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Robust ‘H,, State-Feedback Control for Uncertain Fuzzy Markovian

Jump Systems: LMI-Based Design

Wudhichai Assawinchaichote and Sing Kiong Nguang

Abstract—This paper investigates the problem of designing a r& systematic design that guarantees closed-loop stability and
bust_state-feedback controller for a class of_uncertain Markovian le’p@rformance_ Recenﬂy, a great amount of effort has been
nonlinear systems that guarantees fhegain from an exogenous dgvoted to describing a nonlinear system using a Takagi-

input to a regulated output is less than or equal to a prescrib .
value. First, we approximate this class of uncertain Markovian ju ugeno fuzzy model (see [15]-[30]). The Takagi-sugeno fuzzy

nonlinear systems by a class of uncertain Takagi-Sugeno fuZzA{pdel represents a nonlinear system by a family of local linear
models with Markovian jumps. Then, based on an LMI approachmodels which smoothly blended together through fuzzy mem-
LMI-based sufficient conditions for the uncertain Markovian jumpership functions. Unlike conventional modelling techniques
nonlinear systems to have ai., performance are derived. Anhich yses a single model to describe the global behavior of
illustrative example is used to illustrate the effectiveness of the . - . . .
proposed design techniques. a nonlinear systgm, fL.Jzzy.modelllng is essentla]ly a r_nuln-
model approach in which simple sub-models (typically linear
Keywords— RobustH.; Fuzzy Control; Markovian Jump Sys- models) are fuzzily combined to described the global behavior
tems; LMI of a nonlinear system. Based on this fuzzy model, a number
of systematic model-based fuzzy control design methodologies
have been developed.

) ) ~The aim of this paper is to study the problem of designing

Many physical systems may experience abrupt changesydihyst 7/, fuzzy state-feedback controller for a class of
their structure and parameters, caused by phenomena sucljR%rtain nonlinear systems with Markovian jumps. First,
component and interconnection failures, parameters shiftifgs approximate this class of uncertain nonlinear systems
tracking, and the time required to measure some of g Markovian jumps by a Takagi-Sugeno fuzzy model with
variables at different stages. Such system can be modeliggkovian jumps. Then based on an LMI approach, we
by a hybrid system with two components in the state vectQfevelop a technique for designing robust, fuzzy state-
The first one which varies continuously is referred to be thgeghack and output feedback controllers such thathe
continuous state of the system and the second one which Vaﬂﬁ?n of the mapping from the exogenous input noise to the
discretely is referred to be the mode of the system. There hggyjated output is less than a prescribed value.
been an increasing interest in these types of systems duringp;g paper is organized as follows. In Section I, system
the last decade, mostly due to the growing use of computfSscriptions and definition are presented. In Section IlI, based
in the control of physical plants but also as a result of thg, an | MI approach, we develop a technique for designing
hybrid nature of physical processes. A special class of hybiighyst 7/, fuzzy state-feedback controller such that the
systems known as Markovian jump systems has been widglyin of the mapping from the exogenous input noise to the
used to model manufacturing systems [1] and communicatiggyjated output is less than a prescribed value for the system
systems [2]. Although linear Markovian jump systems havgescribed in Section Il. The validity of this approach is

been extensively studied [3]-[13], to the best of our knowledggemonstrated by an example from a literature in Section IV.
the control design of nonlinear Markovian jump dynamicq&ina”y conclusions are given in Section V.

systems remains as an open research area. Recently, there
has been some attempt in this area. In [14], Hamilton-Jacobi-
equation-based sufficient conditions for nonlinear Markovian
jump systems to have @M., performance have been derived. The class of uncertain nonlinear system with Markovian
However, until now, it is still very difficult to find a global jumps under consideration is described by the following TS
solution to the HJE either analytically or numerically. fuzzy model with Markovian jumps:

Over the past two decades, there has been rapidly growing ,
interest in application of fuzzy logic to control problem. Re- #(t) = Xia “i(y(t))[mi(”(t)) +AA;i(n(t))]a(t)
searches have been focused on its application to industrial pro- +[B1,(n(t)) + ABy, (n(t)]w(t)
cesses and a number of successful results have been reported in +[By, (n(t)) + ABy, n(t))]u(t)], z(0) =0,

)

