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Abstract—The paper presents a technique suitable in robot 

vision applications where it is not possible to establish the object 
position from one view. Usually, one view pose calculation methods 
are based on the correspondence of image features established at a 
training step and exactly the same image features extracted at the 
execution step, for a different object pose. When such a 
correspondence is not feasible because of the lack of specific features 
a new method is proposed. In the first step the method computes 
from two views the 3D pose of feature points. Subsequently, using a 
registration algorithm, the set of 3D feature points extracted at the 
execution phase is aligned with the set of 3D feature points extracted 
at the training phase. The result is a Euclidean transform which have 
to be used by robot head for reorientation at execution step. 
 

Keywords—features correspondence, registration 
algorithm, robot vision, triangulation method.  

I. INTRODUCTION 
 lot of robot vision applications are based on 3D pose 
calculation using a single view [1, 3, 4, 5]. 

In a preliminary phase the robot is trained to do the required 
operation on the specific object, located on an ideal position. 
Also a set of image features of the object are selected. For 
each chosen feature is allocated a pattern matching classifier 
providing feature centroid. The object coordinates of the 
chosen point features in a Euclidean system attached to the 
object are known from CAD object model or by direct 
measurements. These coordinates are transferred to the 
camera Euclidean system, via extrinsic parameters of the 
camera calibration. 

The features chosen in the preliminary step are recognized 
during execution phase of the process. A Euclidean 
transformation (rotations and translations) of the transferred 
points is then computed. This transformation hypothetically 
overlaps in the image the preliminary features on the 
pertaining features recognized in the execution phase. In order 
to execute the learned robot operation, this Euclidean 
transform, correlated with the eye-hand transformation, will 
provide all the information to properly move the robot head in 
the right position. 

The described technique implies an easy to perform exact 
correspondence of the features extracted during execution 
phase with the features established in the preliminary phase. 
Usually this is done allocating a classifier for each chosen 
feature. Obviously, the features points established in the first 
step not recognized during execution phase are ignored. To 

compute the object 3D pose at least three of the chosen 
features have to be recognized at the execution step.  

For some cases, as the one depicted in Fig. 1, the exact 
point correspondence is not possible. The proposed solution is 
to compute in a preliminary step the 3D pose of the point 
features from two views. At the execution phase the 3D pose 
of the recognized features is again computed. A Euclidean 
transform is computed using a registration algorithm. This 
time the transform registers the 3D points computed in the 
preliminary phase to 3D points extracted at the execution 
phase. 

II.  3D RECONSTRUCTION ALGORITHM 
It is obvious that the image object area which provides the 

chosen feature may differ from the robot action area. In all the 
figures are depicted only the object part which provide image 
features. The key is to choose those features that lead to the 
right Euclidean transform of the registration algorithm.  

 
Fig. 1 An object the robot has to work on. There are no point 

features (corners, line intersections etc.) easily to recognize in 
various images of the object. The curved edge is chosen as feature. 
From two images of the object, by stereo techniques, the 3D 
coordinates of the edge points are computed 

The 3D coordinates of the edge points, chosen as features, 
are computed using a stereo system with cameras ]0K[IP =  

and ]t[RKP ''= . The R,KK, '  matrices and translation 
vector t are known as result of the calibration process. The 3D 
edge points may be computed also from the two positions of 
the single robot camera but this approach is less accurate than 
the classic stereo one.  

The fundamental matrix F of the stereo system is: 
-1-t ][' RKtKF x= , where xt][  is the skew-symmetric matrix 

of the translations vector t. 
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Fig. 2 The stereo system images: a) the left image; b) the right 
image 

The ), ii 'x(x  pairs of the correspondent edge points in the 
two images of the stereo system are computed as follows: 

1. The edges are extracted in each image; 
2. For each edge pixel x of the left image: 

2.1. Compute the epipolar line in the right image: 
xFl = . 

2.2. The correspondent pixel of x in the right image is 
computed as the intersection of l with the right image 
contour. 

 
Fig. 3 Epipolar line in the right image of an edge pixel x of the left 

image. The correspondent pixel x'  in the right image is the 
intersection of the epipolar line of x with the right contour chosen as 
feature 

The 3D edge points )Z,Y,X( iiiiX  with ii xPX =  and 

ii '' xXP =  are calculated from the pairs )', ii x(x , using the 
well known triangulation method illustrated by Fig. 4. 

 

 
Fig. 4 Triangulation method. Due the fact the correspondent pixels 

)',( xx  satisfy the epipolar constraint, the rays of x and x’ intersect 
in space point X. 

For a Tsai like camera calibration, [6], the conversion from 
the pixel x(x, y) of the left image to the vector )z,y,x( llllv  of 
the left camera system is: 

fz
yy
xx

))yx(k1(yy
))yx(k1(xx

)Cy(dy

)Cx(
s
'dx

1

u1

u1

2
d

2
d1du

2
d

2
d1du

yyd

x
x

x
d

=
=
=

+−=

+−=

−=

−=

 (1) 

where )y,x( uu  are the undistorted coordinates, )y,x( dd  
distorted coordinates of the pixel and 

1yxyxx k,f,d,s,C,C,'d are the intrinsic calibration parameters. 

