
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

212

 

 

 
 
Abstract—The time dependent progress of a chemical reaction 

over a flat horizontal plate is here considered. The problem is solved 
through the group similarity transformation method which reduces 
the number of independent by one and leads to a set of nonlinear 
ordinary differential equation. The problem shows a singularity at the 
chemical reaction order n=1 and is analytically solved through the 
perturbation method. The behavior of the process is then numerically 
investigated for n≠1 and different Schmidt numbers. Graphical 
results for the velocity and concentration of chemicals based on the 
analytical and numerical solutions are presented and discussed. 

 
Keywords—Time dependent, chemical convection, group 

transformation method, perturbation method.  
 
Nomenclature 
Latin characters 
 
a1, a2= unity elements 
c = species concentration 
C = non-dimensional species concentration 
c0 = concentration next to the plate 
c∞ = ambiant concentration   
D = chemical molecular diffusivity. 
F’ = horizontal velocity after transformation 
g = gravitational acceleration 
G = group  
k = chemical rate constant 
n   = chemical reaction order 
Q, T = real valued coefficients 
S   = subgroup 
Sc = Schmidt number ν/ D 
u = velocity in x direction 
v = velocity in y direction  
Greek characters 
 
β= volumetric coefficient of expansion  
      with concentration 
ν = μ/ρ = kinematic viscosity of fluid 
ρ = fluid density 
ψ = stream function 
η =similarity variable 
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I. INTRODUCTION 

ECENTLY Rashed et al [12] analyzed the problem of 
steady stated chemical coatings past a vertical plate. Here, 

the study is concerned with time dependant natural 
convection. This problem reported by Levich [1] and Gebhart 
et al [5 ] concerns the immersion of a plate is in a fluid 
solution having a concentration c0(x,t)>0. When the plate 
touches the solution a chemical reaction takes place inducing a 
change of concentration and implying density gradients in the 
presence of gravitational field [3].   

Ganesan et al [4] analyzed the diffusion of chemically 
reactive species for a convective unsteady flow along a 
vertical cylinder using an implicit finite difference method. 
Makinde [10] investigated a convective flow with thermal 
radiation and mass transfer past a moving vertical porous plate 
and assumed a time-dependency for the vertical velocity. The 
resultant similarity equations were solved numerically using a 
superposition method. Ibrahim et al [6] analytically derived 
the heat and mass transfer of a chemical convective process 
assuming an exponentially decreasing suction velocity at the 
surface of a porous plate and a two terms harmonic function 
for the rest of the variables. The mathematical technique used 
in the present analysis is a two parameter group 
transformation of the variables. This method developed by 
Morgan [11] reduces the number of variables by one and 
generates a set of ordinary differential equations. This method 
adopted by Kassem [7-8] and Abd-el Malek et al [1] proved to 
be efficient for an analysis of various flow problems.  

In the present work we reduce the field equations and 
related boundary conditions through a two parameters group. 
This transformation results in a system of nonlinear 
differential equations with appropriate boundary conditions. 
The obtained system of equations shows a singularity at the 
chemical reaction order n=1. At this value the concentration 
profile of chemicals in the boundary layer is analytical derived 
using the perturbation method. The behavior of the flow is 
then numerically investigated for n≠1 and different Schmidt 
numbers using the shooting method and the results are plotted. 
For n=1 the concentration is analytically evaluated and plotted 
for different chemical molecular diffusivity rates. 

II. MATHEMATICAL FORMULATION 
The following study is concerned with time dependant 

convection and diffusion within a thin boundary layer 
adjacent to an horizontal plate immersed in a fluid, having a 
chemical reaction of order n. For this, it is convenient to 
consider an idealized system illustrated in Fig. 1 and 
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composed of a semi infinite plate set in a fluid of infinite 
extent. The natural convection is described by the following 
equations; 
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subjected to the following initial and boundary conditions 
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Fig. 1 Illustration of the flow over a semi-infinite horizontal plate 
 

Equation (1) is eliminated and concentration at the wall (5) 
is normalized through the transformations 
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In this case the flow equations (1) - (6) reduce to  
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subjected to the boundary conditions 
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III. GROUP FORMULATION OF THE PROBLEM  
From the group definition [2]  
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where G is a two parameter group , S  and  S stand  for the 
system variables (t, x; ψ , C and c0) before and after 
transformation,  Qs, Ts are real valued coefficients at least 
differentiable in the group parameters (a1,a2). First and second 
partial derivatives are defined as; 
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where S stands for the dependent variables ),( 0candCψ . 
From the above definitions (9) is transformed to 
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(17) 
Where; 
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The invariant transformation of (17) implies that H1(a1,a2)=1 
and  R1 =0 giving ; 
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similarly (10)- (14) are transformed  
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and the ratios (20) to  (22) reduce to 
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giving a group structure  of the form; 
 

      

( )

( )
( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

Τ+=

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

+=

00

3

2

2

4

1

cc

CC

Q

G

tQt

yQy

TxQx

G

G
y

y

y

xy

ψψψ
                    (24) 

 
where G1 and G2 are subgroups describes the independent and 
dependant variables and dashes stand for their transformation.  
 

A.  Group Transformation of the System Variables 
The flow equations order is reduced by one if it satisfies 

Morgan's theorem [11] 
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where ( ) ( ) 6....,2,1,, =iiuiu  stand for the six system 
variables (x,y,t; ψ, C, c0) before and after transformation 
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B.  Transformation of the Independent Variables 
The similarity variable η(x,y,t) is derived through the 

application of Morgan’s theorem (25) 
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then invoking (24) group structure we obtain; 
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from (36) in (31) we obtain the similarity variable 
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where: 
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without loss of generality let a=1 while b  will be determined 
later.  
 

