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Robust H∞ State-Feedback Control for Uncertain Fuzzy Markovian
Jump Systems: LMI-Based Design
Wudhichai Assawinchaichote and Sing Kiong Nguang

Abstract— This paper investigates the problem of designing a ro-
bust state-feedback controller for a class of uncertain Markovian jump
nonlinear systems that guarantees theL2-gain from an exogenous
input to a regulated output is less than or equal to a prescribed
value. First, we approximate this class of uncertain Markovian jump
nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy
models with Markovian jumps. Then, based on an LMI approach,
LMI-based sufficient conditions for the uncertain Markovian jump
nonlinear systems to have anH∞ performance are derived. An
illustrative example is used to illustrate the effectiveness of the
proposed design techniques.

Keywords— RobustH∞; Fuzzy Control; Markovian Jump Sys-
tems; LMI

I. I NTRODUCTION

Many physical systems may experience abrupt changes in
their structure and parameters, caused by phenomena such as
component and interconnection failures, parameters shifting,
tracking, and the time required to measure some of the
variables at different stages. Such system can be modelled
by a hybrid system with two components in the state vector.
The first one which varies continuously is referred to be the
continuous state of the system and the second one which varies
discretely is referred to be the mode of the system. There has
been an increasing interest in these types of systems during
the last decade, mostly due to the growing use of computers
in the control of physical plants but also as a result of the
hybrid nature of physical processes. A special class of hybrid
systems known as Markovian jump systems has been widely
used to model manufacturing systems [1] and communication
systems [2]. Although linear Markovian jump systems have
been extensively studied [3]-[13], to the best of our knowledge,
the control design of nonlinear Markovian jump dynamical
systems remains as an open research area. Recently, there
has been some attempt in this area. In [14], Hamilton-Jacobi-
equation-based sufficient conditions for nonlinear Markovian
jump systems to have anH∞ performance have been derived.
However, until now, it is still very difficult to find a global
solution to the HJE either analytically or numerically.

Over the past two decades, there has been rapidly growing
interest in application of fuzzy logic to control problem. Re-
searches have been focused on its application to industrial pro-
cesses and a number of successful results have been reported in
the literature. In spite of these successes, there are many basic
issues remain to be addressed. One of them is how to achieve
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a systematic design that guarantees closed-loop stability and
performance. Recently, a great amount of effort has been
devoted to describing a nonlinear system using a Takagi-
Sugeno fuzzy model (see [15]-[30]). The Takagi-sugeno fuzzy
model represents a nonlinear system by a family of local linear
models which smoothly blended together through fuzzy mem-
bership functions. Unlike conventional modelling techniques
which uses a single model to describe the global behavior of
a nonlinear system, fuzzy modelling is essentially a multi-
model approach in which simple sub-models (typically linear
models) are fuzzily combined to described the global behavior
of a nonlinear system. Based on this fuzzy model, a number
of systematic model-based fuzzy control design methodologies
have been developed.

The aim of this paper is to study the problem of designing
robust H∞ fuzzy state-feedback controller for a class of
uncertain nonlinear systems with Markovian jumps. First,
we approximate this class of uncertain nonlinear systems
with Markovian jumps by a Takagi-Sugeno fuzzy model with
Markovian jumps. Then based on an LMI approach, we
develop a technique for designing robustH∞ fuzzy state-
feedback and output feedback controllers such that theL2-
gain of the mapping from the exogenous input noise to the
regulated output is less than a prescribed value.

This paper is organized as follows. In Section II, system
descriptions and definition are presented. In Section III, based
on an LMI approach, we develop a technique for designing
robustH∞ fuzzy state-feedback controller such that theL2-
gain of the mapping from the exogenous input noise to the
regulated output is less than a prescribed value for the system
described in Section II. The validity of this approach is
demonstrated by an example from a literature in Section IV.
Finally, conclusions are given in Section V.

II. SYSTEM DESCRIPTIONS ANDDEFINITIONS

The class of uncertain nonlinear system with Markovian
jumps under consideration is described by the following TS
fuzzy model with Markovian jumps:

ẋ(t) =
∑r

i=1 µi(ν(t))
[
[Ai(η(t)) + ∆Ai(η(t))]x(t)

+[B1i(η(t)) + ∆B1i(η(t))]w(t)
+[B2i(η(t)) + ∆B2i(η(t))]u(t)

]
, x(0) = 0,

z(t) =
∑r

i=1 µi(ν(t))
[
[C1i(η(t)) + ∆C1i(η(t))]x(t)

+[D12i(η(t)) + ∆D12i(η(t))]u(t)
]

y(t) =
∑r

i=1 µi(ν(t))
[
[C2i(η(t)) + ∆C2i(η(t))]x(t)

+[D21i(η(t)) + ∆D21i(η(t))]w(t)
]

