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Abstract—This paper presents a fast and efficient on-line
technique for estimating impedance of unbalanced loads in power
systems. The proposed technique is an application of a discrete time-
dynamic filter based on stochastic estimation theory which is suitable
for estimating parameters in noisy environment. The algorithm uses
sets of digital samples of the distorted voltage and current waveforms
of the non-linear load to estimate the harmonic contents of these
two signal. The non-linear load impedance is then calculated from
these contents. The method is tested using practical data. Results are
reported and compared with those obtained using the conventional
least error squares technique. In addition to the very accurate results
obtained, the method can detect and reject bad measurements. This
can be considered as a very important advantage over the
conventional static estimation methods such as the least error square
method.
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1. INTRODUCTION

ARMONIC impedance of a non-linear loads

characterizes the frequency response characteristics of
the system at different power system buses. It is important
data for verification of harmonic limit compliance and thus
designing effective harmonic filters. A number of non-linear
loads estimation methods have been developed for this
purpose. These methods can be classified into two types:
transients based methods and steady state based methods
[11,[2]. The main problems associated with the application of
the first type is the need for high speed data acquisition
system and the source of the transient disturbance which will
be injected into the system to perform the simulation. Steady
state methods are much preferable for their ease to implement
[3]. Most of recent techniques are digital bases. In these kind
of techniques, voltage and current data are collected in digital
forms. After collecting voltage and currents data, in either
transient or steady state mode, there is always a need for an
adequate and fast identification technique in order to extract
the non-linear load model in the form of admittance or
impedance. Several identification techniques have been
proposed to perform this job in either frequency or time
domain. Some of these techniques are based on artificial
intelligent methods such as artificial neural networks [4] and
Genetic algorithms [5]. Other methods are based on Fast
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Fourier transforms (FFT) and state estimation techniques.
Shun et-al [6] described a method based on FFT for harmonic
power measurement due to harmonic loads. In this
reference the FFT technique is used to analyze the digitized
voltage and current waveforms. Although FFT is a very
effective tool in signal analysis; it has some drawbacks such
as leakage effect. Heydt [7] described a state estimation
formulation for estimating the current injection spectrum due
to non-linear loads. The method based on the conservation of
active power at each frequency. Soliman et-al [8] proposed the
application of the least error square estimation technique for
frequency domain modelling of the non-linear loads in
admittance form. The least error squares (LES) is an accurate
estimation technique. However, in case of the data set is
contaminated with bad measurements the (LES) solution
would never be accurate unless extra filters are used to
eliminate the bad data points.

This paper presents a new method based on recursive
algorithm, which can be used for digital identification of the
harmonic impedance of non-linear loads. The algorithm is a
dynamic estimator based on stochastic estimation theorem,
which is applicable for estimating and tracking of non-
stationary signals in noisy environments [9]. The estimator has
been applied recently to many complicated estimation
problems in power system successfully [10]. Authors of this
paper presented an alternative way of identification of the
non-linear load admittance using the proposed filter [11].
Unlike Kalman filter, which minimizes the error square, the
proposed estimator gain matrix is derived in such away to
minimize the absolute error in the estimation process. The
method allows a very fast determination of the harmonic
impedance of the non-linear loads even when the harmonic
contents are varied with time.

II. MATHEMATICAL MODELING

Assuming that the voltage and current signals of a non-
linear load are in the form of harmonic series as:

n
v(t):jZ::1 \/EVJ- 51n(th+6’Vj) )
- n .
where
j equals 1 for fundamental and equals 2,3,.. for harmonics
n is the maximum order of harmonic considered
Vi and I; are the i™ rms values of the voltage and current
component
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0 ij 1s the phase angle of the j™ current component

0 vj is the phase angle of the j™ voltage component
Equations 1 and 2 can be expanded as:

v (t)= \/EVI cos(,, )sin (o, 1)+ \/EVl sin(6,, ) cos(a, t)

+\/§V2 cos(8,, )sin (@, t)+ \/EV2 sin(0,,)cos(@, t)+........ (3)
i(t)= V21, cos (6, )sin (e, 1) + V21, sin (8, )cos(m, 1)
21, cos(8, )sin (o, t) + V21, sin (@,)cos(w, 1) +...... )

v (t)=sin [a}l tjxvl +cos[a)1 tJXV2 +sin (a)3 tJXV3 +

5
cos[a)3t)Xv4+sin[a)5t]XV5+cos(w5tjxv6+ )
sin [a}7 t)XV7 +cos [a)7 t)ng
i (t)=sin (a)lt)Xi].+cos (a)ltjxiz + sin (a)3t)Xi3 + ©)
cos (a)3 t)Xi4 +sin (wSt)XiS +cos (wSt)Xm +
sin [a}7 thi7 +cos [a}7 th is
where:

W=V, cos(@,)  .k=12,.8 )
X, =21 cos(8,), ,k=12..8 ®)

This analysis assumes that the power system has no
fundamental frequency neutral offset, that is no zero sequence
voltage or current other than the triplex harmonics 3,9, 15,
etc.

If both voltage and current signals are sampled at a pre-

selected rate, AT , then m samples, for each of the voltage
and current would be obtained at t, t,, ..., t,

In a compact matrix form, equations 5 and 6 can be
rewritten in state space form as,

A (k)=H, (k)X (k)+ e, (k)
A (k)= H; (k)X (k) + e (k) ©

where

A(k) is mx1 measurement vector of voltage or current samples
H(k) is mx8 measurement matrix

X(K) is 8x1 state vector to be estimated

e(k) is mx1 measurement error vector, to be minimized. It is
assumed to be white sequence with known covariance R(k).

Subscript (i) is used for current and (v ) for the voltage.
The state transition equations will be in the form:

@, (k)X, (k)+a,(k) (10)
@, (k) X, (k)+ (k) (11)

X,(k+1)=
X,(k+1)=

where

(k)

8x8 state transition matrix given as a unit diagonal
matrix (assuming rotating reference)

a (k) 8x1 error vector of the state assumed to be a white
(uncorrelated) sequence with known covariance
matrix Q(K).

Once the state vectors for the voltage and current
waveforms are identified, the RMS values of fundamental and
harmonic voltages, currents and their phase angles can be
calculated as:

2
Ve = X2+ X200 02

O = tan™ (X, / X)) (13)

where k equals 1 for fundamental and 3,5,7 for the other
harmonics.

In the same manner the fundamental and harmonics RMS
currents and phase angles can be obtained from the current
state vector of equations 8.

2
o= X2+ X2, s)

O = tan_l(Xi(kH) I Xw) (16)

Accordingly, estimation of harmonic impedance parameters
can be done through voltage — current estimation. The load
impedance at any frequency can be easily found as:

V()
(o)

After this formulation, the problem now is how to estimate
the parameter vectors of equations 7 an 8 from which the
harmonic impedance can be found using equation 13. The
detailed application of this equation is presented in the next
section. In this section, the proposed estimation algorithm is
presented.

Z(w) = (17)

III. DESCRIPTION OF THE PROPOSED ALGORITHM

The on-line estimation process of the admittance parameters
is performed using the discrete least absolute value filtering
algorithm (DLAVF). The complete derivation of the proposed
filter equations is beyond the scope of this paper and is given
in reference [10]. The dynamic filter works on the discrete
state space model described by the measurement equation and
the state transition equation in the following form.

A(K)=H (k)X (k)+e(k) (18)
X (k+1)=@ (K)X(K)+a (k) (19)

As mentioned before the measurement error vector e(k) is
assumed to be white sequence with known covariance as,
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Ek(@e(”w:{g(wi 211

(20)

The initial condition of X(0) is a Gaussian random vector with
the following statistics,

E{X (0)}: 7(0) 1)
ellx ©)-x ) ©)-X 0] =P (0)

where (0) is mxm initial error covariance matrix of the
states. The covariance of the error at any step (k) can be
obtained by replacing X(0) with X(k) in equation (21b). The

covariance matrix for & (k) is given as:
a0 s Tk
Elo (K (3] )= {Q () : =k

(22)
The algorithm starts with an initial estimate for the system
parameter vector Y (0) and its error covariance matrix
(E(O)) at some point k=0. These estimates are denoted as

X P , where (-) means that these are the best estimations at

this point, prior to assimilating the measurement at instant k.
With such initial values, of both parameters and error
covariances, filter gain matrix K(K) at this step is calculated as
follows,

K (K) = [H(k)+ R (K)Ly" E'(k)}‘

(23)
assuming that the state vector dimension is ux1, the vectors L

T
and y are defined as: L is uxl column vector (1»17 o ,1) ;and
y" is Ixu row vector (1,1) [9]. Using the filter gains, estimates
are updated with measurements A(K) through equation (2), and
error covariances for update estimates are computed from
equation (19).