I. INTRODUCTION

Il. SYSTEM DESCRIPTIONS ANDDEFINITIONS

1

2i(
the literature. In spite of these successes, there are many basic -
issues remain to be addressed. One of them is how to achieve’(t) = 2i=1 #i(¥(1)) {[Cli (n(1)) + AC, (n(1)](?)
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where v(t) = [vi(t) --- wvy(t)] is the premise Vglliijibpéozl%llg()ﬁ?oBUSTHoo Fuzzy STATE-FEEDBACK CONTROL
that may depend on states in many casesy(t)) denote DESIGN

the normalized time-varying fuzzy weighting functions for

each rule,y is the number of fuzzy sets;(¢t) € R" is the  Thjs section provides the LMI-based solutions to the prob-
state vectoru(t) € R™ is the input,w(t) € RP is the |em of designing a robusti., fuzzy state-feedback controller
disturbance which belongs 1[0, ), y(t) € R* is the mea- that guarantees thé,-gain of the mapping from the exoge-
surementz(t) € R* is the controlled output, the matrix func-noys input noise to the regulated output to be less than some
tions A;(n(t)), Bi,(n(t)), Bz, (n(t)), C1,(n(t)), C2,(n(t)), prescribed value.

Do, (n(t)), D1, (0(1)), AAi(n(t)), ABu,(1(t)), ABz, (n(1)), Let us consider a robu$f., fuzzy state-feedback controller
ACH, (n(t)), AC, (n(t)), AD12,(n(t)) and ADoy, (n(t)) are = Y

. \ . . . ) of the form
of appropriate dimensions{n(t))} is a continuous-time
discrete-state Markov process taking values in a finiteSset r
{1,2,---, s} with transition probability matrix°r 2 {Px(t)} u(t) = Zquj(n)x(t) (6)
given by =1
P(t) = Pr(nt+A)=kn(t)=1)

where K;(n) is the controller gain, such that the inequality

{ A +AO(A) A ': v# k (2) (5) is guaranteed. The state space form of the fuzzy system
1+ A +0(4) ifo=k model (1) with the controller (6) is given by
where A > 0, andlima_.g % = 0. Here A\, > 0 is the
Zrazninz)n ;ar:S from mode (system operating mode) to mode () = S Z;:1 g | [(Ai () + Ba, (1)K (1))

LR s +(AA;(1) + ABy, (1) K; (1)) (t) (@)

)\n = Z )\zk- (3) +[BIZ(Z) + ABli(Z)]w(t)}7 1(0) =0.
k=1,ks#
For the convenience of notations, we |et = wi(v(t)), The following theorem provides sufficient conditions for

n = n(t), and any matrixp (j, ) 2 M (p,m =1). The matrix the existence of a robu{., fuzzy state-feedback controller.
functions AA;(n), AB1,(n), ABs,(n), ACy,(n), ACy,(n), These sufficient conditions can be derived by the Lyapunov
ADqs,(n) and ADsy,(n) represent the time-varying uncer-approach.

tainties in the system and satisfy the following assumption. Theorem 1:Consider the system (1). Given a prescribed

