
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

512

A Tool for Checking Conformance of UML
Specification

Rosziati Ibrahim, and Noraini Ibrahim

Abstract—Unified Modeling Language (UML) is a standard
language for modeling of a system. UML is used to visually specify
the structure and behavior of a system. The system requirements are
captured and then converted into UML specification. UML
specification uses a set of rules and notations, and diagrams to
specify the system requirements. In this paper, we present a tool for
developing the UML specification. The tool will ease the use of the
notations and diagrams for UML specification as well as increase the
understanding and familiarity of the UML specification. The tool will
also be able to check the conformance of the diagrams against each
other for basic compliance of UML specification.

Keywords—Software Engineering, Unified Modeling Language
(UML), UML Specification.

I. INTRODUCTION
OFTWARE development life cycle (SDLC) is used to
process the activities of software development. Four main

phases are used in SDLC. There are analysis, design,
implementation and testing [5]. In SDLC, modeling tool is
usually used to do the analysis of a system. The modeling tool
used can be either a structured approach or an object-oriented
approach or a hybrid approach. A structured approach uses
diagrams such as entity relationship diagrams (ERD) and
context diagrams to model and analyze the system
requirements. Object-oriented approach, on the other hand,
uses diagrams such as use-case diagrams and class diagrams to
model and analyze the system requirements. A hybrid
approach is a combination of a structured and object-oriented
approach.

Unified Modeling Language (UML) is one of the modeling
tools that are often used for object-oriented approach. UML
assumes a process that is use-case driven, architecture-
centered, iterative and incremental [1]. UML is a standard
language for visually describing the structure and behavior of
a system [8]. Therefore, during analysis, system requirements
are transformed into UML specification using diagrams. These
diagrams are Use-Case Diagram, Class Diagram, Interaction
Diagram, Communication Diagram, Activity Diagram, State
Diagram, Component Diagram and Deployment Diagram [7].
These diagrams have special notations that someone has to be
familiar with them in order to use the notations.

The foundation of a good application begins with a good
analysis. In order to do a good analysis, we should be able to
rigorously analyze the system requirements with the help of
the tool. Therefore, for educational purpose and for ease of use

Authors are with Faculty of Information Technology and Multimedia,

Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, 86400, Johor,
Malaysia (e-mail: rosziati@uthm.edu.my, noraini@uthm.edu.my).

and modeling, we propose a tool for developing the UML
specification. Modeling is an essential part of any projects. A
model plays a major role in system development life cycle
which serves as a blueprint for the system. This tool can be
used for specifying the notations and developing the UML
specification diagrams. The tool can also be used to check the
conformance of the diagrams against each other for basic
compliance of the UML specification. The purpose of
producing the tool is to ease the user in understanding the
notations and diagrams in UML specification as well as used
them for the requirements specification and checking
conformance of the diagrams. That is, once the diagrams have
been finalized, the tool can be used to check whether the
diagrams comply with the syntax, rules and notations imposed
by the UML specification.

The rest of the paper is organized as follows. Section II
reviews the UML Specification and Section III presents the
related work. Section IV discusses our tool in details, in
particular on how to use the notations and develop the
diagrams using the tool. The conformance of the diagrams is
also discussed in Section IV. Finally, we conclude our paper
in Section V and give some suggestions for future work of the
tool.

II. REVIEW OF THE UML SPECIFICATION

Requirements analysis is an important phase during the
development life cycle. In UML specification, requirements
analysis is usually done using diagrams [8]. Most often, during
analysis phase, system requirements are transformed into
UML specification using diagrams. These diagrams have
special rules and notations.

A use-case diagram is used to specify requirements of the
system. In a use-case diagram, two important factors are used
to describe the requirements of a system. They are actors and
use cases. Actors are external entities that interact with the
system and use cases are the behavior (or the functionalities)
of a system [9]. The use cases are used to define the
requirements of the system. These use cases represent the
functionalities of the system. In most cases, use cases are
developed based on the user perspective since the user is
going to use the system.