X (K)=X ()+K (K)z ()-H(X (k)] 24)

P =[1 - K(HK) PRI - KRHM] +KRRIKT (K)
(25)
Finally, error covariances and estimates are projected ahead
to repeat with k=2.

P (k+1)=(k)P (k)" (k)+Q (k) 26)
X (k+1)=a(k)X (k)+R(k) @7)

The process is repeated until the last sample is reached. It

is assumed that the co-variances and the transition matrices
are known. It is also assumed that a good initialization of the
filter is obtained using the results of static method such as
least squares error or least absolute value. From the test
examples, we will show that good initialization is not
necessary to satisfy the required accuracy in this application of
the filter.

IV. TESTING OF ALGORITHM

A. Balanced Load

In order to check the validity and applicability of the
proposed method for on-line impedance measurements, it is
tested on actual recorded data of a nonlinear load. The load is
a large induction motor rated 1250 HP connected to 44 KV
The motor is driven by a 6-pulse inverter [8],[11]. The
inverter is considered as a harmonic source injecting
harmonics into the system. The voltage and current wave
forms are shown in Fig. 1.
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Fig. 1 The recorded waveforms

To investigate the performance of the proposed method, the
voltage and current signals are sampled at different sampling
rates. The generated data are categorized in different groups to
study the effects of sampling rate, number of samples and the
data window size. The effects of initial conditions and bad
data points on the filter performance are also studied.

In group 1, the data window size is chosen to be constant at
1 cycle and the number of samples per cycle is varied as 10,
50 100, 150, 200, 300, 400 and 500. Figs. 2 and 3 show the
effects of varying the number of samples at constant window
size of 1 cycle on the estimation process. In these figures the
steady state values of the estimated harmonic impedance and
their phase angles are reported. In Fig. 2 the fundamental
impedance is shown as well. It can be noticed that changing
the number of samples does not effect the results. Samples of
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the results are tabulated in Table I. Results obtained using the

@
conventional least error squares technique are also shown in = :g |
this table for comparison. In all cases initial conditions are S 50 has s s s —u_—a__a —»—Phy3
(%]
assumed zeros. 2 45 — a—-Phy5
(2]
In group 2 the effect of varying the data window size is & 401 —a—Phy7
examined. In this group different data window sizes are g 23 )
considered with different numbers of samples. The data z o 2(‘)0 4(‘)0 600
window size is varied from 1 to 5 cycles in step of 1. For each
. . . . Number of samples
window size the number of samples is varied as 10, 50, 100,
200, 300 and 400. Samples of the result_s obtaine_:d are shoyvn Fig. 3 Impedance phase angles
in Table II. In this table, the data window size is varied
between 1 and 5 cycles and the number of samples is held
constant at 50 samples per cycle. It is clear that increasing the TABLEI
data window size dose not effect the solution accuracy. This EFFECTS OF VARYING THE NUMBER OF SAMPLES
yvould be exp.ectc.;:d, since bot.h the currept and voltage signals e | Method 2, Z Z z,
in these applications are stationary. It is thus concluded that s
one cycle is sufficient to give very high estimation accuracy. 10 Filter | 0282486 | 0059259 | 0.076277 | 009511
Increasing the data window size would increase the !-S 0.282486 | 0059259 0.076295 0095511
Iculation time considerably without changing the accurac 50 Filter | 028245 1 00708 0070271 0.0%80°
calcula 18 ¥y gimg racy. Ls 0282486 | 0059259 | 0076295 | 0095511
The effects of Initial conditions are studied by changing the 100 Filter | 0282286 | 0.060642 0076277 0.09775
initial state values. Ten samples per cycle are used to perform LS 0.282486 | 0.059259 0076277 | 0.095511
this study within a data window size of 10 cycles. The LS 150 Filter | 0.282486 [ 0.060901 0076288 [ 0.095147
solution and a flat starting (zeros) are used as an initial LS 0282486 | 0.059259 0076277 | 0.095511
solution to extract a conclusion. It is found that same steady 200 | Filter | 0282486 | 0061425 | 0076982 | 0.098425
. - . . ; LS 0282486 | 0.059259 | 0.076219 | 0.095511
state solutions are obtained in all cases. The only difference is -
hat, using the least error squares solution as an initial start 300 Filter | D282a80 | 005270 | 007088 | 7%
that, using : qu : $ LS 0282486 | 0059250 | 0076277 | 0095511
accelerates the solution only little. Fig. 4 shows the obtained 200 Filter | 0282486 | 0059347 0076452 | 0.092850
Z1 magnitude using zero initial conditions while Fig. 5 shows LS 0282486 | 0.059259 | 0.076395 | 0.095238
the obtained magnitude of Z, using the LS solution as an
initial start. It is clear that both solutions have the same
steady state value of 0.2824 p.u. The only difference is that TABLEI
. . . . EFFECTS OF VARYING THE DATA WINDOW SIZE
the .SOlutIOI.I in Fig. 5 reaches steady state. ejarher. Window Z 2 Z Z
Finally, in order to check the capability of the proposed 1 0.282486 0.05988 0.076277 | 0.096805
filter of handling bad data, the sign of some simulated data of 2 0.282486 0.05987 0.076277 | 0.096805
. . . 3 0.282486 0.05987 0.076277_|_0.096805
an arbitrary case (50 §amp1es,6 cycle)is deliberately reversed . 0380456 005957 507677 T 0096805
after the filter solution reaches the steady state, at steps 5 0.282486 0.05987 0076277 | 0.096805
100,101. Table III shows the effect of bad data on the solution
obtained using the proposed method and the LS method. The
filter passed the test extremely well within 20 to 30 iterations BAD DT ﬁTi LEEF ;lEICTS
after supplying the bad data. The least error square method -
. . Lo . .. Filter LS
failed in obtaining the correct solution. This gives the filter the
advantage of rejecting bad data inherently with out needing Z 0.282486 0.28650
extra filter as in the case of least squares method. 4] 0.059276 0.03849
Zs 0.076290 0.08077
° y4 0.095510 0.11010
S 0.3
£ 025, 71
g 0.2 73 _ 0.3 -
50151 75 3 0284 W
= 01 O S S— * 2
S T eee-90-0-0- -0 .- @ . 77 ‘€ 0.26 4
S 0.05 A =4
g- g 0.24
g 0 ‘ ‘ = 0.22
- 0 200 400 600 N 0.2
Number of sample 0 20 40 60 80 100 120
Number of samples
Fig. 2 Impedance magnitudes