Assumption 1: Hoo performancey > 0, then the inequality (5) holds if for
i i T
AA;(n) = F(a(t),n, t)H;. 1= 1,2,--- s, there exist matriced’(z) = P*(:) and any
() ((t),m, 1) Ha (), positive constant$(+) such that the following linear matrix
ABy,(n) = F(xz(t),n,t)Hz, (n), inequalities hold:
ABy,(n) = F(x(t),n, t)Hs, (n),
P > 0 8
ACy, (n) = Fla(t), 1, t) Ha, (1), N, | ®)
AC F ¢ NH. \IJ”(Z) < 07 Z:1727"'7T (9)
2; (77) - («ZE( )777a ) 5; (77)7 \I/U (Z) + \I/J1(7/ < 0’ i <] <r (10)
AD:s (T)) = F(r(t)7n7t)H61 (77)7
and ADsy,(n) = F(x(t),n,t)Hz, (n) where
where Hj,(n), j = 1,2,---,7 are known matrices which (1) ()T ()T (0)T
characterize the structure of the uncertainties. Furthermore, R( )”ET() CARG) (ST (+)7
there exists a positive function(n) such that the following ¥;;(2) = Ye e T
inequality holds: Ti5(1) 0 7R ()
ZT(2) 0 —P(2)
|1F(z(t),n,t)[| < p(n). 4)
We recall the following definition.
Definition 1: Supposey is a given positive number. A -
system of the form (1) is said to have tifg-gain less than Dij(1) = Ai()PQ)+ P)A; (1) + B2, (1)Y;(2)
or equal toy if +Y" (1) B3, (1) + A P(1)
Ty Ti(t) = CL(P()+ Dz, (1)Y;(0)
T 2T o i i
E /o {z" ()z(t) = y*w" (H)w(t)} dt| <0, z(0) =0 (5) R() = diag{s()I,T,6()I, T}
where E [] stands for the mathematical expectation, for all Z(t) = (v ArP(2) - ([ A=) P(2)
Ty and allw(t) € L2[0,TY].
Note that for the symmetric block matrices, we (s¢ as V Mt P@) )‘“P(’))
an ellipsis for terms that are induced by symmetry. P() = diag{P(1),---,P(t—1),P(t+1),---,P(s)}
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with fwve ng (15) to continuous-time system model, we have
Bi,) = [I I I By ] o (t) + 21 (2)
Ci.(1) = WVHT (1 N(2)p()HE (2 iy (1) — — (o + Aa)a ()
L0 = [@HT ) VERO)) © [Mt)} ( TR )
0 ﬂN(z)cf;(z)] 0+(6+A6)x2( ) + @2 (t)

- + t).
Do) = [0 VIR0 HE () HES "
T
yp()HE (1) v2R(1)DE, (Z)} Based on [37], the general economic situations could be
N aggregated into three modes as shown in Table I:
N() = |14 p% ZZ [HHT (1) Ha, ( ||} . TABLE |
=1 j=1 ECONOMIC TERMINOLOGY.
Furthermore, a suitable choice of the fuzzy controller is [ Mode: | Terminology [ a(x) £ Aa(y) | B() £ AB() |
1 Normal 25+10% 0.3+10%
2 Boom 437E£10% | —0.7£10%
u(t) = Y ui G (0)z(t) (11) 3 Sump | —53E10% | 0.9L10%
where The t iti babilit trix that relates the th
_ e transition probability matrix that relates the three op-
;) = Y;()(P()) - (12) ration modes ispgiven as):‘ollows P
Proof: Due to the page limit, the detail of the proof has beeh )
omitted. u 0.67 0.17 0.16
P =1 030 047 0.23
IV. | LLUSTRATIVE EXAMPLE 0.26 0.10 0.64
Consider a modified Samuelson multiplier-accelerator ecqs
ssumingv = 2, (16) can be re-expressed as
nomic model based on [37] which is governed by the following umingu =2, (16) xP
difference equations:
P 1 1
Y(k) = [C(k)+1(k)+ Gk - 1) ()] _ a(t) 4 1 n(t)
1) = e yE-n-YE-2) 49 a0 | T | —ew | S0 [ a0
Ck) = (B+AB)Y (k-1 R
whereY is the deviation of the national income from the de- + [ 0.1 0 w(t) + { 1 u(t)
sired national income], is the deviation of the induced private I 0 0 ;
investment from the desired induced private investmenis + A Aa(z) { zlg t% }
the deviation of the consumption expenditure from the desired . (1) +AB(2)z2(t) 2
consumption expendituré; is the deviation of the government _ x1(t)
expenditure from the desired government expenditure decide‘ﬁ( o xa(t)
at the end of periodi(— 1) for periodk, « is the accelerator y(t) = Jz(t)+ [0 0.1]w(t)
coefficient,3 is the marginal propensity to consume parameter (7)

andv is the consume parameter £ 1). Ao and A are the where z,(t) and z.(t) are the state vectorsy(t) is the
uncertain accelerator coefficient and marginal propensity eontrolled input which represents the deviation of the govern-
consume parameter, respectively. We assumdthat < 0.1cc  ment expenditure from the desired government expenditure,
and|AB| < 0.18. w(t) is the disturbance input which represents the unexpected

Eliminating C'(k) andI(k) in the above equations, we havédehavior of the economy(t) is the controlled outputy(t) is

the measured output antlis the sensor matrix.
Y(k) = (B+ABYY(k—1)+ (a+ AV (k—1) The control objective is to control the state variablgt)
+G(k—1) = (a+ Aa)Y (k - 2). 14) for the rangers(t) € [Ny No]. For the sake of simplicity, we
s . (14) will use as few rules as possible. Note that Figure 1 shows

