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Abstract—The prediction of Software quality during 

development life cycle of software project helps the development 
organization to make efficient use of available resource to produce 
the product of highest quality. “Whether a module is faulty or not” 
approach can be used to predict quality of a software module. There 
are numbers of software quality prediction models described in the 
literature based upon genetic algorithms, artificial neural network 
and other data mining algorithms. One of the promising aspects for 
quality prediction is based on clustering techniques. Most quality 
prediction models that are based on clustering techniques make use 
of K-means, Mixture-of-Guassians, Self-Organizing  Map, Neural 
Gas and fuzzy K-means algorithm for prediction.  In all these 
techniques a predefined structure is required that is number of 
neurons or clusters should be known before we start clustering 
process. But in case of Growing Neural Gas there is no need of pre-
determining the quantity of neurons and the topology of the structure 
to be used and  it starts with a minimal neurons structure that is 
incremented during training until it reaches a maximum number user 
defined limits for clusters. Hence, in this work we have used 
Growing Neural Gas as underlying cluster algorithm that produces 
the initial set of labeled cluster from training data set and thereafter 
this set of clusters is used to predict the quality of test data set of 
software modules. The best testing results shows 80% accuracy in 
evaluating the quality of software modules. Hence, the proposed 
technique can be used by programmers in evaluating the quality of 
modules during software development.    

 
Keywords—Growing Neural Gas, data clustering, fault 

prediction. 

I. INTRODUCTION 
OFTWARE quality assurance is an important part of any 
software project. In order to appraise the quality of any 
software product we make use of Software quality 

estimation models. These quality models can be used to 
identify program modules that are likely to be defected [1] [2]. 
It  helps project manager to make efficient use of limited 
resources to target  those modules that are defected [3]. A 
software quality models help development team to track and 
detect potential software defects during development cycle 
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and saving lots of efforts that are later required for the 
maintenance of that product. A software quality model is 
trained using software measurement and defect data of a 
previously developed release or similar project [4], [5]. The 
trained model is then applied to modules of the current project 
to estimate their quality. The proposed work is a supervised 
clustering approach to estimate the quality of program 
module.  
 The proposed approach is based on constraint based 
clustering using Growing Neural Gas as underlying algorithm. 
During the Growing Neural Gas clustering process, the 
constraint maintains membership of modules to clusters that 
are already labeled as either fault prone (fp) or not fault prone 
(nfp). The proposed approach is supervised because the 
clustering process is aided with a set of labeled program 
modules. To our knowledge, this is the first study to 
investigate supervised clustering using Growing Neural Gas 
for the software quality modeling, analysis, and estimation 
problem. 

Clustering is an appropriate choice for software quality 
analysis [6]. Given software measurements (attributes) of the 
labeled program modules, clustering algorithms group the 
modules according to similarity of their software attributes. 
The underlying assumption is that program modules with 
similar attributes will have similar quality characteristics. 
Hence, fp modules will have similar software measurements 
and will likely group together as clusters. Similarly, nfp 
modules will also group together as clusters. We investigate 
the proposed approach using software measurement and 
defect data from a previously developed National Aeronautics 
and Space Administration (NASA) software project. The end 
result after a run of the proposed supervised clustering 
approach is a set of labeled clusters. The labeled clusters are 
the  result of the labeling during clustering process from 
training data set PC1.  

In context to software quality estimation, most research 
have focused on clustering   using  K-means, Mixture-of-
Guassians, Self-Organizing  Map, Neural Gas[7][8][9][11]. In 
all these techniques we are required a predefined structure that 
is numbers of neurons or clusters before we start clustering 
process. To avoid the need of pre-determining the quantity of 
neurons and the topology of the structure to be used, other 
clustering techniques start with a minimal neurons structure 
that is incremented during training until it reaches a maximum 
number (or a optimal number of neurons, in some sense), or 
until the network reaches a minimal error regarding data 
quantization. Examples of these algorithms include the 
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Growing Cell Structures (GCS) [10] and the Growing Neural 
Gas [11], both developed by B. Fritzke. 