In this paper, for the ease of explanation about the UML
specification, we present an example of an application for
monitoring system of a postgraduate student submitting
his/her progress report to Centre of Graduate Studies. For this
system, during the requirements analysis, we have to capture
the requirements of the system. The requirements of the
system include the capability to submit progress report using
the provided form, view the submitted progress report and
evaluate the submitted progress report. These three

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

513

Person

- lastname
- firstname

+ SetName
+ GetName

FocusGroup

- staffid

- EvaluateForm

PostGraduateStudent

- matrixno

PgForm

- detailinfo

+ GetForm
+ Submit
+ View
+ Evaluate

- FillUpForm

requirements are then transformed into a use-case diagram as
shown in Fig. 1.

Fig. 1 A Use-case Diagram for

Monitoring System of Postgraduate Student

Fig. 1 shows a simple use-case diagram for a monitoring
system of postgraduate student where a postgraduate student
(an actor) can submit his/her progress report to Centre of
Graduate Studies. From Fig. 1, a student is able to do two
tasks: submit a progress report and view a progress report. A
focus group is able to view and evaluate the progress report
while the centre is able to view the progress report.

Most often, use cases represent the functional requirements
of a system. If the requirements are gathered correctly, then a
good use-case diagram can be formed. Once the use-case
diagram is formed, the interaction diagram can then be
developed. In UML specification, interaction diagrams are
usually used to manually record the behavior of a system by
viewing the interaction between the system and its
environment [7]. These interaction diagrams describe in
details activities for use cases. Fig. 2 shows the interaction
diagram for use case Submit for a scenario when an
incomplete progress report is submitted.

Fig. 2 Interactive Diagram for Submit when an incomplete form is

Submitted

Once the use-case diagram and interactive diagram are
formed, the next diagram, an activity diagram can be

developed. An activity diagram, on the other hand, describes
the activities of the process. The purpose of an activity
diagram is to provide a view of flows and what is going on
inside a use case [1]. Fig. 3 shows an example of an activity
diagram which exhibits the activities that can be performed by
a postgraduate student. From a use-case diagram in Fig. 1, a
postgraduate student is able to submit and view the progress
report. Hence, the activity diagram shows that these two
activities can be performed by the postgraduate student.

Fig. 3 An Activity Diagram for Postgraduate Student

The next diagram that can be developed after the formation

of use-case diagram, interaction diagram and activity diagram
is the class diagram. The class diagram is the main static
analysis diagram [1]. It shows the static structure of the model
for the classes and their relationships. They are connected to
each other as a graph. Each class has its own internal
structures and its relationships with other classes. Fig. 4 shows
an example of a class diagram for Monitoring System of
Postgraduate Student.

Fig. 4 A Class Diagram for Monitoring System of Postgraduate
Student

 View

 Submit

Display the
pg form

Submit the
pg form

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

514

From Fig. 4, each class consists of a class name, its
attributes and methods. For example, a class Person has
attributes lastname and firstname with methods SetName and
GetName. Classes FocusGroup and PostgraduateStudent
inherit class Person. Class FocusGroup declares its own
attribute (staffid) and one method (EvaluateForm) and class
PostGraduateStudent declares its own attribute (matrixno) and
one method (FillUpForm). Note that, a subclass inherits all the
attributes and methods of its superclass. Class PgForm, on the
other hand, offers 4 methods namely GetForm, Submit, View
and Evaluate. Table I shows the mapping from use-cases from
Fig. 1 into functions in the class diagram in Fig. 4. This
mapping is important for the consistency of the UML
diagrams.

TABLE I
USE CASES MAPPING TO SYSTEM’S FUNCTIONALITIES

Use Case Function
Submit Submit
View View
Evaluate Evaluate

Once the use-case diagram, interaction diagram, activity

diagram and class diagram have been formed, we have to
check the consistency of these diagrams with each other.
Based on the use-case diagram, interaction diagram, activity
diagram and class diagram, a basic compliance of UML
specification can be derived. Compliance means complying
with its abstract syntax, well-formedness, semantics and
notations [12]. Compliance can be formed using UML
metamodel. The UML metamodel for class diagram, for
instance, consists of an abstract syntax of class diagram, a set
of well-formedness rules that define the abstract syntax of the
UML class diagram and informal descriptions of semantics.

