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Abstract—Availability of high dimensional biological datasets 

such as from gene expression, proteomic, and metabolic experiments 
can be leveraged for the diagnosis and prognosis of diseases. Many 
classification methods in this area have been studied to predict 
disease states and separate between predefined classes such as 
patients with a special disease versus healthy controls. However, 
most of the existing research only focuses on a specific dataset. 
There is a lack of generic comparison between classifiers, which 
might provide a guideline for biologists or bioinformaticians to select 
the proper algorithm for new datasets. In this study, we compare the 
performance of popular classifiers, which are Support Vector 
Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), 
Naive Bayes, Decision Tree, and Random Forest based on mock 
datasets. We mimic common biological scenarios simulating various 
proportions of real discriminating biomarkers and different effect 
sizes thereof. The result shows that SVM performs quite stable and 
reaches a higher AUC compared to other methods. This may be 
explained due to the ability of SVM to minimize the probability of 
error. Moreover, Decision Tree with its good applicability for 
diagnosis and prognosis shows good performance in our 
experimental setup. Logistic Regression and Random Forest, 
however, strongly depend on the ratio of discriminators and perform 
better when having a higher number of discriminators. 
 

Keywords—Classification, High dimensional data, Machine 
learning 

I. INTRODUCTION 
IGH-THROUGHPUT technologies have recently 
generated a large amount of data which enable analysis  
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of a broad spectrum of biomolecules in a living cell [1]. For 
example, the transciptome, proteome, and metabolome can be 
studied by exploiting high-throughput datasets that comprise 
RNAs, proteins, and metabolites in a cell, respectively. Such 
sources of biological information facilitate the discovery, 
validation and commercialization of biomarkers. The main 
objective is to leverage these biomarkers for classification 
aiding the prognosis, prediction and diagnosis of a disease or 
treatment. 

Supervised machine learning algorithms are very powerful 
methods and have been used for classification purposes [2]. In 
general, a model is built on significant patterns in training data 
and allows the prediction of states for future data. For 
example, microarray data can be used to construct a model for 
classifying disease states such as relating to cancer versus 
being healthy. To perform classification of biological data, 
many machine learning methods have been used so far on 
specific datasets [3, 4]. In addition, the performance of 
machine learning methods by using high-throughput data was 
also compared [5-7]. However, these studies are performed by 
using particular datasets. Hence, there is a lack of a 
comprehensive and systematic comparison between 
classifiers, which underscores the need of a guideline for 
biologists or bioinformaticians helping to determine an 
appropriate algorithm for a new dataset.  

In this study, we use synthetic data to discover the impact 
of datasets characterized by their number of total features and 
proportion and strength of discriminators with the objective to 
systematically evaluate the performance of various 
classification algorithms. 

II. BACKGROUND 
One major task in bioinformatics is the classification of 

biological datasets. The general process is to train classifier to 
recognize patterns from given labeled training samples and to 
classify novel samples with the trained classifier [7]. The 
essence in classification is to minimize the probability of error 
in using the trained classifier, which is referred to as the 
structural risk [8]. There are several popular machine learning 
methods used for classification:  
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A. Support Vector Machines (SVM) 
The idea behind the SVM algorithm can be explained based 

on four basic concepts: (i) the separating hyperplane, (ii) the 
maximum margin hyperplane, (ii) the soft margin, and (iv) the 
kernel function [9]. In principle, a SVM seeks a separating 
hyperplane in the data that produces the largest separation 
margin between two classes. The use of a kernel technique 
allows the linear separation in non linear classification 
problems.  

B. Logistic Regression Analysis 
Logistic Regression Analysis constructs a separating 

hyperplane between two classes of a dataset [10]. The class 
membership is predicted by a probability measure  

P(disorder = 1) = ze−+1
1 and ∑+=

i
ii xbbz 0 , 

where bixi are the regression coefficients describing the size 
of the contribution of the risk factors and  b0 is the intercept, 
describing the value of z when the value of all risk factors is 
zero [11]. By default, the standard decision indicator is a cut-
off value of P = 0.5 [12].  

C. k-Nearest Neighbor (k-NN) 
k-NN is a memory-based learning algorithm [2]. By giving 

a new query point x, k-NN finds k points in training instances, 
which are closest in distance to x. Euclidean distance or other 
distance measures could be used to measure similarity 
between x and points in the given training set. Then class x is 
labeled by majority voting of k nearest neighbors. 

