
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2737

Abstract—The prediction of Software quality during

development life cycle of software project helps the development
organization to make efficient use of available resource to produce
the product of highest quality. “Whether a module is faulty or not”
approach can be used to predict quality of a software module. There
are numbers of software quality prediction models described in the
literature based upon genetic algorithms, artificial neural network
and other data mining algorithms. One of the promising aspects for
quality prediction is based on clustering techniques. Most quality
prediction models that are based on clustering techniques make use
of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural
Gas and fuzzy K-means algorithm for prediction. In all these
techniques a predefined structure is required that is number of
neurons or clusters should be known before we start clustering
process. But in case of Growing Neural Gas there is no need of pre-
determining the quantity of neurons and the topology of the structure
to be used and it starts with a minimal neurons structure that is
incremented during training until it reaches a maximum number user
defined limits for clusters. Hence, in this work we have used
Growing Neural Gas as underlying cluster algorithm that produces
the initial set of labeled cluster from training data set and thereafter
this set of clusters is used to predict the quality of test data set of
software modules. The best testing results shows 80% accuracy in
evaluating the quality of software modules. Hence, the proposed
technique can be used by programmers in evaluating the quality of
modules during software development.

Keywords—Growing Neural Gas, data clustering, fault

prediction.

I. INTRODUCTION
OFTWARE quality assurance is an important part of any
software project. In order to appraise the quality of any
software product we make use of Software quality

estimation models. These quality models can be used to
identify program modules that are likely to be defected [1] [2].
It helps project manager to make efficient use of limited
resources to target those modules that are defected [3]. A
software quality models help development team to track and
detect potential software defects during development cycle

Dr. Parvinder S. Sandhu is Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA
(Phone: +91-98555-32004; (Email: parvinder.sandhu@gmail.com)

 Sandeep Khimta is Lecturer with Computer Science & Engineering
Department, Rayat & Bahra Institute of Engineering & Bio-Technology,
Sahauran, Distt. Mohali (Punjab)-India

Kiranpreet Kaur is doing her Masters in Computer Science & Engineering
from Rayat Institute of Engineering & Information Technology, Rail Majra,
Distt. Distt. Nawanshahr ,144533, Punjab.

and saving lots of efforts that are later required for the
maintenance of that product. A software quality model is
trained using software measurement and defect data of a
previously developed release or similar project [4], [5]. The
trained model is then applied to modules of the current project
to estimate their quality. The proposed work is a supervised
clustering approach to estimate the quality of program
module.
 The proposed approach is based on constraint based
clustering using Growing Neural Gas as underlying algorithm.
During the Growing Neural Gas clustering process, the
constraint maintains membership of modules to clusters that
are already labeled as either fault prone (fp) or not fault prone
(nfp). The proposed approach is supervised because the
clustering process is aided with a set of labeled program
modules. To our knowledge, this is the first study to
investigate supervised clustering using Growing Neural Gas
for the software quality modeling, analysis, and estimation
problem.

Clustering is an appropriate choice for software quality
analysis [6]. Given software measurements (attributes) of the
labeled program modules, clustering algorithms group the
modules according to similarity of their software attributes.
The underlying assumption is that program modules with
similar attributes will have similar quality characteristics.
Hence, fp modules will have similar software measurements
and will likely group together as clusters. Similarly, nfp
modules will also group together as clusters. We investigate
the proposed approach using software measurement and
defect data from a previously developed National Aeronautics
and Space Administration (NASA) software project. The end
result after a run of the proposed supervised clustering
approach is a set of labeled clusters. The labeled clusters are
the result of the labeling during clustering process from
training data set PC1.

In context to software quality estimation, most research
have focused on clustering using K-means, Mixture-of-
Guassians, Self-Organizing Map, Neural Gas[7][8][9][11]. In
all these techniques we are required a predefined structure that
is numbers of neurons or clusters before we start clustering
process. To avoid the need of pre-determining the quantity of
neurons and the topology of the structure to be used, other
clustering techniques start with a minimal neurons structure
that is incremented during training until it reaches a maximum
number (or a optimal number of neurons, in some sense), or
until the network reaches a minimal error regarding data
quantization. Examples of these algorithms include the

A Growing Natural Gas Approach for
Evaluating Quality of Software Modules

Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2738

Growing Cell Structures (GCS) [10] and the Growing Neural
Gas [11], both developed by B. Fritzke.

The remainder of this paper continues with Section II,
where a brief discussion on working of Growing Neural Gas
clustering algorithm is presented. The proposed software
quality analysis using Growing Neural Gas as underling
clustering scheme is detailed in Section III, followed by
Section IV, in which result and discussion is presented on
methods used to analyze and in section V, conclusion is
presented.