(1)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3747

where ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable
that may depend on states in many cases,µi(ν(t)) denote
the normalized time-varying fuzzy weighting functions for
each rule,ϑ is the number of fuzzy sets,x(t) ∈ <n is the
state vector,u(t) ∈ <m is the input, w(t) ∈ <p is the
disturbance which belongs toL2[0,∞), y(t) ∈ <` is the mea-
surement,z(t) ∈ <s is the controlled output, the matrix func-
tions Ai(η(t)), B1i(η(t)), B2i(η(t)), C1i(η(t)), C2i(η(t)),
D12i(η(t)), D21i(η(t)), ∆Ai(η(t)), ∆B1i(η(t)), ∆B2i(η(t)),
∆C1i(η(t)), ∆C2i(η(t)), ∆D12i(η(t)) and ∆D21i(η(t)) are
of appropriate dimensions.{η(t))} is a continuous-time
discrete-state Markov process taking values in a finite setS =
{1, 2, · · · , s} with transition probability matrixPr

∆= {Pık(t)}
given by

Pık(t) = Pr(η(t + ∆) = k|η(t) = ı)

=
{

λık∆ + O(∆) if ı 6= k
1 + λıı∆ + O(∆) if ı = k

(2)

where∆ > 0, and lim∆−→0
O(∆)

∆ = 0. Hereλık ≥ 0 is the
transition rate from modeı (system operating mode) to mode
k (ı 6= k), and

λıı = −
s∑

k=1,k 6=ı

λık. (3)

For the convenience of notations, we letµi
∆= µi(ν(t)),

η = η(t), and any matrixM(µ, ı) ∆= M(µ, η = ı). The matrix
functions ∆Ai(η), ∆B1i

(η), ∆B2i
(η), ∆C1i

(η), ∆C2i
(η),

∆D12i
(η) and ∆D21i

(η) represent the time-varying uncer-
tainties in the system and satisfy the following assumption.

Assumption 1:

∆Ai(η) = F (x(t), η, t)H1i(η),

∆B1i
(η) = F (x(t), η, t)H2i

(η),

∆B2i
(η) = F (x(t), η, t)H3i

(η),

∆C1i
(η) = F (x(t), η, t)H4i

(η),

∆C2i(η) = F (x(t), η, t)H5i(η),

∆D12i(η) = F (x(t), η, t)H6i(η),

and ∆D21i(η) = F (x(t), η, t)H7i(η)

where Hji(η), j = 1, 2, · · · , 7 are known matrices which
characterize the structure of the uncertainties. Furthermore,
there exists a positive functionρ(η) such that the following
inequality holds:

‖F (x(t), η, t)‖ ≤ ρ(η). (4)
We recall the following definition.
Definition 1: Supposeγ is a given positive number. A

system of the form (1) is said to have theL2-gain less than
or equal toγ if

E

[∫ Tf

0

{zT (t)z(t)− γ2wT (t)w(t)} dt

]
≤ 0, x(0) = 0 (5)

whereE [·] stands for the mathematical expectation, for all
Tf and allw(t) ∈ L2[0, Tf ].

Note that for the symmetric block matrices, we use(∗) as
an ellipsis for terms that are induced by symmetry.

III. ROBUSTH∞ FUZZY STATE-FEEDBACK CONTROL

DESIGN

This section provides the LMI-based solutions to the prob-
lem of designing a robustH∞ fuzzy state-feedback controller
that guarantees theL2-gain of the mapping from the exoge-
nous input noise to the regulated output to be less than some
prescribed value.

Let us consider a robustH∞ fuzzy state-feedback controller
of the form

u(t) =
r∑

j=1

µjKj(η)x(t) (6)

whereKj(η) is the controller gain, such that the inequality
(5) is guaranteed. The state space form of the fuzzy system
model (1) with the controller (6) is given by

ẋ(t) =
∑r

i=1

∑r
j=1 µiµj

[
[(Ai(ı) + B2i(ı)Kj(ı))

+(∆Ai(ı) + ∆B2i(ı)Kj(ı))]x(t)
+[B1i(ı) + ∆B1i(ı)]w(t)

]
, x(0) = 0.

(7)

The following theorem provides sufficient conditions for
the existence of a robustH∞ fuzzy state-feedback controller.
These sufficient conditions can be derived by the Lyapunov
approach.