III. RELATED WORK
UML is a modeling language for object-oriented approach.

Many developers use UML to develop the system
specification prior to implement the system. However, the
developers have to be familiar with the set of notations
imposed by the UML specification. Many tools are available
in market to help the developers to develop the UML
specification, for example, Visio [4], Cadifra [2] and Rational
Rose [9].

Visio tool [4] allows the user to create UML specification
diagrams. The tool is used for visualization of the model only.
Cadifra tool [2] is used for UML Editor. The tool allows a
user to draw the UML specification diagrams for Window-
based environment. Rational Rose tool [9] is used for
specifying activities and processes for software development.
During developing the software requirements document
(SRD), the tool can be used to draw the UML specification
diagrams.

What is lacking in Visio, Cadifra and Rational Rose tools is
that they are unable to check the compliance of the UML
specification. For our tool, instead of just drawing and
developing the UML specification diagrams, the tool is able to
check the conformance of the diagrams. That is, the basic
compliance of the UML specification diagrams can be done
using the tool. This will ensure the diagrams developed adhere

to the set of rules and notations imposed by the UML
specification.

Checking compliance of the UML specification is an
ongoing research. France et al. [3], for example, use UML-
based pattern specification technique for checking the
compliance of a pattern design specification. Weimer et al.
[13], on the other hand, use specification mining for learning
the program specifications. Alexander Egyed [4], for instance,
develops a UML analyzer tool for checking the consistency of
UML diagrams. The UML analyzer is a system for defining
and analyzing the conceptual integrity of UML models by
taking the concept of software development, which is about
modeling a real problem, solving the model problem, and
interpreting the model solution in the real world [4]. In doing
so, a major emphasis is placed on mismatch identification and
reconciliation within and among system views (such as
diagrams). UML analyzer describes and identifies causes of
architectural and design mismatches across UML views as
well as outside views represented in UML. The UML analyzer
tool is quite similar to our tool. However, UML analyzer uses
Java programming and concentrates on architecture and design
mismatches across UML view. Our tool, on the other hand,
uses C++ programming and concentrates on UML diagrams
and proof the soundness of the diagrams using the diagrams
abstract syntax, its well-formedness and semantics, and
notations of the UML Specification.

IV. THE UMLST
The tool, which we call UMLST (Unified Modeling

Language Specification Tool), can be used to develop the
UML specification diagrams from any system requirements.
The tool is also able to check the conformance of the
developed diagrams against each other if all the diagrams are
created within one project. The tool is developed using object-
oriented approach with C++ programming language. The tool
has 3 major components with 2 stages as shown in Fig. 5.
Stage 1 allows a user to use the tool as an Editor to develop
the UML specification diagrams using the Workspace
provided. Stage 2 allows a user to use the Engine of the tool to
group the diagrams that have been drawn in Stage 1 for
checking the conformance of the diagrams. The engine of the
tool then takes these diagrams and checks the conformance of
the UML specification diagrams drawn.

STAGE 1
(EDITOR)

STAGE 2
(ENGINE)

Workspace

UML Specification
Diagrams

Conformance

Fig. 5 The Components of UMLST

From Fig. 5, the tool allows a user to develop the UML
specification diagrams of any system in the workspace
provided. The workspace is used as a place for a user to
provide the system requirements by means of the diagrams. In
the workspace, a ToolBox is used to create, edit and display
the diagrams. The ToolBox consists of standard symbols and
notations for each of the diagrams used. For example, for use-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

515

case diagram, symbols for an actor and a use case, and arrows
for connecting an actor with use cases can be used. In the
Workspace, a user can also type-in the text for each of the use
cases used by using the Edit command in the Menu Bar
provided by the tool. The Workspace will allow a user of the
tool to develop the use-case diagram according to any
system’s requirements. Fig. 6 shows the user interface design
of the tool. The diagrams can also be saved for later use and
printed for hardcopy.

Fig. 6 The Interface Design of UMLST

If a user wants to draw another diagram, such as a class
diagram, then the option class diagram can be selected and the
ToolBox for the class diagram will appear. Note that the
ToolBox is designed in such a way that the correct notations
and symbols will only appear for the correct diagrams.

