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An Intelligent Fuzzy-Neural Diagnostic System

for Osteoporosis Risk Assessment

Chin-Ming Hong, Chin-Teng Lin, Chao-Yen Huang, and Yi-Ming Lin

Abstract—In this article, we propose an Intelligent Medical 

Diagnostic System (IMDS) accessible through common

web-based interface, to on-line perform initial screening for

osteoporosis. The fundamental approaches which construct the

proposed system are mainly based on the fuzzy-neural theory,

which can exhibit superiority over other conventional tech-

nologies in many fields. In diagnosis process, users simply an-

swer a series of directed questions to the system, and then they

will immediately receive a list of results which represents the

risk degrees of osteoporosis. According to clinical testing results,

it is shown that the proposed system can provide the general

public or even health care providers with a convenient, reliable,

inexpensive approach to osteoporosis risk assessment.

Keywords—BMD, osteoporosis, IMDS, fuzzy-neural theory, 

web interface.

I. INTRODUCTION

steoporosis is a disease characterized by low bone mass

and microarchitectural deterioration of bone tissue,

leading to enhanced bone fragility and a consequent increase 

in fracture risk [1]. It is the major cause of wrist, vertebral, 

and hip fractures, and the associated morbidity and mortality

of osteoporotic fractures are very significant [2]. Nowadays,

there are a variety of methods such as bone mineral density

(BMD) tests, blood tests, urine tests, and other biomarkers

analyses, available for diagnosing osteoporosis. Generally

speaking, BMD tests are the most popular and important

methods in osteoporosis screening.

BMD tests can determine the severity of bone loss which

highlights the risk of developing osteoporosis, predict the

risk of future fractures and can also be used to monitor

changes in BMD [3]. Currently, there are several common

technologies such as dual-energy x-ray absorptiometry

(DEXA), quantitative computerized technology (QCT),

quantitative ultrasound technology (QUS), radiographic ab-

sorptiometry (RA), and single x-ray absorptiometry (SXA), 

available for measuring BMD [4].

Applying such technologies, however, often encounters

several problems such as long testing time, high examination

fees, expensive equipment expense, and probable radiation

exposure. Besides, all of these are carried out either in hos-

pitals or in laboratory environments. These negative factors

not only decrease their accessibility, but also increase the to 

complexity of BMD examinations. As a result, it is difficult

to extensively perform BMD screening for specific groups 

with high osteoporosis risk, for example, postmenopausal

women over 50 years old or the elderly. According to the

latest population statistics, the number of women over 50 

years old is estimated to be around two million in Taiwan [5]. 

This situation means that by means of conventional BMD

tests, mass screening for osteoporosis to the groups in Tai-

wan (or most of the developed or developing countries) is

practically infeasible and not cost-effective.

C.-M. Hong and Y.-M. Lin are with the Department of Industrial Educa-

tion, National, Taiwan Normal University, Taipei 106, Taiwan, R.O.C.

(e-mail: 695700259@ntnu.edu.tw).

C.-T. Lin and C.-Y. Huang are with the Department of Electrical and 

Control Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan,

R.O.C.(e-mail: cyhuang.ece91g@nctu.edu.tw).

The system was automatically constructed by learning

available numerical training data comprised of several bio-

markers including patient’s age, serum calcium, serum

phosphate, estradiol, progesterone, and other laboratory mea-

surements. Utilizing hematic, chemical, and mineralometric

patrmeters, and risk factors, Binaghi et al. [16] built a fuzzy

medical expert system for the representation and manipula-

tion of medical knowledge and strategies so as to detect

postmenopausal osteoporosis. Furthermore, there was re-

cently a web-based medical expert system constructed

mainly based on current medical knowledge, statistical in-

formation and physicians’ opinions, capable of estimating the

probabilities of three BMD statuses (normal, osteopenia, and

osteoporosis) by means of various risk factors concerning

osteoporosis [17].