II. GROWING NEURAL GAS
Given any input data distribution in Rn, GNG incrementally

creates a graph in which each vertex corresponds to a unit
(neuron) formed by a reference vector wi in Rn (wi= [wi1, wi2
..., win]), an errori variable representing accumulated local
error and an edge group defining unit i topological
neighbourhood. Reference vector represents unit position in
output space. At each iteration a new input signal x is
analyzed. Two iteration winner nodes are chosen, s and t, such
that |ws- x| is the smallest value and |wt –x| is the second
smallest value, where | | represents Euclidean distance.
Winner node adjusts its accumulated local error, adding
Euclidean distance between unit and analyzed input vector,
according to equation below [10][11]:

 | xw| errorerror −+← sss (1)
Accumulated local error represents the measure used to

define new units' insertion place. According with Competitive
Hebbian Learning (CHL), a connection with age 0 is
established between winner unit and second place. The winner
unit and its neighbors, established by CHL, are moved a
fraction toward the input data's direction, according with
following equations [10][11]:

)w-(x e w w sbss +← (2)
)w-(x e w w nnnn +← (3)

∀ n Є Neighbor(s), where eb is winner node updating
fraction and en is neighbor updating fraction, eb and en Є
[0,1]. Here ws is the reference vector of winner node and wn is
the reference vector of neighboring nodes of winner node.
This causes GNG's training dynamics to keep input data
topological relation. In the first iteration only two units are
created, with its reference vectors randomly established. The
algorithm is said growing, because each i iterations a new
neuron is inserted. The insertion of a new unit occurs between
the unit with highest (global) accumulated local error and its
neighbouring unit with highest accumulated local error. This
operation addresses a reduction of accumulated region error,
and consequently, a global error reduction. Therefore,
algorithm remains inserting new units until an established stop
criterion is met. GNG performs also some edge pruning. A
parameter, amax, is established, denoting maximum age that
an edge can reach. In each iteration, ages of all graph edges
are incremented. Edges with ages reaching established
maximum value are removed from graph. This rule is used to
prevent edges generated by occasional data and that should be
removed during the algorithm' iterations. Thus, an aspect to be

analyzed in defining an automatic data classification is the
generation of different graph connected component by the
algorithm. Each component would correspond to a different
class. Data submitted to a trained map are associated to a
winner unit and, consequently, to a graph component
representing a class. Nevertheless, some factors affect
negatively the GNG's formed graph. According with CHL
policy used by algorithm, one input signal only is enough to
generate a connection between two units. This causes outlier
data, or extremity class data, to have great influence over
generated graph connections. For further details of GNG refer
to reference [10][11].

III. PROPOSED WORK
The proposed clustering approach for software quality
analysis is a constraint-based scheme that uses labelled
instances from training data set for initial seeding (centroids)
of clusters among the maximum allowable clusters—a user
defined quantity when using Growing Neural Gas as the
clustering algorithm. The proposed algorithm used in our
constraint-based clustering approach with Growing Neural
Gas is enumerated as follows.

Step1: Obtain the required set of clusters using Growing
Neural Gas clustering algorithm from training data set
with each cluster’s centroid initialized.

Step2: Assign the class labels fp and nfp to the obtained
set of clusters based on the criteria that if ci is a cluster mi
is program module from training data set such that
Euclidean distance between ci and mi is minimum, then
assign the class labels fp or nfp of mi to ci.

Step3: Use the labeled set of clusters to predict the
quality of test data set based on the criteria that if ci is a
cluster ti is program module from testing data set such
that Euclidean distance between ci and ti is minimum,
then assign the class labels fp or nfp of ci to mi.

To predict the results, we have used confusion matrix. The
confusion matrix has four categories: True positives (TP) are
the modules correctly classified as faulty modules. False
positives (FP) refer to fault-free modules incorrectly labeled
as faulty. True negatives (TN) are the fault-free modules
correctly labeled as such. False negatives (FN) refer to faulty
modules incorrectly classified as fault-free modules.

TABLE I. A CONFUSION MATRIX OF PREDICTION OUTCOMES

Real data
 Fault No Fault

Fault TP FP
Pr

ed
ic

te
d

No Fault FN TN

The following set of evaluation measures are being used
to find the results:

• Type I Error: The value of Type I error can be
calculated using following equation:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2739

FPTN
FPErrorIType
+

= (4)

• Type II Error: The value of Type II error can be
calculated using following equation:

FNTP
FNErrorIIType
+

= (5)

If the value of Type I and Type II errors is low then the
proposed system is more accurate in prediction of fault prone
modules.

