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Abstract—The flow of a third grade fluid in an orthogonal 

rheometer is studied. We employ the admissible velocity field 
proposed in [5]. We solve the problem and obtain the velocity field 
as well as the components for the Cauchy tensor. We compare the 
results with those from [9]. Some diagrams concerning the velocity 
and Cauchy stress components profiles are presented for different 
values of material constants and compared with the corresponding 
values for a linear viscous fluid. 
 

Keywords—Non newtonian fluid flow, orthogonal rheometer, 
third grade fluid.  

I. INTRODUCTION 
HE flow occuring in the orthogonal rheometer has been 
studied by many authors. For instance in [5] was 

investigated the flow of asecond grade fluid and in [9] was 
studied the flow of BKZ fluid in the same domain. 

The apparatus has two parallel plates rotating with the 
same constant angular velocity Ω  arround two parallel and 
different axes (d is the distance between the plates, see Fig. 
1).  The fluid to be tested fills the space between them (the 
distance between axes of rotation is a). 
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Fig. 1 Scheme of the orthogonal rheometer 

 
In this paper we study the flow of an incompressible fluid 

of third grade. The boundary conditions arised from the 
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adherence conditions on the two plates, and the bilocal 
problem obtained from the described mechanical problem is 
solved exactly. We calculate the hydrostatic pressure and 
the stresses on plates. 

Some numerical experiments concerning the velocity 
field and Cauchy stress components are presented and 
discussed. 

II. EQUATIONS OF MOTION 
We assume that the motion occuring in the orthogonal 

rheometer can be represented by: 
 

 j))z(fx(i))z(gy(v
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where )z,y,x(  is a fixed cartesian co-ordinate system (see 
[5]).  

It follows from (1) that the velocity gradient L has the 
following representation: 
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The Cauchy’s stress tensor T for the incompressible fluid 
of third grade is given by: 
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where p is the hydrostatic pressure, ,, 1αμ  ,1β  32 ,ββ  are 
constant constitutive coefficients, I  is the identity tensor, 

)(tr ⋅  is the trace operator, and 321 A,A,A  are the Rivlin-

Ericksen tensors ( ( )TA vv1
rr

∇+∇= , and for K,3,2n =  

1n1nn −− ++= ALLAAA T
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). 
The components of the stress tensor are given by: 
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From the form of velocity field proposed results the 
acceleration: 
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We also assume that the specific body force b

r
 is 

conservative and hence derivable from a potential φ : 
 

 φ−= gradb
r

. (6) 
 

The local form of the balance of linear momentum is: 
 

 Tdivba +ρ=ρ
rr  (7) 

 
and implies that: 

 

),ggff(2p

),ggf2gfff3()(2

fgf))z(gy(p

),gg3gfgff2()(2

gfg))z(fx(p

2
1zz

22
32

3

3
1

2
1

2
yy

22
32

3

3
1

2
1

2
xx

′′′+′′′Ωα=ρφ+

′′′′+′′′+′′′⋅β+βΩ−

′′Ωβ+′′Ωα−′′Ωμ−=−Ωρ−ρφ+

′′′+′′′+′′′′⋅β+βΩ+

′′Ωβ−′′Ωα−′′Ωμ=−Ωρ−ρφ+

 (8) 

 
where we have denoted zyx ,, •••  the derivatives of the 

functions with respect to the indices. The boundary 
conditions for the velocity field arise from the adherence 
conditions upon the upper, at dz = , and lower, at 0z = , 
plates of the orthogonal rheometer: 
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From (9) it follows that: 
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In order to use the curl operator the system (8) could be 

written as: 
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III. SOLUTION FOR EQUATIONS OF MOTION 
Using the curl operator in (11) we find that: 
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and thus the system (12) can be expressed as: 
 
 gh,fh 2

2
2

1 ′Ωρ=′′Ωρ=′  (14) 
 
and the system (8) as: 
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After integrating the system (14) we obtain: 

 
 ,qgh,sfh 2

2
2

1 +Ωρ=+Ωρ=  (16) 
 
with s and q constants. 
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for ρφ+= pp̂ , with ρ++=ρ /)dzpdypdxp(/dp zyx . 

From (16) we have: 
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In order to ensure the symmetry of the velocity 

distribution on the plane dz =  we set 0qs == , therefore: 
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Following the procedure by [9], we put 0qs ==  in (16), 

then: 
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We shall linearise the system (18) under the constitutive 

restrictions: 
 
 0)(2,0,0,0 32111 ≥β+β+β≤β≥α≥μ .  
 
We can also obtain a linear system if we make the 
hypothesis 032 =β+β , that implies 01 =β . The solution 
will be similar with those obtained in [9], for the case of 
linear viscoelasticity, but with different coefficients. 

The system (18) becomes: 
 

.gf)(g

,g)(ff
2

1
3

1
2

3
1

2
1

2

′′Ωα−′′Ωβ−Ωμ−=Ωρ

′′Ωβ−Ωμ+′′Ωα−=Ωρ
 (19) 

 
If we write the corresponding dimensionless system we 

find: 
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Here •  denote the dimensionless quantities, and mRe  the 
modified Reynolds number: 
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The system (19)’ could be written as: 

 

).gf(
1

Reg

),gf(
1

Ref

m2
m

m

m2
m

m

α−
α+

=′′

−α−
α+

=′′

 (19)’’ 

 
The system (19)’’, with dimensionless boundary 

conditions: 
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is solved for f  and g  and leads to: 
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If we evaluate the difference between the normal stresses 

(in fixed x
r

points) on the two plates we have:  
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where n
r

 is the normal versor on the plates and for Δ  we 
understand )1,y,x()0,y,x( •−•=•Δ . 

Using the pressure given by (17) and the stress tensor (4) 
we obtain: 
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We consider the stress vector field nt

rr
T=  and we obtain 

for its components in a (x,y) plane: 
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We simply see that: 
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The jumps yx t,t ΔΔ  will be: 
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IV. NUMERICAL EXPERIMENTS 
For numerical representations we consider 

m105.1d 2−⋅= , da = , 3mkg1000 −⋅=ρ . For modified 
Reynolds number we use different values: 01.0Rem = , 1 or 

10 for the dimensionless functions f  and g  and 

001.0Rem =  for the traction xt . The constant mα  has also 
different values: 1, 0.95, 0.5 or 0 (for the linear viscous 
fluid). 

V. CONCLUSION 
In Fig. 2 and Fig. 3 we represent the dimensionless 

functions f  and g  respectively, for various values of the 
modified Reynolds number. 

 

 

Fig. 2 The dimensionless function )z(f . 1srad40 −⋅=Ω , 

1m =α  

 

Fig. 3 The dimensionless function )z(g . 1srad40 −⋅=Ω , 

1m =α  

 
In Fig. 4 we represent the dimensionless component xt  

of the pressure vector t
r

 for the third grade fluid and for the 
linear viscous fluid. 

In Fig. 5 the same comparision is made for 
1srad80 −⋅=Ω . 

Similar comparisions can be made with a second grade 
fluid, but there are no relevant conclusions (distinct from 

those concerning linear viscous fluids). 

 

Fig. 4 The dimensionless component xt . 1srad40 −⋅=Ω , 

001.0Rem =  

 

 
Fig. 5 The dimensionless component xt . 1srad80 −⋅=Ω , 

001.0Rem =  
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