C.  Transformation of the Dependant Variables 
Transformation of C and c0 is obtained directly from (24) 

group structure 
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                                                                              (41) 
the solution of this differential equation results in 
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and for 1=1φ  (42) reduces to 
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then replacing for the variables C, c0 and ψ described in (39), 
(40) and (43) and their derivatives in the flow equations (9) 
and (10) we obtain 
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In order to reduce (44), (45) to a system of ordinary 
equations, the coefficients Ai must be function of η or  

constants. For this we set 
D
kA =7  in (49). This leads to; 
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from (38) in (50) 
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where Γ(t) is the concentration of chemicals next to the plate. 
Then from (51) in (48) we obtain; 
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 A5 will be constant if b = -1/2 . i.e  
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where ω(t) is part of  the stream function described in (43). 
Replacing for ω, π, Γ in (46) and (47) we   obtain the 
remaining constants 
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Substituting for the A’s  in (44), (45)  yields a system of 
differential equations 
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subjected to the boundary conditions   
 

for    η = 0;   F((0) = F’(0) = 0 , C(0) = 1                (61)                  
 

lim η→ ∞ ;    F’(∞) = C(∞) = 0                        (62) 
 

IV. PERTURBATION ANALYSIS 
Eqs. (59) and (60) are singular at n=1. An analytical 

solution of (60) at n=1 is derived assuming a perturbation 
factor ε .   
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at  1→n  we assume that 1−=nε      
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substituting for (63) in  (68)  results in  
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equating the powers  of  0ε  on both sides of this equation 
leads to                                                                                    
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this solution is rejected as it doesn't satisfy the boundary 
conditions (61). Then equating the powers of 1ε  we obtain  
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This equation is subjected to the boundary conditions  
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This equation subjected to  the boundary condition (72) has a 
solution of the form   
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respectively hypergeometric and Hermite functions. 
 

V. RESULTS AND DISCUSSION  
 

A.  Numerical Solution at Values Different from n=1 
The numerical solution of the differential equations (59) 

and (60) describing the momentum and concentration of fluid 
is investigated for different chemical orders n using the Runge 
Kutta method. The boundary conditions (61) and (62) are 
completed by guessing two additional conditions at η =0; 
F’’(0), C’(0) and the solution is iterated on through the 
shooting method so that the boundary conditions at η = ∞ are 
satisfied. The parameters values adopted here are; gβ=1, k=10-

3 /sec, ν= 10 in2/sec and the velocity F’(η) and the 
concentration of chemicals C(η) are evaluated for different 
reaction orders n > 1-3. The decomposition of nitrogen 
pentoxide and the radioactive disintegration of unstable nuclei 
is a first order reaction while the gas phase thermal 
decomposition of nitrogen dioxide and hydrogen iodide are 
both examples of second order reactions. Third order reactions 
are extremely rare in engineering practice. 

Fig. 2 displays the velocity profile for n=1.2. In this figure 
the momentum profile shows pronounced fluctuations and an 
over hump that attains a maximum of 800 for Sc=0. The 
fluctuations rapidly disappear and the over hump diminishes 
for a gradually increasing of the Schmidt number. 

Figs. 3-5 display the effect of Schmidt number on the 
momentum profile for n ranging from 2-3. No orders higher 
than the third order in any reactant are known. As the Schmidt 
number increases the viscosity reduces the buoyancy effect, 
yielding a reduction in the fluid velocity, a decrease in the 
maximum velocity as well as a reduction in the convection 
layers widths and heights. These behaviors appear clearly in 
Figs 2-5.  
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Fig. 2 Momentum profile F’(η) for n=1.2 and various Schmidt 

numbers 
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 Fig. 3 Velocity profiles for various Schmidt numbers and chemical 
reaction order n=2 
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Fig. 4 Momentum profiles for various Schmidt numbers and n = 2.5 
 

 
 

Fig. 5 Velocity profiles for various Schmidt numbers and n=3 
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Fig. 6 Concentration profiles for different Schmidt numbers and n = 
2.5 
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Fig. 7 Concentration profiles for different Schmidt numbers and n = 3 
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Fig. 8 Concentration for n=1, k= 10-3 and D = 20 to 103 
 

Fig. 6 displays for n=2.5 different concentration profiles. 
For Sc=0 a linear distribution of reaction species is obtained. 
With the increase of the Schmidt number (Sc=0.01  0.5) the 
width of the concentration layer tends to decrease. This is due 
to an increase in the fluid viscosity. Further investigations for 
n= 3 (Fig.7) show a decrease in the concentration layer widths 
as the Schmidt number increases.   

 
B.  Analytical Results  
The concentration of chemicals C(η) at n=1 is investigated 

for different values of chemical molecular viscosities and k 
=10-3. Fig. 8 displays the concentration layer profile which 
tends to be linear with the increase in D.  

A further analysis of the case n=1 is investigated by 

omitting the last term in (76) 0D
Ck

. This term is neglected  

as k= 10-3 and D value varies between 20 and 103 . The 
equation thus reduces to;  
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Subjected to the boundary conditions (72) its solution is;  
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which corresponds to the form of curves depicted in Fig. 8.  
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