The remainder of this paper continues with Section II, 
where a brief discussion on working of Growing Neural Gas 
clustering algorithm is presented. The proposed software 
quality analysis using Growing Neural Gas as underling 
clustering scheme is detailed in Section III, followed by 
Section IV, in which result and discussion is presented on 
methods used to analyze and in section V, conclusion is 
presented. 

 

II. GROWING  NEURAL GAS  
Given any input data distribution in Rn, GNG incrementally 

creates a graph in which each vertex corresponds to a unit 
(neuron) formed by a reference vector wi in Rn (wi= [wi1, wi2 
..., win]), an errori variable representing accumulated local 
error and an edge group defining unit i topological 
neighbourhood. Reference vector represents unit position in 
output space. At each iteration a new input signal x is 
analyzed. Two iteration winner nodes are chosen, s and t, such 
that |ws- x| is the smallest value and |wt –x| is the second 
smallest value, where | | represents Euclidean distance. 
Winner node adjusts its accumulated local error, adding 
Euclidean distance between unit and analyzed input vector, 
according to equation below [10][11]: 

 |  xw| errorerror −+← sss  (1) 
Accumulated local error represents the measure used to 

define new units' insertion place. According with Competitive 
Hebbian Learning (CHL), a connection with age 0 is 
established between winner unit and second place. The winner 
unit and its neighbors, established by CHL, are moved a 
fraction toward the input data's direction, according with 
following equations [10][11]: 

)w-(x e  w w sbss +←  (2) 
)w-(x e  w w nnnn +←  (3) 

∀ n Є Neighbor(s), where eb is winner node updating 
fraction and en is neighbor updating fraction, eb and  en Є 
[0,1]. Here ws is the reference vector of winner node and wn is 
the reference vector of neighboring nodes of winner node. 
This causes GNG's training dynamics to keep input data 
topological relation. In the first iteration only two units are 
created, with its reference vectors randomly established. The 
algorithm is said growing, because each i iterations a new 
neuron is inserted. The insertion of a new unit occurs between 
the unit with highest (global) accumulated local error and its 
neighbouring unit with highest accumulated local error. This 
operation addresses a reduction of accumulated region error, 
and consequently, a global error reduction. Therefore, 
algorithm remains inserting new units until an established stop 
criterion is met. GNG performs also some edge pruning. A 
parameter, amax, is established, denoting maximum age that 
an edge can reach. In each iteration, ages of all graph edges 
are incremented. Edges with ages reaching established 
maximum value are removed from graph. This rule is used to 
prevent edges generated by occasional data and that should be 
removed during the algorithm' iterations. Thus, an aspect to be 

analyzed in defining an automatic data classification is the 
generation of different graph connected component by the 
algorithm. Each component would correspond to a different 
class. Data submitted to a trained map are associated to a 
winner unit and, consequently, to a graph component 
representing a class. Nevertheless, some factors affect 
negatively the GNG's formed graph. According with CHL 
policy used by algorithm, one input signal only is enough to 
generate a connection between two units. This causes outlier 
data, or extremity class data, to have great influence over 
generated graph connections. For further details of GNG refer 
to reference [10][11].  

III. PROPOSED WORK 
The proposed clustering approach for software quality 
analysis is a constraint-based scheme that uses labelled 
instances from training data set for initial seeding (centroids) 
of clusters among the maximum allowable clusters—a user 
defined quantity when using Growing Neural Gas as the 
clustering algorithm. The proposed algorithm used in our 
constraint-based clustering approach with Growing Neural 
Gas is enumerated as follows. 

Step1: Obtain the required set of clusters  using Growing 
Neural Gas clustering algorithm from training data set 
with  each cluster’s centroid initialized. 
 
Step2: Assign the class labels fp and nfp to the obtained 
set of clusters based on the criteria that if ci  is a cluster mi  
is program module from training data set such that  
Euclidean distance between ci  and  mi is minimum, then 
assign the class labels fp or  nfp of mi  to ci. 
 
Step3: Use the labeled set of clusters to predict the 
quality of  test data set based on the criteria that if ci  is a 
cluster ti  is program module from testing  data set such 
that  Euclidean distance between ci  and  ti is minimum, 
then assign the class labels fp or  nfp of ci  to mi. 