Theorem 1:Consider the system (1). Given a prescribed
H∞ performanceγ > 0, then the inequality (5) holds if for
ı = 1, 2, · · · , s, there exist matricesP (ı) = PT (ı) and any
positive constantsδ(ı) such that the following linear matrix
inequalities hold:

P (ı) > 0 (8)

Ψii(ı) < 0, i = 1, 2, · · · , r (9)

Ψij(ı) + Ψji(ı) < 0, i < j ≤ r (10)

where

Ψij(ı) =




Φij(ı) (∗)T (∗)T (∗)T

R(ı)B̃T
1i

(ı) −γR(ı) (∗)T (∗)T

Υij(ı) 0 −γR(ı) (∗)T

ZT (ı) 0 0 −P(ı)




Φij(ı) = Ai(ı)P (ı) + P (ı)AT
i (ı) + B2i

(ı)Yj(ı)
+Y T

j (ı)BT
2i

(ı) + λııP (ı)

Υij(ı) = C̃1i(ı)P (ı) + D̃12i(ı)Yj(ı)
R(ı) = diag{δ(ı)I, I, δ(ı)I, I}
Z(ı) =

(√
λı1P (ı) · · ·

√
λı(ı−1)P (ı)

√
λı(ı+1)P (ı) · · ·

√
λısP (ı)

)

P(ı) = diag{P (1), · · · , P (ı− 1), P (ı + 1), · · · , P (s)}
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with

B̃1i(ı) =
[

I I I B1i(ı)
]

C̃1i(ı) =
[
γρ(ı)HT

1i
(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı)

0
√

2ℵ(ı)CT
1i

(ı)
]T

D̃12i(ı) =
[
0
√

2ℵ(ı)ρ(ı)HT
6i

(ı)

γρ(ı)HT
3i

(ı)
√

2ℵ(ı)DT
12i

(ı)
]T

ℵ(ı) =


1 + ρ2(ı)

r∑

i=1

r∑

j=1

[
‖HT

2i
(ı)H2j (ı)‖

]



1
2

.

Furthermore, a suitable choice of the fuzzy controller is

u(t) =
r∑

j=1

µjKj(ı)x(t) (11)

where
Kj(ı) = Yj(ı)(P (ı))−1. (12)

Proof: Due to the page limit, the detail of the proof has been
omitted.

IV. I LLUSTRATIVE EXAMPLE

Consider a modified Samuelson multiplier-accelerator eco-
nomic model based on [37] which is governed by the following
difference equations:

Y (k) = [C(k) + I(k) + G(k − 1)]
I(k) = (α + ∆α) [Y (k − 1)− Y (k − 2)]
C(k) = (β + ∆β)Y υ(k − 1)

(13)

whereY is the deviation of the national income from the de-
sired national income,I is the deviation of the induced private
investment from the desired induced private investment,C is
the deviation of the consumption expenditure from the desired
consumption expenditure,G is the deviation of the government
expenditure from the desired government expenditure decided
at the end of period (k − 1) for periodk, α is the accelerator
coefficient,β is the marginal propensity to consume parameter
andυ is the consume parameter (υ ≥ 1). ∆α and∆β are the
uncertain accelerator coefficient and marginal propensity to
consume parameter, respectively. We assume that|∆α| ≤ 0.1α
and |∆β| ≤ 0.1β.

EliminatingC(k) andI(k) in the above equations, we have

Y (k) = (β + ∆β)Y υ(k − 1) + (α + ∆α)Y (k − 1)
+G(k − 1)− (α + ∆α)Y (k − 2).

(14)
By shifting one step forward and givingx1(k) = Y (k − 1),
x2(k) = Y (k) andu(k) = G(k), (14) becomes

[
x1(k + 1)
x2(k + 1)

]
=




x2(k)

−(α + ∆α)x1(k)
+(α + ∆α)x2(k)
+(β + ∆β)xυ

2 (k)







+
[

0
1

]
u(k).

(15)

Converting (15) to continuous-time system model, we have

[
ẋ1(t)
ẋ2(t)

]
=




x2(t) + x1(t)


−(α + ∆α)x1(t)
+(α + ∆α)x2(t)

+(β + ∆β)xυ
2 (t) + x2(t)







+
[

0
1

]
u(t).

(16)
Based on [37], the general economic situations could be
aggregated into three modes as shown in Table I:

TABLE I

ECONOMIC TERMINOLOGY.

Mode ı Terminology α(ı)±∆α(ı) β(ı)±∆β(ı)

1 Normal 2.5±10% 0.3±10%
2 Boom 43.7±10% −0.7± 10%
3 Slump −5.3± 10% 0.9±10%

The transition probability matrix that relates the three op-
eration modes is given as follows:

Pık =




0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64


 .

Assumingυ = 2, (16) can be re-expressed as

[
ẋ1(t)
ẋ2(t)

]
=




1 1

−α(ı)
[

α(ı) + 1
+β(ı)x2(t)

]



[
x1(t)
x2(t)

]

+
[

0 0
0.1 0

]
w(t) +

[
0
1

]
u(t)

+




0 0

−∆α(ı)
[

∆α(ı)
+∆β(ı)x2(t)

]



[
x1(t)
x2(t)

]

z(t) =
[

x1(t)
x2(t)

]

y(t) = Jx(t) + [0 0.1]w(t)
(17)

where x1(t) and x2(t) are the state vectors,u(t) is the
controlled input which represents the deviation of the govern-
ment expenditure from the desired government expenditure,
w(t) is the disturbance input which represents the unexpected
behavior of the economy,z(t) is the controlled output,y(t) is
the measured output andJ is the sensor matrix.