In view of the present literature, however, it can evidently

be seen that the realization of most of the computer-based

diagnostic systems for osteoporosis has two limitations. First,

some of the patient’s clinical signs (such as results of BMD

tests [13], [16], or other invasive and laboratory measure-

ments [12]-[16]) on which the systems rely for deducing

diagnostic conclusions are difficult to be acquired outside

hospitals or laboratory environments. As mentioned above,

this not only decreases the accessibility of the systems to the 

general public, but also increases the cost of diagnosing os-

teoporosis such that mass screening using such systems is

practically infeasible. Second, during construction process, 

some of the systems need a great amount of consultation with

medical experts [16], [17]. This involves the acquisition of 

diagnostic knowledge from experts. In many medical do-

mains, however, this knowledge may be incomplete, since

the relationship between clinical signs and medical meanings

are not always transparent — osteoporosis diagnosis is ex-

actly the case.

To overcome the drawbacks mentioned above, in this pa-

per, we propose a novel learning-driven system — Intelligent 

Medical Diagnostic System (IMDS) accessible through web

interface — for performing on-line initial screening for os-

teoporosis. The fundamentals of the IMDS are mainly based

on the well-known theory of fuzzy-neural networks (FNNs).

FNNs possess the ability to automatically learn useful

knowledge from available examples without the active par-

ticipation of domain experts during the process of con-

structing system, and can exhibit superiority over other con-

ventional technologies (e.g. statistical techniques and re-

gression analyses) due to its superior nonlinear modeling

O
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capability. Through the internet, users simply answer a series 

of directed questions to the IMDS, and then they will im-

mediately receive the results of osteoporosis risk assessment.

According to the results of clinical testing, it is shown that the

proposed system does provide the general public or even

health care providers with a convenient, reliable alternative

to the assessment of BMD and to the risk assessment of os-

teoporosis.

The remainder of this paper is organized as follows. Sec-

tion II introduces a new four-layered FNN and then explains

its role in medical diagnosis. The architecture of the IMDS

and the proposed learning algorithm are described in Section

III. In Section IV, we use a BMD database to construct the

IMDS, and then evaluate its performance in osteoporosis risk

assessment. Finally, Section V concludes the paper. 

II. FUZZY-NEURAL NETWORK

A diagnostic process can be formalized by evaluating

available clinical signs (information drawn from the patient’s

history and from clinical and laboratory findings) and then

deducing appropriate conclusions according to a set of di-

agnostic rules which describe the relationship between signs

and diseases [16]. Diagnosis work can essentially be re-

garded as a classification task; in other words, a diagnostic

system is practically equivalent to a classifier.

It is well known that FNNs possess the ability to auto-

matically acquire useful knowledge from a large number of

examples, and can exhibit superior nonlinear modeling ca-

pability in many fields such as pattern classification, object

recognition, model prediction, and system identification. A 

FNN is named by the fact that a fuzzy model described by

if-then rules and inference mechanisms can completely be 

transformed into a multi- layered artificial neural network

(MNN) composed of neurons and connecting links as long as

each neuron in a MNN performs a corresponding function in

a fuzzy model. This fact makes standard gradient learning

methods in MNNs available to adjust the parameters of FNNs 

[18-19], and further facilitates the design of learning algo-

rithms for FNNs. In this paper, therefore, we employ a FNN

classifier as the kernel of the IMDS to perform the diagnosis

works.

It is worth noting that differing from conventional com-

plicated five-layered FNNs, a new four-layered one is pro-

posed here so that we can construct a diagnostic system with

the properties of lower complexity and easier implementation.

As shown in Fig. 1, the proposed FNN consists of the fol-

lowing four layers in sequential order: an input layer, a 

fuzzification layer, a rule layer, and a class layer. This ar-

chitecture can completely represent a Mamdani-like fuzzy

model which is described as the following rules:

Rule j: If
1x  is ( )

1

jA and … and
Nx  is ( )j

NA           (1) 

then  the input x belongs to class i.

where j is a rule index, N denotes the number of input features,

Ak
( j) represents the fuzzy set (linguistic term) in kth subpre-

mise of rule j, x = [x1, x2,…, xN] indicates the set of all input

features, and i is a class label which is a crisp index rather

than a fuzzy set. Adopting such a model has two main merits.