To predict the results, we have used confusion matrix. The 
confusion matrix has four categories: True positives (TP) are 
the modules correctly classified as faulty modules. False 
positives (FP) refer to fault-free modules incorrectly labeled 
as faulty. True negatives (TN) are the fault-free modules 
correctly labeled as such. False negatives (FN) refer to faulty 
modules incorrectly classified as fault-free modules. 

TABLE I.  A CONFUSION MATRIX OF PREDICTION OUTCOMES 

Real data 
 Fault No Fault 

Fault TP FP    
Pr

ed
ic

te
d 

 

No Fault FN TN 
 

The following set of evaluation measures are being used   
to find the results: 

• Type I Error: The value of Type I error can be 
calculated using following equation: 

                    



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2739

 

 

FPTN
FPErrorIType
+

=  (4) 

• Type II Error: The value of Type II error can be 
calculated using following equation: 

                    

FNTP
FNErrorIIType
+

=  (5) 

If the value of Type I and Type II errors is low then the 
proposed system is more accurate in prediction of fault prone 
modules. 

• Overall Error: The value of  Overall error can be 
caluculated using following equation: 

FPFNFNTP
FPFNErrorOverall

+++
+

=  (6) 

IV. RESULT AND DISCUSSION 
The software measurements and quality data used in this paper 
to investigate the proposed work are those of a large NASA 
software project PC1 and CM1. The PC1 project is a flight 
software from earth orbiting satellite that is no longer 
operational. It consists of 40 KLOC code of C. The data were 
made available through the Metrics Data Program (MDP) at 
NASA (http://mdp.ivv.nasa.gov/) and included software 
measurement data and associated error (fault or defect) data 
collected at the function level.  PC1 contain 1107 modules of 
which 76 contains one or more  faults and 1031 contains zero 
faults. The maximum numbers of faults in a module is 9.  The 
CM1 is a science instrument application written in C code 
with 20KLOC. The data set contain 505 modules out of which 
48 contains one or more faults and 457 have zero faults. The 
maximum numbers of faults in modules is 5. In this paper, a 
program module with no faults was considered nfp and fp 
otherwise.  

Each program module in the PC1 and CM1 was 
characterized by 21 software measurements [14]: 13 core 
metrics (as shown in Table II) and eight derived Halstead 
metrics (Halstead_Length, Halstead_Volume, Halstead_Level, 
Halstead_Difficulty, Halstead_Content, Halstead_Effort, 
Halstead_Error_Est, and Halstead_Prog_Time). In this study 
only 13 basic software metrics are used. The eight derived 
Halstead metrics were not used as they are derived from basic 
Halstead metrics. 

TABLE II.  SOFTWARE MEASUREMENTS IN  PC1 AND CM1 DATA 

Line count metrics 

LOC_BLANK 
LOC_CODE_AND_COMMENT 
LOC_COMMENTS 
LOC_EXECUTABLE 
LOC_TOTAL 

MaCabe metrics 

CYCLOMATIC_COMPLEXIT
Y 
DESIGN_COMPLEXITY 
ESSENTIAL_COMPLEXITY 

Helstead metrics 

NUM_OPERANDS 
NUM_OPERATORS 
NUM_UNIQUE_OPERANDS 
NUM_UNIQUE_OPERATORS 

Branch count metric BRANCH_COUNT 
 
 

TABLE III.  NOTATION USED FOR RESULT ANALYSIS 

Symbol Description 
n total number of modules  

nfp not fault prone module 
fP fault prone module 

P_nfp predicted not fault prone 
module 

P_fp predicted  fault prone module 
TYPE I error nfp modules predicted as fp 
TYPE II error fp modules predicted as nfp 

Overall total misclassification rate 
 

Table III shows the different symbols and their description 
that are used in our result analysis part. 

The initial numbers of clusters and their label nfp and fp 
clusters were determined based on the algorithm presented in 
Section IV. We have implemented proposed algorithms 
described in section III in Matlab 7.4 environment.  