• Overall Error: The value of Overall error can be
caluculated using following equation:

FPFNFNTP
FPFNErrorOverall

+++
+

= (6)

IV. RESULT AND DISCUSSION
The software measurements and quality data used in this paper
to investigate the proposed work are those of a large NASA
software project PC1 and CM1. The PC1 project is a flight
software from earth orbiting satellite that is no longer
operational. It consists of 40 KLOC code of C. The data were
made available through the Metrics Data Program (MDP) at
NASA (http://mdp.ivv.nasa.gov/) and included software
measurement data and associated error (fault or defect) data
collected at the function level. PC1 contain 1107 modules of
which 76 contains one or more faults and 1031 contains zero
faults. The maximum numbers of faults in a module is 9. The
CM1 is a science instrument application written in C code
with 20KLOC. The data set contain 505 modules out of which
48 contains one or more faults and 457 have zero faults. The
maximum numbers of faults in modules is 5. In this paper, a
program module with no faults was considered nfp and fp
otherwise.

Each program module in the PC1 and CM1 was
characterized by 21 software measurements [14]: 13 core
metrics (as shown in Table II) and eight derived Halstead
metrics (Halstead_Length, Halstead_Volume, Halstead_Level,
Halstead_Difficulty, Halstead_Content, Halstead_Effort,
Halstead_Error_Est, and Halstead_Prog_Time). In this study
only 13 basic software metrics are used. The eight derived
Halstead metrics were not used as they are derived from basic
Halstead metrics.

TABLE II. SOFTWARE MEASUREMENTS IN PC1 AND CM1 DATA

Line count metrics

LOC_BLANK
LOC_CODE_AND_COMMENT
LOC_COMMENTS
LOC_EXECUTABLE
LOC_TOTAL

MaCabe metrics

CYCLOMATIC_COMPLEXIT
Y
DESIGN_COMPLEXITY
ESSENTIAL_COMPLEXITY

Helstead metrics

NUM_OPERANDS
NUM_OPERATORS
NUM_UNIQUE_OPERANDS
NUM_UNIQUE_OPERATORS

Branch count metric BRANCH_COUNT

TABLE III. NOTATION USED FOR RESULT ANALYSIS

Symbol Description
n total number of modules

nfp not fault prone module
fP fault prone module

P_nfp predicted not fault prone
module

P_fp predicted fault prone module
TYPE I error nfp modules predicted as fp
TYPE II error fp modules predicted as nfp

Overall total misclassification rate

Table III shows the different symbols and their description
that are used in our result analysis part.

The initial numbers of clusters and their label nfp and fp
clusters were determined based on the algorithm presented in
Section IV. We have implemented proposed algorithms
described in section III in Matlab 7.4 environment.

TABLE IV. INITIAL SET OF CLUSTERS FOR DIFFERENT VALUES
VARIABLE LEMBDA

S.N
. λ Total number of

clusters
1 50 25
2 70 18
3 90 15
4 110 13
5 130 11
6 150 10

PC1is used as training data set for the proposed work and

Table IV shows the total numbers of cluster sets that is
achieved in step1 of the proposed algorithm for different
values of λ. The λ is the number of iterations after which new
cluster is created in GNG algorithm.

For the given software measurement data set, if the above
described classification was performed several times, the
expected Type I and Type II error rates would be governed by
the proportions of the two classes, i.e. nfp and fp. If a data set
consists of 900 nfp and 100 fp modules, a randomly selected
module has a 0.10 probability of being correctly predicted as
fp (p = 10%). Similarly, a module has a 0.90 probability of
being correctly predicted as nfp (1 − p = 90%). Assuming that
200 modules are randomly predicted as fp and the remaining
800 modules are predicted as nfp, then the expected Type I
and Type II error rates are p and (1 − p), respectively: Type I
= (0.10 × 800/800) and Type II = (0.90 × 200/200). Among
the 200 modules predicted as fp, the expected number of
correct predictions is 0.10 × 200 = 20, and among the 800
modules predicted as nfp, the expected number of correct
predictions is 0.90 × 800 = 720.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2740

TABLE V. TEST DATA MISCLASSIFICATION RATE WITH PROPOSED
WORK AND CM1 AS DATA SET

λ
Test
Set
No.