The vector )z,y,x( rrrrv  of the left image pixel )'y,'x('x  is 
calculated the same way.  

Usually, the 3D edge points )Z,Y,X( iiiiX  are computed 
using triangulation method, [5], expressed by:  

tvRvvRv =+− )x(cba r
t

1r
t

1  (2) 
Due the fact the pairs )', ii x(x  satisfy the epipolar condition 

)0' i
t
i =Fx(x  the rays of the x and x'  pixels will intersect in 3D 

space. So, the vector )x r
t

r vR(v , perpendicular on the rays 
of x and 'x , is of null length. Equation (2) becomes:  

tvRv =− r
t

1 ba  (3) 
Let ia  and ib  be the solutions of (3) for the pairs )', ii x(x . 

Let the left camera system vectors of the ix  pixels be noted 

with t
lililili )z,y,x(v . Using also the notations 

)vz,vy,vx( iiiri
t =vR , t

zyx )t,t,t(=t  the point iX  
coordinates are: 
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Let M,1i),Z,Y,X( mimimimi =X , be the 3D edge points from 
training step and N,1i),Z,Y,X( didididi =X , the edge points 
extracted at the execution phase. Consider (R, t) the Euclidean 
transform that registers the diX  points over the miX  edge 
points: 

t
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R  (5) 

where φθψ and,,  are the rotation angles about OX, OY, 
respectively OZ axes and t is the translation vector.   

Starting from an initial transform ), 00 t(R  a Levenberg-
Marquardt optimization method computes a Euclidean 
transformation ), t(R  which registers 3D edge points 
calculated at the execution step on the 3D points of the 
training phase. 

For each contour point N,1i),Z,Y,X( didididi =X , an edge 
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point t

imkimkimkimk )Z,Y,X(X  of the trained contour 

M,1j,)Z,Y,X( t
mjmjmjmj =X , is chosen according with: 

mjcdicM,1jimkcdicimktii )(min)(d X-tXRX-tXRX-X +=+==
=

 (6) 

where ), cc t(R  is the current transform, cdicti tXRX += . 
The transform computed by Levenberg-Marquardt method 

minimizes the following cost function: 
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For N edge points, )Z,Y,X( didididiX , computed at the 
execution phase, the Jacobian of )t,t,t,,,(E zyxφθψ  is an Nx6 
matrix: 
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where: 
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 The zyx t,t,t,,, φθψ  values minimizing the cost function (7) 
are computed in each step of the optimization process by 
solving the equation: 

εJIJ(J tt ) −=Δλ+  (9) 
where J is Jacobian (8), λ  is a real parameter varying from 
step to step according to Levenberg-Marquardt method, I is 

unit matrix and ε  is:  
t

N21 ]d,d,d[ …=ε . 

The solutions )t,t,t,,,( zyx ΔΔΔφΔθΔψΔ=Δ  lead to 
minimization of the cost function (7) using the new parameter 
values: 

;i1i ψΔ+ψ=ψ + ;i1i θΔ+θ=θ + ;i1i φΔ+φ=φ + ;ttt xxi)1i(x Δ+=+

;ttt yyi)1i(y Δ+=+ .ttt zzi)1i(z Δ+=+  
Before registration, the edge points 

M,1i),Z,Y,X( mimimimi =X  and N,1i),Z,Y,X( didididi =X  are 
scaled to fit in a cube 100x100x100 as depicted by Fig. 5. The 
scaling method is described in [2]. 

The registration result is figured in Fig. 6. 

 
Fig. 5 Training 3D edge (red) and edge extracted in the execution 

step (blue) 

 
Fig. 6 The registration algorithm result. The training edge overlaps 

the edge extracted in the execution step 
A problem for great volume data applications could be the 

computation of Nx6 matrix J. The members JJ t  and εJ t  of 
εJIJ(J tt ) −=Δλ+  equation may be computed as follows. 

Using the notations  ]a[ ij
t =JJ , with i, j =1,6; ]J[ kl=J  

with l=1,6, k = 1,N and t
621
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For the current edge point ),Z,Y,X( kkkkX  in previous 
relations, the Jacobian components are: 
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III. CONCLUSIONS 
The registration process is an O(n2) algorithm, with 

n=max(M,N). It is acceptable for applications with edges of 
hundreds of points. For applications involving a great amount 
of edge data it is recommended the registration method 
presented in [2]. 

The method was tested for robot vision applications on 
various objects. The precision of head robot pose is the same 
like in single camera robot applications. The comparison was 
done using accuracy tests for the two methods applied on 
different objects and also applied on the same object. This was 
possible because the proposed method works also for objects 
suited in single view robot applications.   
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