On one hand, we can interpret the fuzzy model by means of

natural language. This not only provides us some insights

into the working of the diagnostic system, but can also fa-

cilitate the adaptation of design parameters and operating

conditions of the system.

Cac1ac iac

NNF1N 2N11 11F12 kkf

1x Nxkx

jar
1ar Rar

Class 1 Class i Class C

Rule 1 Rule j Rule R

Input 1 Input NInput k

2ar

Rule 2

Fig. 1 The architecture of FNN

On the other hand, since the consequent part of each

if-then rule only contains a crisp class label, we do not require

a complicated defuzzification method (such as center of

gravity, or mean of maximum commonly used in Mamdani

fuzzy models) to derive a crisp output for the result of fuzzy

inference. Instead, we use the simplest winner-takes-all

method to get the crisp output of the model. This merit

largely simplifies the derivation of parameter learning algo-

rithm as well as reducing the complexity of the model. Con-

sidering Fig. 1, we subsequently explain in more detail how 

the proposed FNN can implement the Mamdani-like fuzzy

rules and inference. 

A. Representation of Fuzzy Rule

The input layer consists of input neurons k, k =1,2,…,N,

each of which is respectively associated with a feature xk

representing a clinical sign or finding. The fuzzification layer

consists of membership function neurons µkfk, fk =1,2,…,Fk,

each of which corresponds to a linguistic term Akfk such as

small, middle, large, or other terms. The rule layer consists of

rule neurons j, j =1,2,…,R, each of which together with all the

neurons connecting to it represent a fuzzy diagnostic rule.

The class layer consists of class neurons i, i =1,2,…,C, each 

of which corresponds to a diagnostic class such as normal,

osteopenia, or osteoporosis in this paper. The meanings of the

remaining symbols used in Fig. 1 are clarified as follows: N is 

the number of input features, C is the number of classes, R is 

the number of fuzzy rules, and Fk denotes the total number of 

fuzzy sets defined in the domain of the kth input feature;

moreover, arj denotes the activation degree of rule neuron j,

which is equivalent to the fulfillment degree of the antece-

dent of rule j, and aci is the activation degree of class neuron i,

which corresponds to the aggregated fulfillment degree of 

class i.

Taking the formation of equation (1) into account, we have 
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the following insights into the connections between the neu-

rons in any two adjacent layers. The neurons in each layer of

the FNN only connect to the neurons in the succeeding layer. 

In view of the connections between the class layer and the 

rule layer, each rule neuron can be connected with at most N

fuzzy set neurons, each of which originates from an indi-

vidual domain. Moreover, each rule neuron merely connects 

to a class neuron; however, since different rules could pos-

sess the same consequent class label, each class neuron could 

be simultaneously connected by several different rule neu-

rons (for instance, the class neuron 1 in Fig. 1).With refer-

ence to the connections between the rule layer and the

fuzzification layer, each fuzzy set neuron could connect to 

several different rule neurons; however, two or more fuzzy

set neurons originating from a single input domain can not

connect to the same rule.

B. Realization of Inference Mechanism

In this subsection, we explain how the FNN realizes fuzzy 

inference mechanism by forward propagating input signal

through the network. In the beginning, the input layer re-

ceives input feature data from the external environment, and

directly passes them to the fuzzification layer in which each 

fuzzy set is described by a triangular membership function

( ; , , ) max min , , 0
x a c x

x a b c
b a c b

j

i

(2)

where a, b, and c represent the x-coordinates of the lower

bound, vertex, and upper bound of a membership function µ,

respectively.

The output signals of the fuzzy set neurons subsequently

propagate into the rule layer in which each rule neuron uses a 

nonparametric T-norm operator to compute the fulfillment

degree of a fuzzy rule. In general, algebraic operators result

in better approximation results than intersection operators;

however, it was concluded by experience that intersection

operators lead to better results when the fuzzy classifier is 

subjected to some constraints on interpretability [20]. Since

the interpretability of rules plays a key role in medical di-

agnosis [20]-[22], we utilize the minimum operator for per-

forming the antecedent conjunction of rule j:

( ) ( )

1,2,...,
1

min
N

j

j k k
k N

k

ar (3)

where µk
( j) are membership functions associated with the

fuzzy sets Ak
( j) in the antecedent of rule j, and the fuzzy set

neuron that wins the competition (i.e. possesses the lowest

membership degree) is called a winning fuzzy set neuron.