Type I
 (in %)

Type II
(in %)

Overall
(in %)

1 36 95 41
2 89 33 84
3 3 85 11 λ =50

4 25 39 27
1 4 85 11
2 76 33 71
3 26 42 27 λ =70

4 87 10 80
1 78 46 75
2 23 46 26
3 10 75 16 λ =90

4 25 42 26
1 56 62 57
2 56 6 52
3 25 43 26 λ =110

4 20 56 23
1 79 33 75
2 22 48 22
3 17 56 20 λ =130

4 21 56 22
1 72 31 68
2 35 31 34
3 76 23 71 λ =150

4 43 15 40

TABLE VI. BEST CASES OF TEST DATA MISCLASSIFICATION RATE WITH
PROPOSED WORK FOR CM1 DATA SET

λ Type I Type II Overall
50 25 39 27
70 26 42 27
90 25 42 26

110 20 56 23
130 22 48 22
150 35 31 34

In the present work CM1 is used as test data set. Type I,

Type II and overall error for different values of λ was
calculated. For each value of λ four different sets are
conducted to get better insight of prediction result of
proposed work. The expected classification results are
summarized in Table V for different values of λ. In table VI
best predicted result for each value of λ are recorded. It is
clear form the observation of table V that as the value of λ
increases the value of Overall error rate decreases and the
value of Type II error increases. When λ is set to 150 we get
exceptional values that is: Overall error rate increases and the
value of Type II error decreases. Lowest Overall error rate is
observed when λ is set to 130; where as lowest Type II error
rate is observed when λ is set to 150. The prediction result is
considered best if the Overall error rate and Type II error rate
are on lower side. Here the best result is achieved for when λ

is set to 150. The best combination is when λ is set to 150
where we get lower value combination for both Type II and
Overall error rate.

V. CONCLUSION
Software quality assurance plays important part of any

software project. The prediction of Software quality during
development life cycle of software project helps the
development organization to make efficient use of available
resource to produce the product of highest quality. In the
proposed work Growing Neural Gas clustering technique is
used to predict the quality of software project. The output of
proposed model is prediction of module as faulty one or not
faulty. The performance of the proposed model is measured in
terms of Type I, Type II and Overall error rate. Lower the
value of overall and Type II error rate better is the quality
prediction rate of that model. The best testing results shows
80% accuracy in evaluating the quality of software modules.
Hence, the proposed technique can be used by programmers in
evaluating the quality of modules during software
development.

REFERENCES
[1] K. E. Imam, S. Benlarbi, N. Goel, and S. N. Rai, “Comparing casebased

reasoning classifiers for predicting high-risk software components”,J.
Syst. Softw., vol. 55, no. 3, pp. 301–320, Jan. 2001.

[2] N. F. Schneidewind, “Investigation of logistic regression as a
discriminant of software quality,” in Proc. 7th Int. Softw. Metrics
Symp., London, U.K., Apr. 2001, pp. 328–337.

[3] Taghi M. Khoshgoftaar, Naeem Seliya, “Analogy-based practical
classification rules for software quality estimation,” Empir. Softw. Eng.
J., vol. 8, no. 4, pp. 325–350, Dec. 2003.

[4] L. Guo, B. Cukic, and H. Singh, “Predicting fault prone modules by the
Dempster–Shafer belief networks,” in Proc. 18th Int. Conf. Automated
Softw. Eng., Montreal, QC, Canada, Oct. 2003, pp. 249–252.

[5] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empir.
Softw. Eng. J., vol. 9, no. 3, pp. 229–257, Sep. 2004.

[6] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Analyzing software
measurement data with clustering techniques,” IEEE Intell. Syst., vol.
19, no. 2, pp. 20–27, Mar./Apr. 2004.

[7] T. Kohonen, Self-Organizing Maps, 3nd. Ed., Berlim: Springer. 2001.
[8] S. Goldman and Y. Zhou, “Enhancing supervised learning with

unlabeled data,” in Proc. 17th Int. Conf. Mach. Learn., Jun. 2000, pp.
327–334.M. Young, The Techincal Writers Handbook. Mill Valley, CA:
University Science, 1989.

[9] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empir.
Softw. Eng. J., vol. 9, no. 3, pp. 229–257, Sep. 2004. R. W. Lucky,
“Automatic equalization for digital communication,” Bell Syst. Tech. J.,
vol. 44, no. 4, pp. 547–588, Apr. 1965.

[10] B. Fritzke. Growing Cell Structures - A Self-organizing Network for
Unsupervised and Supervised Learning. Neural Networks, 7(9):1441-
1460, 1994.

[11] B. Fritzke, "A Growing Neural Gas Network Learns Topologies."
Advances in Neural Information Processing Systems, pp. 625-632, 1995.

[12] K. A. J. Doherty, R. G. Adams, N. Davey. "Hierarchical Growing Neural
Gas." Int. Conf. on Adaptive and Natural Computing Algorithms, 2005.

[13] Taghi M. Khoshgoftaar, Naeem Seliya, “Software quality classification
modeling using the SPRINT decision tree algorithm”, In Fourth IEEE
international conference on tools with artificial intelligence (pp. 365–
374). 2002.

[14] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA: PWS-Kent, 1997.