TABLE IV.  INITIAL SET OF CLUSTERS FOR DIFFERENT VALUES 
VARIABLE  LEMBDA 

S.N
. λ Total number of 

clusters 
1 50 25 
2 70 18 
3 90 15 
4 110 13 
5 130 11 
6 150 10 

 
PC1is used  as training data set for the proposed work and 

Table IV shows the total numbers of cluster  sets that is 
achieved in step1 of the proposed algorithm for different 
values of λ. The λ is the number of iterations after which new 
cluster is created in GNG algorithm. 

For the given software measurement data set, if the above 
described  classification was performed several times,   the 
expected Type I and Type II error rates would be governed by 
the proportions of the two classes, i.e. nfp and fp. If a data set 
consists of 900 nfp and 100 fp modules, a randomly selected 
module has a 0.10 probability of being correctly predicted as 
fp (p = 10%). Similarly, a module has a 0.90 probability of 
being correctly predicted as nfp (1 − p = 90%). Assuming that 
200 modules are randomly predicted as fp and the remaining 
800 modules are predicted as nfp, then the expected Type I 
and Type II error rates are p and (1 − p), respectively: Type I 
= (0.10 × 800/800) and Type II = (0.90 × 200/200). Among 
the 200 modules predicted as fp, the expected number of 
correct predictions is 0.10 × 200 = 20, and among the 800 
modules predicted as nfp, the expected number of correct 
predictions is 0.90 × 800 = 720. 
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TABLE V.  TEST DATA MISCLASSIFICATION RATE WITH PROPOSED 
WORK AND  CM1  AS DATA SET  

λ 
Test 
Set 
No. 

Type I 
 (in %) 

Type II 
(in %) 

Overall 
(in %) 

1 36 95 41 
2 89 33 84 
3 3 85 11 λ =50 

4 25 39 27 
1 4 85 11 
2 76 33 71 
3 26 42 27 λ =70 

4 87 10 80 
1 78 46 75 
2 23 46 26 
3 10 75 16 λ =90 

4 25 42 26 
1 56 62 57 
2 56 6 52 
3 25 43 26   λ =110 

4 20 56 23 
1 79 33 75 
2 22 48 22 
3 17 56 20 λ =130 

4 21 56 22 
1 72 31 68 
2 35 31 34 
3 76 23 71 λ =150 

4 43 15 40 
  

TABLE VI.  BEST CASES OF TEST DATA MISCLASSIFICATION RATE WITH 
PROPOSED WORK FOR CM1 DATA SET  

λ Type I Type II Overall 
50 25 39 27 
70 26 42 27 
90 25 42 26 

110 20 56 23 
130 22 48 22 
150 35 31 34 

 
In the present work CM1 is used as test data set. Type I, 

Type II  and overall error for different values of   λ was 
calculated. For each value  of λ  four different sets are 
conducted to get better insight of   prediction result of 
proposed work. The expected classification results are 
summarized in Table V for different values of  λ. In table VI 
best predicted result for each value of  λ  are recorded. It is 
clear form the observation of table V that as the value of  λ 
increases the value of Overall error rate decreases and the 
value of Type II error increases.  When λ is set to 150 we get 
exceptional values that is:  Overall error rate increases and the 
value of Type II error decreases. Lowest Overall error rate is 
observed when λ is set to 130; where as lowest Type II error 
rate is observed when λ is set to 150. The prediction result is 
considered best if the Overall error rate and Type II error rate 
are on lower side. Here the best result is achieved for when λ 

is set to 150.  The best combination is when λ is set to 150 
where we get lower value combination for both Type II and 
Overall error rate. 

V. CONCLUSION 
Software quality assurance plays important part of any 

software project. The prediction of  Software quality during 
development life cycle of software project helps the 
development organization to make efficient use of available 
resource to produce the product of highest quality. In the 
proposed work Growing Neural Gas clustering technique is 
used to predict the quality of software project. The output of 
proposed model is prediction of module as faulty one or not 
faulty. The performance of the proposed model is measured in 
terms of  Type I, Type II and Overall error rate.  Lower the 
value of overall and Type II error rate better is the quality 
prediction rate of that model. The best testing results shows 
80% accuracy in evaluating the quality of software modules. 
Hence, the proposed technique can be used by programmers in 
evaluating the quality of modules during software 
development. 
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