Note here that we assume the number of input features in the

antecedent of rule j is N; however, if we use some simplifying

strategies (e.g. the feature and partial antecedent deletion

presented in Section III) to improve the interpretability of the 

FNN, the number of input features is usually less than N.

In the class layer, each class neurons receives the signals

originating from the rule layer, and then is responsible for 

aggregating the fulfillment degrees of the rules with the same

consequent by means of some nonparametric T-conorm op-

erator. Similarly, for interpretability, we prefer union op-

erators to algebraic ones. The aggregated fulfillment degree

of class i can therefore be computed by 

( ) ( )

1,2,...,
1

max
i

i

R
i

i j j
j R

j

ac ar ar (4)

where arj
(i) stand for the outputs of all the rules with conse-

quent class i, and Ri indicates the number of such rules.

Likewise, the rule neuron that wins the competition (i.e. 

possesses the highest fulfillment degree) is named a winning

rule neuron. Finally, the output signals aci, i =1,2,…,C, rep-

resent the diagnostic responses (inference results) produced

by the FNN with respect to some input feature vector x.

As for the complicated defuzzification methods commonly

used in conventional FNNs, we ignore them in the proposed 

FNN; instead, we regard the class with the highest fulfillment

degree as the most probable class to make a crisp interpreta-

tion for the diagnostic results.
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Algorithm
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Algorithm

Fuzzy Inference

Engine

Knowledge Base

Learning Module

Web-

Based

User

Interface

Patient's

Patient's

Fig. 2  The system architecture of IMDS

III. INTELLIGENT MEDICAL DIAGNOSTIC SYSTEM

The IMDS system is mainly comprised of three parts: a 

learning module, a knowledge base, and a web-based user 

interface. The architecture of the system is shown in Fig. 2.

The objective of the learning module is to construct a FNN

classifier not only with high classification accuracy but also 

with good interpretability. This objective is accomplished by 

means of a series of learning algorithms including k-means

clustering, gradient descent parameter tuning, and similar-

ity-based model simplification. The knowledge base is prac-

tically a FNN classifier. It consists of a fuzzy inference en-

gine and a fuzzy medical rule database. The former performs

fuzzy inference with respect to the presented input feature

vectors so as to provide reasonable diagnostic results; the

latter contains a collection of diagnostic rules acquired from

available medical databases which store a great amount of 

data relating to patient’s records or medical history. The 

web-based user interface provides users with a convenience 

path to access the service offered by the IMDS. Through this 

interface, users can submit their personal information and

receive the related diagnoses in an easy manner. As the

principles underlying the proposed FNN have been discussed

in the previous section, we only introduce the other two parts

in the following subsections.

A. Initial Rule Learning Algorithm

We apply the K-means clustering algorithm, which is one 

of the simplest algorithms in the field of pattern recognition,

to acquire representative information from the given patient’s

records or medical history. Each of the obtained clusters

stands for a prototype for a particular behavior of the medical
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knowledge under consideration; that is, each cluster can be 

used to define a diagnostic rule. Moreover, directly project-

ing each cluster onto individual inputs can obtain initial 

membership functions for each rule [19]

B. Parameter Learning Algorithm

The parameter learning algorithm is developed based on

the well-known gradient descent method. According to our 

previous works [22], the algorithm is summarized as follows.

Let di be the desired class index, ei = di  aci indicate the class 

error, and learning rate > 0. The parameter vector kfk = [akfk,

bkfk, ckfk]
T of the membership function µkfk can be updated by

the well-known delta learning rule:

k k kkf kf kf
                                            (5) 

where
,   if

0,      otherwise

k

k

kk

kf

i i j kf

kfkf

e ac ar
(6)

 and

1

2

2

2

,  if

,  if

k

k k
k

k

k

k k

k kf

kf kfkf

kf
k kf

kf kf
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x b
c b

v

v
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and (8)
1

2

( ),  ( ),  0
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k k

T

k kf k kf

T

kf k k kf

x b x a
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v

v

Considering equation (3), we can find that in each time step, 

only the parameters of the membership function embedded in

the winning fuzzy set neuron connected with the winning rule

neuron should be adjusted; in other words, for a C-class

classification problem, the number of parameter vectors that

in each time step should be adjusted is less than or equal to C.

