi, N. K., Jaggi, P., and 
Mukhopadhyay, S. K., “A heuristic solution to machine loading problem 
of a FMS and its Petri net model”, International Journal of Production 
Research, vol. 35, no. 8, pp. 2269-2284, 1997. 

[14] Vidyarthi N.K and Tiwari M.K., “Machine loading problem of FMS: a 
fuzzy-based heuristic approach”, International Journal of Production 
Research, vol. 39, no. 5, pp. 953-979, 2001. 

[15] Srinivas, Tiwari, M. K. and Allada, V., “Solving the machine loading 
problem in a flexible manufacturing system using a combinatorial 
auction-based approach”, International Journal of Production Research, 
vol. 42, no. 9,pp. 1879-1893, 2004. 

[16] Kumar, R.R., Amarjit Kumar Singh and Tiwari,M.K., “A fuzzy based 
algorithm to solve the machine-loading problems of a-FMS.and its neuro 
fuzzy Petri net model”, International Journal of Advanced 
Manufacturing Technology, vol. 23, no. (5¬6), pp. 318-341, 2004. 

[17] Nagarjuna, N., Mahesh, and Rajagopal,K., “A heuristic based on multi-
stage programming approach for machine loading problem in a flexible 
manufacturing system”, Robotics and Computer Integrated 
Manufacturing, vol. 22, no. 4, pp. 342-352, 2006. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

241

 

 

TABLE VI 
THE PERFORMANCE OF THE PROPOSED PSO OVER THE ALGORITHMS REPORTED IN THE OPEN LITERATURE 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Reference number of the heuristics collected from the open literature Data Set 
 [6] [7] [8] [1] [9] [10] [2] [11] [12] [3] [6] [7] 

Prposed PSO 
with PBLS 

1.3557 1.4615 1.4854 1.5927 1.4839 1.5927 1.5927 1.4839 1.5927 1.5927 1.5927 1.5927 1.5927 1 
 39 253 42 122 42 76 48 14 44 127 48 14 48 14 44 127 48 14 48 14 48 14 48 14 48 14 

1.4965 1.7578 1.7411 1.6208 1.7984 1.5204 1.7411 1.7984 1.6208 1.7984 1.6208 1.8516 1.8516 2 
 51 388 63 202 63 234 46 18 63 124 57 500 63 234 63 124 46 18 63 124 46 18 63 22 63 22 

1.6475 1.8510 1.7943 1.8359 1.8574 1.8359 1.8574 1.8574 1.8245 1.8359 1.8359 1.9095 1.9095 3 
 63 288 79 286 69 152 69 72 73 128 69 72 73 128 73 128 69 94 69 72 69 72 73 28 73 28 

1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 4 
 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 

1.5726 1.8104 1.6651 1.6000 1.6062 1.5726 1.8104 1.6651 1.6062 1.6651 1.6000 1.6651 1.6651 5 
 62 467 76 364 61 264 53 187 53 175 62 467 76 364 61 264 53 175 61 264 53 187 61 264 61 264 

1.4132 1.6592 1.7516 1.8210 1.8408 1.5204 1.8408 1.7151 1.8408 1.8210 1.8210 1.8731 1.8731 6 
 51 548 62 365 63 214 61 28 64 69 57 500 64 69 63 284 64 69 61 28 61 28 64 37 64 37 

1.5939 1.7696 1.0966 1.6064 1.6064 1.5546 1.6001 1.6001 1.6064 1.6874 1.6064 1.6874 1.6874 7 
 54 189 66 147 48 996 54 165 54 165 63 486 54 177 54 177 54 165 63 231 54 165 63 231 63 231 

1.2752 1.2752 1.5320 1.6529 1.6218 1.6482 1.6529 1.6218 1.6218 1.6218 1.6218 1.6529 1.6529 8 
 36 459 36 459 43 158 48 63 44 13 48 72 48 63 44 13 44 13 44 13 44 13 48 63 48 63 

1.6571 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 9 
 79 462 88 309 88 309 88 309 88 309 88 309 88 309 88 309 88 309 88 309 88 309 88 309 88 309 

1.3869 1.6692 1.7344 1.7723 1.7633 1.7622 1.7723 1.7723 1.7633 1.7723 1.7633 1.7723 1.7723 10 
 44 518 56 320 55 166 56 122 54 82 54 84 56 122 56 122 54 82 56 122 54 82 56 122 56 122 


