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Abstract—In the present communication, we have studied 

different variations in the entropy measures in the different states of 
queueing processes. In case of steady state queuing process, it has 
been shown that as the arrival rate increases, the uncertainty 
increases whereas in the case of non-steady birth-death process, it is 
shown that the uncertainty varies differently. In this pattern, it first 
increases and attains its maximum value and then with the passage of 
time, it decreases and attains its minimum value.  
 

Keywords—Entropy, Birth-death process, M/G/1 system, G/M/1 
system, Steady state, Non-steady state 

I. INTRODUCTION 
T is a known fact that in any stochastic process, the 
probability distribution changes with time and 

consequently, it becomes obvious that the entropy or 
uncertainty of a probability distribution also changes with 
time. It becomes therefore interesting to know how the 
uncertainty changes with time. In the usual analysis of 
queueing system, the birth-and-death process is the base of the 
system, according to which, the mean rate at which the 
entering customers occur must equal the mean rate at which 
leaving customers occur. The system must assume some kind 
of stability for obtaining a probabilistic model and the basic 
formulae obtained are reliable to the extent to which the 
conditions of the process are satisfied. If the real probability 
distribution of the states of the queueing system is known, the 
corresponding entropy may be effectively computed for 
measuring the amount of uncertainty about state of the system. 
But generally, we do not know this real probability 
distribution. The available information is summarized in mean 
values, mean arrival rates, mean service rates of the mean 
number of customers in the system.  

Affendi and Kouvatsos [1] have used maximum entropy 
formalism to analyse the M/G/1 and G/M/1 queueing systems 
at equilibrium. The authors have obtained the solution for the 
number of jobs in the M/G/1 system and determined the 
corresponding service time distribution. Guiasu [2] used the 
maximum entropy conditions and obtained a probabilistic 
model for the queueing system for the known mean values. 
The authors also proved that in a steady state, for some one-
server queueing system, when the expected number of 
customers is given, the maximum entropy condition gives the 
same probability distribution as the birth-and-death process 
applied to / /1M M  system.  
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In simple birth-death process of queueing theory, let pn(t) 
denotes the probability of there being n persons in the 
population at time t and let n0 denote the number of persons at 
time t = 0, then Medhi [5] has obtained an expression for pn(t) 
. In fact, if we define the probability generating function by 
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By expanding ( )ts,φ  in power series of s, we can find 
pn(t). In a queuing system, let λ and μ denote arrival and 
service rates in the steady state case, then the following result 
is well known:  

(1 ) n
np ρ ρ= −  ,  0,1, 2.3,....;n λρ

μ
= =                 (5)                  

At any time t, the number of persons in the system can be 0, 
1, 2,…, so that there is uncertainty about the number of 
persons in the system. We want to develop a measure of this 
uncertainty, which shows how this uncertainty varies with λ, 
μ and t.  Taking these parameters into consideration, Kapur 
[4] has studied such types of variations by using various 
measures of entropy and obtained interesting results. 
Prabhakar and Gallager [7] have undertaken the study of 
queues which deal with two single server discrete-time 
queues. The authors have shown that when units arrive 
according to an arbitrary ergodic stationary arrival process, 
the corresponding departure process has an entropy rate no 
less than the entropy rate of the arrival process. Using this 
approach from the entropy standpoint, the authors have 
established connections with the time capacity of queues.  

In the literature of information theory, there exist many well 
known measures of entropy, each with its own merits and 
limitations. All these measures have been obtained by the 
motivation of Shannon’s [12] fundamental measure of 
entropy. Some of these measures are due to Renyi [11], Kapur 

R.K.Tuli

Applications of Entropy Measures in Field of 
Queuing Theory 

I 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

218

 

 

[3, 4], Sharma and Mittal [13], Nanda and Paul [6], Rathie [8], 
Rathie and Taneja [9], Rao,Yunmei and Wang [10] etc. These 
measures can be good contributors for studying the behaviour 
of uncertainty in the different states of the queueing system, 
which is the theme of the present paper.  

In section 2, the variations of different entropy measures 
have been studied in steady state whereas the variations in the 
non-steady state of queuing theory have been presented in 
section 3.  