This fact exhibits that the truncation operators employed in

equation(3) and equation (4) do effectively reduce the com-

putational burden those algorithms employing algebraic op-

erators will encounter. 

C. Model Simplification Algorithm

We have developed a strategy to simplify the fuzzy diag-

nostic rules of the IMDS in order to enhance the interpret-

ability of the obtained rules [23]. Based on the set-theoretic

similarity measurement derived by the well-known deter-

minant formula of area, the strategy consists of three steps: 1) 

fuzzy set mergence, 2) antecedent feature pruning, and 3)

rule number simplification. According to these steps, we

simplify the fuzzy medical rule base step by step, and 

meanwhile enhance its interpretability and readability. It is 

worth noting that the set-theoretic similarity measurement

proposed in the paper is different from the conventional ones, 

since it unifies the procedure for computing intersection area 

between two fuzzy sets. Fig. 3 shows the entire flowchart of 

the model simplification algorithm.

Refined Fuzzy 

Model
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Fuzzy Set
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and Fuzzy Set
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Checking Rule

Antecedent

Identical

Antecedent ?

Simplified

Fuzzy Model

S(A,B) > 0.5 ? S(A,U) > 0.7 ?
YesYes

Yes

NoNo
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Fig. 3  Model simplification

D. Web-Based Interface Implementation 

In order to enhance the accessibility and convenience of

the IMDS, we design a web-based user interface to facilitate

the osteoporosis risk assessment for the general public.

Taking advantage of the internet, users simply answer a se-

ries of directed questions to the IMDS, and then they will 

immediately receive the assessment results. 

The IMDS server contains a webpage database which stores

all of the webpage design data, a fuzzy medical rule database

which collects all of the acquired diagnostic rules and pa-

rameters, and a web-based application which integrates the

FNN classifier and all of the algorithms mentioned above.

The IMDS uses client-server architecture to carry out diag-

nosis service. Through common web browser software, client

users can send data requests to the IMDS servers, and then

the servers can accept these requests, process them, and re-

turn the requested information to the clients.

User

Receiver

Mobile SoC

Receiver

Apparatus

& Sensor

Residential

GatewayIMDS Server

User

Client PC

Fig. 4.  On-line diagnosis service of IMDS 

Therefore, users can easily access the IMDS service by 

means of any equipment with a built-in web browser, such as

personal computers, personal digital assistant (PDA), 3G cell

phones, or other similar electronic devices. Fig. 4 depicts a 

number of possible connection types. Presently, the Intelli-
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gent Medical Diagnostic System is freely available to access

via the IMDS website http://140.122.79.60/IMDS at National

Taiwan Normal University (NTNU), Taipei, Taiwan, R. O.

C..

IV. EXPERIMENTS OF OSTEOPOROSIS RISK ASSESSMENT

In the following, we will use a bone mineral density(BMD) 

data set to evaluate the performance of the IMDS. The BMD 

database was provided by Prof. Shu-Fang Chang from Na-

tional Taipei College of Nursing, Taipei. The data set con-

tains 274 cases and 29 of these cases have missing values.

Since the IMDS can not yet deal with missing values, we only

used 245 cases from the complete data set for evaluating the

IMDS. We use 200 cases for training and 45 cases for testing

the system. The data is randomly split such that each set 

contains roughly the same number of patterns for corre-

sponding classes.

The standard of osteoporosis is defined by the World

Health Organization (WHO) in terms of BMD measured by

DEXA scanning [1], [3]. The result of a BMD test is repre-

sented as a T-score derived by comparing one’s BMD to that

of young normal mean value. A T-score greater than or equal

to is in the normal range. A score between  and 1 1 2.5

is considered osteopenia, and any score lower than 2.5  is 

regarded as osteoporosis. According to this standard, we di-

vide the 245 cases into three classes. Each case belongs to

one of the three classes; as a result, normal has 66 cases, 

osteopenia has 106 cases, and osteoporosis has 73 cases.