Once all the UML specification diagrams have been
finalized, the user can check the compliance of the diagrams
for the second stage of the tool.

For the second stage, in the File command in the Menu Bar,
the diagrams can be grouped together to check the compliance
of the diagrams. For the basic compliance, the class diagram,
use-case diagram, interaction diagram and activity diagram are
grouped and extracted from the project. Then, all the diagrams
are checked one by one against the set of rules and notations
imposed by the UML specification which are stored inside the
tool database for conformance. The checking consists of two
main activities. Firstly, the diagrams are checked against each
others for any mismatch words. Table II, for example, shows
that the use-case diagram is checked against other diagrams
(class, activity and interaction) for mismatch words.

TABLE II
CONSISTENCY CHECK OF UML DIAGRAMS

Diagram Check with other Diagram
Use-Case Class
Use-Case Activity
Use-Case Interaction

From Table 2, the functionalities of the system are checked
using the words used for declaring use cases in use-case
diagram and functions in class diagram. Each use case is
transformed into token. If the tool finds any mismatch words,
the tool will abort indicating the inconsistency diagrams.
Then, the actors used in the use-case diagram are checked
using the activity diagrams declared for each actor. The use
cases used for each actor in the use-case diagram is checked
against the activities declared in activity diagram for each
actor. Again, if the tool finds any mismatch words, the tool
will abort indicating the inconsistency diagrams. Then, the
use-case diagram is checked with the interaction diagrams
declared for each use cases declared in use-case diagram.

Once the mismatch words are checked, the second activity
for the engine is to check the soundness of the diagrams using
the diagrams abstract syntax, its well-formedness and
semantics, and notations of the UML specification. For this
activity, a set of inference rules are used to establish the well-
formedness of the diagrams. Theorem prover is also used for
the soundness of the diagrams.

V. CONCLUSION AND FUTURE WORK
UMLST is a tool that is able to develop the UML

specification diagrams according to the system requirements.
The diagrams can then be checked for conformance. The
purpose of UMLST is to develop the UML specification
diagrams and check its conformance. Modeling is an
important part of any projects. A model plays a major role in
system development life cycle. A model is also served as a
blueprint for the system.

Currently, UMLST is able to check the conformance of the
diagrams for basic compliance using class diagram, activity
diagram, interaction diagram and use case diagram. We
intend to extend UMLST so it is able to perform a complete
compliance using the reminder of the diagrams as well as any
advance features offered by UML specification.

ACKNOWLEDGMENT
The authors would like to thanks Universiti Tun Hussein

Onn Malaysia (UTHM) for supporting this research under the
short term research grant.

REFERENCES
[1] Bahrami A. (1999). Object-Oriented Systems Development, Mc-Graw

Hill, Singapore.
[2] Cadifra UML Editor. (2008), http://www.cadifra.com/
[3] France R., Kim D.K., Ghosh S., and Song E. (2004). A UML-Based

Pattern Specification Technique, IEEE Transactions on Software
Engineering, Vol. 30, No. 3, March 2004.

[4] Egyed A. (2008). UML Analyzer Tool, http://www.alexander-
egyed.com/tools/uml_analyzer_tool.html

[5] Hoffer J., George J. and Valacich J. (2008). Modern Systems Analysis
and Design, 5th Edition, Pearson International Edition, New Jersey.

[6] Microsoft Visio Toolbox. (2008), http://www.visiotoolbox.com/
[7] Miller G. (2003). What’s New in UML 2.0, A Borland White Paper,

http://www.borland.com/
[8] OMG. (2004). OMG Unified Modelling Language (UML)

Superstructure Specification, http://www/omg.org/
[9] Rational. (2003). Mastering Requirements Management with Use Cases,

Rational Software, IBM.
[10] Rational Rose (2008), http://www.rational.com/

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

516

[11] Sommerville I. (2007). Software Engineering, 8th Edition, Addison
Wesley, England.

[12] UML. (2004). UML 2.0 Infrastructure Specification,
http://www/omg/org/docs/ptc/03-09-15.pdf

[13] Weimer W. And Mishra N. (2008). Privately Finding Specifications,
IEEE Transactions on Software Engineering, Vol. 34, No. 1, Jan/Feb
2008.