Fig. 4 Z | Magnitude (zero Initial conditions)
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Fig. 5 Z \Magnitude (LS Initial conditions)

B. Distorted Unbalanced Load

In this case, the algorithm is tested using simulated data
based on unbalanced three phase harmonic contaminated
current given in Fig. 6 [13]. This test is used to show the
ability of the algorithm for tracking the harmonic loads even
in unbalanced loading conditions. These currents are sampled
at 3000 Hz. The obtained samples are fed to the algorithm.
The three fundamental currents are filtered first using the
algorithm described earlier. The extracted fundamental signals
are then used to estimate the magnitudes and phase angles of
the harmonic impedance using the voltage signal as before.
Here only estimation of the current contents is presented.
Examination of Table IV reveals that the results obtained are
very accurate. It is very easy to find the impedance as
mentioned before.

600
400
200

-200
-400
-600

Time Step

Fig. 6 The generated unbalanced waveforms

TABLE IV
FUNDAMENTAL & HARMONIC CONTENTS OF LOAD CURRENT
Fundamental component Fundamental component
Magnitudes Phase angles (degree)
Estimated Exact Estimated Exact
212.128 212.132 44.98 45
353.547 353.55 150.06 150
141.420 141.42 299.91 300
harmonic "Third Third harmonic
magnitudes Phase angles(degree)
Estimated Exact Estimated Exact
106.00 106.067 106.00 106.067
176.77 176.78 176.77 176.78
70.70 70.71 70.70 70.71

V. CONCLUSION

In conclusions, a new application of the discrete least
absolute value filter for harmonic impedance measurements is
introduced in this work. The effect of filter parameters has
been studied and showed that the filter performance is highly
accurate and fast. It has been shown that the filter can detect
and reject bad data points and gives very accurate solutions
within 12 to 13 steps. The filter does not need any pre
knowledge about the parameters, where it did estimate the
parameters accurately starting from any initial guess. A
minimum number of only 10 samples per cycle is needed.
This makes the implementation of the algorithm very easy.
The model is based on stochastic estimation theorem;
therefore it is suitable for on line measurements of non-
stationary parameters.
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