Moreover, since the 19 features contain both numeric and 

nominal variables, we need to preprocess them so that the

proposed algorithms can successfully perform. First, since 

the first three features respectively represent three individual

numeric variables, we normalize their values into [0, 1] in-

terval. Second, as the last 16 features are nominal variables,

we define each positive answer as 1, and each negative an-

swer as 0.

The proposed algorithms are applied to automatically

construct a FNN classifier from the BMD dataset. We des-

ignate the number of clusters as three so as to acquire three 

initial diagnostic rules, each of which respectively describes 

a single BMD class. After 300 iterations for parameter

learning, the resultant FNN classifier generates 52 misclas-

sifications (74% correct) on 200 training cases, and 14 mis-

classifications (69% correct) on 45 testing cases. This leads

to a recognition rate of 73% (66 misclassifications) on the

total data set. The obtained membership functions are shown 

in Fig.5. Note here that the blue graphs indicate the antece-

dent membership functions of the rule describing normal

situation, green graphs denote the membership functions of 

the rule describing osteopenia, and red graphs indicate the

membership functions of the rule describing osteoporosis.

Due to heavy overlap between fuzzy sets in Fig. 5, how-

ever, it is obviously difficult to assign an appropriate lin-

guistic term to each fuzzy set. We further utilize the model

simplification algorithm to enhance the interpretability of the

fuzzy sets. After model simplification, the classifier gener-

ates 58 misclassifications (71% correct) on 200 training cases,

and 15 misclassifications (66.7% correct) on 45 testing cases.

This leads to a recognition rate of 70.2% (73 misclassifica-

tions) on the total data set. Fig. 6 shows the simplified fuzzy

sets. Although the classification accuracy decreases about 

4%, it is evident that the latter has much better interpretability

than the former. Considering both accuracy and interpret-

ability, we employ the simplified FNN as the kernel of the

IMDS.

Finally, we gather additional 10 cases for clinical testing,

among which normal has two cases, osteopenia has five cases,

and osteoporosis has three cases. After presenting all the

cases into the IMDS, the system generates only two mis-

classifications (80% correct). Figs. 7 and 8 show one of the

cases and its results of risk assessment, respectively. Given

the T-score of this case is 2.9 , as shown in Fig. 8, the IMDS

evidently provides correct results of osteoporosis risk as-

sessment.
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Fig. 5  FNN after parameter learning 

Fig. 6  FNN after model simplification
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 Fig. 7  Osteoporosis questionnaire 

Fig. 8 Osteoporosis risk assessment 

V. CONCLUSION

In this article, we propose an IMDS system accessible

through common web-based interface, to on-line perform

initial screening for osteoporosis. In diagnosis process, users

simply answer a series of directed questions to the system,

and then they will immediately receive a list of results which

represents the risk degrees of osteoporosis. According to

clinical testing results, it is shown that the proposed system

can provide the general public or even health care providers

with a convenient, reliable, inexpensive approach to osteo-

porosis risk assessment.

In summary, the advantages of the IMDS are four-fold: (1) 

automatically generating diagnostic rules without medical

experts’ active participation can significantly reduce the 

construction cost of the system; (2) the learn-

ing-from-example ability of the IMDS can extract implicit,

previously unknown, and potentially useful medical knowl-

edge from considerable patient’s data or medical history; (3) 

using a questionnaire of osteoporosis risk factors rather than

other invasive methods or laboratory measurements to assess 

osteoporosis risk not only can considerably reduce the cost of

mass screening, but can also speed up screening process; and 

(4) the convenient, interactive, web-based user interface can 

effectively increase the accessibility of the system.

Moreover, it should be noted that the reliability of the 

system mainly depends on the information supplied by the

users; in other words, entering incorrect or misleading in-

formation will cause erroneous or unreliable diagnosis re-

sults.
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