By shifting one step forward and giving, (k) = ¥'(k — 1), the plot of the membership functions represented by
zo(k) =Y (k) andu(k) = G(k), (14) becomes

x2(k) My(a(t) = =220 N2 My () = 22 = N1
[ . } ) I () = “2P 2(@a(t) = o
vo(k+1) iggiﬁgsiﬁgki (15) Knowing thatzs(t) € [N1 Nz], the nonlinear system (17)
0 2 can be approximated by the following TS fuzzy model:
+ { 1 } u(k).
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M xy) My(xy)

-3 0
Ny X0 N,

Fig. 1. Membership functions for the two fuzzy set.

Plant Rule 1: IF xo(t) is M;(z2(t)) THEN

i(t) = [Ai(r) + AAL()]2(t)
+B1, (Yw(t) + Bz, (Wu(t), x(0) =0,
2(t) = Cn(x(t),
y(t) = Ca, (1)x(t) + Doy, (1)w(t).
Plant Rule 2: IF x4(t) is Ma(z2(t)) THEN
z(t) = [A2(1) + AAs(1)]z(t
+B1, (Yw(t) + Ba, (u(t), x(0) =0,
2(t) = C(z(t),
y(t) = Coy(2)x(t) + Da1, (1)w(t)

wherex(t) = [T (t) 23 (#)]7,

T
T

A(1) = { 75.5 3.5 +10.7N1 } ’
Ay(1) = { _;5 3.5 +10.7N2 } ’
A1(2) = { —413.7 44.5 +11.7N1 ] ’
Ax(2) = { 7413‘7 445 +11.7N2 ] ’
A1(3) = { 5%3 —4.3+10.1Nl } ’
Ay(3) = { 5%3 —4.3+10.1N2 } ’
By, (1) = B1,(1) = { 091 8 } ’
By, (1) = Ba, (1) = { (1) } ’

e == g | | cat=cnt) =

Dy1,(2) = D1, (1) = [ 0 0.1 ],
AA (1) = F(x(t),2,t)Hy, (2)
and AAy(1) = F(x(t),2,t)Hy,(2).

Val:L, Nowén2BY assuming that in ATNE (x(t),2, )] < p(2) =1, we

have
0 0
Hy, (1) = [ —0.1a(1)  0.1a(2) + 0.18(1) Ny ]

0 0
and Hy,(2) = { —0.1a(2) 0.1a(2) + 0.15(2) No } .

In this simulation, we seledv; = —3 and N, = 3. Using the
LMI optimization algorithm and Theorem 1 with = 1, we
obtain

—20.7511 —8.7443 |,

—20.7510 —12.9443 |,

27.3538 —45.1409 |,

[

[

[

[ 11.6005 —60.1228 |,
[ —25.8817 —2.1590 |,
[

Ki(1)
Ka(1)
Ki(2)
K> (2)
K1(3)
K> (3)

~25.8817 —2.7590 ].

The resulting fuzzy controller is

2
u(t) = Z 1y K5 (0)x(t)

where
p1 = Mi(22(t)) and pg = Ma(z2(t)).

Remark 1: The robust fuzzy state-feedback controller guar-
antees that theC,-gain, v, is less than the prescribed value.
Figure 2 shows the changing between modes during the sim-
ulation with the initial mode 1. The disturbance input signal,
w(t), which was used during simulation is the rectangular
signal (magnitude 0.1 and frequency 10 Hz). The ratios of the
regulated output energy to the disturbance input noise energy
for both cases are depicted in Figure 3. After time3=the
ratio of the regulated output energy to the disturbance input
noise energy tends to a constant value which is aloLg.
Thus,y = v/0.18 = 0.424, which is less than the prescribed
valuel. O

V. CONCLUSION

This paper has proposed a technique for designing an
‘H state-feedback controller for a class of fuzzy Markovian
jump dynamic systems that guarantees thegain from an
exogenous input to a regulated output is less or equal to
a prescribed value. Based on an LMI approach, LMI-based
sufficient conditions for the uncertain Markovian jump Takagi-
Sugeno fuzzy model to have &f., performance are estab-
lished. The effectiveness of the proposed design methodology
is demonstrated through a numerical simulation system.
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