The control objective is to control the state variablex2(t)
for the rangex2(t) ∈ [N1 N2]. For the sake of simplicity, we
will use as few rules as possible. Note that Figure 1 shows
the plot of the membership functions represented by

M1(x2(t)) =
−x2(t) + N2

N2 −N1
and M2(x2(t)) =

x2(t)−N1

N2 −N1
.

Knowing thatx2(t) ∈ [N1 N2], the nonlinear system (17)
can be approximated by the following TS fuzzy model:
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Fig. 1. Membership functions for the two fuzzy set.

Plant Rule 1: IF x2(t) is M1(x2(t)) THEN

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t)
+B11(ı)w(t) + B21(ı)u(t), x(0) = 0,

z(t) = C11(ı)x(t),
y(t) = C21(ı)x(t) + D211(ı)w(t).

Plant Rule 2: IF x2(t) is M2(x2(t)) THEN

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t)
+B12(ı)w(t) + B22(ı)u(t), x(0) = 0,

z(t) = C12(ı)x(t),
y(t) = C22(ı)x(t) + D212(ı)w(t)

wherex(t) = [xT
1 (t) xT

2 (t)]T ,

A1(1) =
[

1 1
−2.5 3.5 + 0.7N1

]
,

A2(1) =
[

1 1
−2.5 3.5 + 0.7N2

]
,

A1(2) =
[

1 1
−43.7 44.5 + 1.7N1

]
,

A2(2) =
[

1 1
−43.7 44.5 + 1.7N2

]
,

A1(3) =
[

1 1
5.3 −4.3 + 0.1N1

]
,

A2(3) =
[

1 1
5.3 −4.3 + 0.1N2

]
,

B11(ı) = B12(ı) =
[

0 0
0.1 0

]
,

B21(ı) = B22(ı) =
[

0
1

]
,

C11(ı) = C12(ı) =
[

1 0
0 1

]
, C21(ı) = C22(ı) = J,

D211(ı) = D212(ı) =
[

0 0.1
]
,

∆A1(ı) = F (x(t), ı, t)H11(ı)

and ∆A2(ı) = F (x(t), ı, t)H12(ı).

Now, by assuming that in (17),‖F (x(t), ı, t)‖ ≤ ρ(ı) = 1, we
have

H11(ı) =
[

0 0
−0.1α(ı) 0.1α(ı) + 0.1β(ı)N1

]

andH12(ı) =
[

0 0
−0.1α(ı) 0.1α(ı) + 0.1β(ı)N2

]
.

In this simulation, we selectN1 = −3 andN2 = 3. Using the
LMI optimization algorithm and Theorem 1 withγ = 1, we
obtain

K1(1) =
[ −20.7511 −8.7443

]
,

K2(1) =
[ −20.7510 −12.9443

]
,

K1(2) =
[

27.3538 −45.1409
]
,

K2(2) =
[

11.6005 −60.1228
]
,

K1(3) =
[ −25.8817 −2.1590

]
,

K2(3) =
[ −25.8817 −2.7590

]
.

The resulting fuzzy controller is

u(t) =
2∑

j=1

µjKj(ı)x(t)

where

µ1 = M1(x2(t)) and µ2 = M2(x2(t)).

Remark 1:The robust fuzzy state-feedback controller guar-
antees that theL2-gain, γ, is less than the prescribed value.
Figure 2 shows the changing between modes during the sim-
ulation with the initial mode 1. The disturbance input signal,
w(t), which was used during simulation is the rectangular
signal (magnitude 0.1 and frequency 10 Hz). The ratios of the
regulated output energy to the disturbance input noise energy
for both cases are depicted in Figure 3. After time =3, the
ratio of the regulated output energy to the disturbance input
noise energy tends to a constant value which is about0.18.
Thus,γ =

√
0.18 = 0.424, which is less than the prescribed

value1.

V. CONCLUSION

This paper has proposed a technique for designing an
H∞ state-feedback controller for a class of fuzzy Markovian
jump dynamic systems that guarantees theL2-gain from an
exogenous input to a regulated output is less or equal to
a prescribed value. Based on an LMI approach, LMI-based
sufficient conditions for the uncertain Markovian jump Takagi-
Sugeno fuzzy model to have anH∞ performance are estab-
lished. The effectiveness of the proposed design methodology
is demonstrated through a numerical simulation system.
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Fig. 2. The result of the changing between modes during the simulation
with the initial mode 1.
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Fig. 3. The ratio of the regulated output energy to the disturbance noise

energy,

( ∫ Tf
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.
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