II. APPLICATIONS OF ENTROPY MEASURES FOR STUDYING 
VARIATIONS IN THE STEADY STATE  

In this section, we have studied the variations of different 
probabilistic measures of entropy in the steady state queuing 
processes. For this purpose, we have considered the following 
cases: 

A. Variations  in Sharma and Mittal’s [13] measure of 
entropy  

We know that Sharma and Mittal’s [13] measure of entropy 
is given by 
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Now, taking limit as 1α → , equation (6) becomes 
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Differentiating equation (6) w.r.t. ρ  , we get  
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Now, taking limit as 1α →  , equation (7) becomes 
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which means that in steady-state queuing process, the 
uncertainty increases monotonically from 0 to   as   increases 
from 0 to unity. Thus, in the present case, we see that the 
uncertainty measure increases if the traffic intensity increases.  

B. Variations  in  Rathie’s [8] measure of entropy  
We know that Rathie’s [8] measure of entropy is given by 
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Now, taking limit asα β→ , equation (8) gives the 

following result: 
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Again, taking limit as 1β → , equations (9) becomes 
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Differentiating equation (8) w.r.t. ρ , we get  
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Taking limit asα β→  , equations (11) becomes 
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Now, taking limit as 1β → , equation (12) gives 
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Thus, we see that in the steady state queuing case, the 
uncertainty measure increases monotonically from 0 to ∞ as ρ 
increases from 0 to unity, which shows that as the arrival rate 
increases relatively to service rate, uncertainty increases. 

Hence, we conclude that in all these cases, the variations of 
entropy remain same, that is, entropy always increases 
monotonically and in this queueing process, this result is most 
desirable.  

III. APPLICATIONS OF ENTROPY MEASURES FOR THE STUDY 
OF VARIATIONS IN THE NON-STEADY STATE  

In this section, we have studied the variations of different 
measures of entropy in the non-steady state queuing 
processes. For this purpose, we first of all develop the 
following results: 
Equation (3) gives 
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Thus, we have the following expression for the probability 
of n persons at any time t: 

    

( )
( )

1

1 , 1
1

( )

, 0
1

n

n

n

t
n

t
p t

t n
t

λ

λ

λ
λ

−

+

⎧
≥⎪

+⎪
⎪

= ⎨
⎪
⎪ =

+⎪
⎩

                                      (13)                   

Now, we study the different variations by taking into 
consideration the different probabilistic measures of entropy: 

A. Variation in  Sharma and Mittal’s [13] entropy  
We know that Sharma and Mittal’s [13] entropy of 

degreeα , β  is given by  
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From equation (14), we get 
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Which is a result developed by Kapur [4]. 
Now, differentiating (16) w.r.t. tλ , we get 
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Now, taking limit as 1α → , equation (17) gives 
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which means that the uncertainty increases if tλ  <1 and 
decreases if tλ 1.≥    

Also from equation (16), the maximum uncertainty occurs 
when tλ  =1 and in this case,  
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t → ∞  , we have  
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Thus, in this case, the uncertainty starts with zero value at 
time 0t =   and ends with zero value as time t → ∞ and in 
between, it attains the maximum value at tλ  =1,that is, at t = 

1 .
λ

        

B. Variation in  Rathie’s [8] entropy  
We know that Rathie’s [13] entropy of degreeα , β , is 
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Now, taking limit asα β→  , equation (18) becomes 
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Now, taking limit as 1β → , equation (19) becomes 
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Differentiating equation (18) w.r.t. tλ , and taking limit 
asα β→ , and then finally taking limit as 1β → , we get 

the following result: 
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Thus, uncertainty increases if tλ 1> and decreases 
if tλ 1.≤     

Also from equation (20), we have 
Max
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Further, when 0t = , the uncertainty is zero and 

when ∞→t , we have the following expression from 
equation (20): 
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Thus, in this case also, the uncertainty starts with zero value 
at 0t = and ends with zero value as ,t → ∞ and in between, 

it attains the maximum value at 1tλ = , that is, at t = 1 .
λ
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