D. Naive Bayes 
A Naive Bayes classifier is a probabilistic classifier based 

on Bayes’ rule of conditional probability [13]. It is based on 
the assumption of class independence. Denote P(H) to be the 
probability of an event H. P(H|E) represents the probability of 
H conditional on an event E. Bayes’ theorem is given by the 
equation 

P (H|E) = P(E1|H) P(E2|H)…P(En|H) P(H) / P(E), 
where En is considered as a feature and H is a class. 

E. Decision Trees 
Based on training data, a Decision Tree is built as a binary 

classification tree [13]. Each internal node tests a feature to 
determine class which is labeled at leaf nodes. For new 
unlabeled instances, the prediction is made by a path from root 
to leaf node according to features properties of a new instance. 
The class of new instance is labeled when reaching the leaf 
node. To construct a tree, features in each node are selected 
from top to bottom by calculating the information gain of 
features, which reduces the entropy by separating instances. 

F. Random Forest 
The Random Forest is a machine learning method 

consisting of many decision trees and the output is based on 
the class of individual trees [14]. Each tree is trained by 
bagging data from a dataset. For classification prediction, each 
constructed tree in the forest is used for majority voting of 
output classes to determine the class of a new instance. 

III. METHOD 

A. Datasets 
Small and a high dimensional synthetic dataset were 

generated. The small dimensional dataset comprises 100 
features whereas the high dimensional dataset 1000. Both 
datasets are dichotomous with equal number of instances of 
50 in the reference and comparison group. In a biological 
context, this means that the dataset contains 50 controls 
(control group) and 50 cases (treatment group). Formally, the 
dataset can be described as a set of tuples T, where T = 
{(cj,m)|cj ∈ C, m ∈ M} with C = {comparison, reference}, 
where C is the set of class labels and M denotes the set of 
features (e.g. gene expressions or metabolite concentrations).  

Similar to Hong et al. [15] the reference group (RG) can be 
defined as  

RGf = α + ε, 
and the comparison group (CG) can be described as 
CGf = α + γ + ε, 
where RGf and CGf is the value of feature f in the reference 

and comparison group, respectively. α is the mean value of the 
feature (standard deviation = 1) in the RG and CG, γ 
represents the relative effect size (shown in Fig. 1) between 
two groups and ε represents the normally distributed error. We 
define a discriminator as a feature with γ ≠ 0 (γ = 2, 4, 6, 8, 
and 10). In biological data, the meaning of discriminator 
would be comparable to a biomarker. For the CG the number 
of discriminators n has to be greater than zero. In our 
experiment the percentage range of discriminator in the 
dataset was set from one to five.  
 

 
 

Fig. 1 γ denotes the effect size between two groups, RG and CG. 
With a given mean value of feature α in RG, the mean value of 
discriminator feature in CG is represented as α + γ without 
considering error ε. 

B. Classification 
We compared the discriminatory ability of six popular 

classifiers, which are SVM, Logistic Regression, k-NN, Naive 
Bayes, Decision Tree, and Random Forest based on simulated 
data in context of various proportions of discriminators and 
effect size. As an objective measure for estimating the 
discriminatory ability, we determined the area under the ROC 
curve (AUC) [16]. 

Weka [17] with mostly recommended default parameter 
settings listed in table 1 was used for exploring the 
performance of the previously outlined classification methods 
on our datasets. For the non-linear SVM, we used a 
polynomial kernel with an exponent of two.  
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In our experiments, we used a stratified 10-fold cross-
validation strategy, where the dataset is subdivided into 10 
roughly equal partitions and each in turn is used for validation 
and the remainder is used for training [2]. This process is 
repeated with 10 replications. 

 
TABLE 1 

LIST OF USED CLASSIFIERES AND PARAMETERS. 
Name of classifier Parameter setting 

Decision Tree (C4.5) Number of folds = 3 
Random Forest Number of trees = 9 
Linear SVM Complexity = 1, Epsilon = 1.0E-12,  

Kernel exponent = 1 
Non-linear SVM Complexity = 1, Epsilon = 1.0E-12,  

Kernel exponent = 2 
Naive Bayes Use Kernel Estimator = false 
Logistic Regression Ridge = 1.0E-8 
K-Nearest Neighbor  Number of neighbors (K) = 5 

IV. RESULTS 
The experiment was performed to investigate the 

performance of classifiers in context of various numbers of all 
features, various percentages of discriminators and effect 
sizes. 

The performance of classifiers depicting various 
percentages of discriminators was investigated. By fixing 
value of effect size (γ=2), AUC of classifiers in both 
simulated small and high dimensional datasets are shown in 
Fig. 2-3, respectively. 

 

 
Fig. 2 AUC of classifiers in variation of increasing percentages of 
discriminators (features=100, γ=2). 
 

 
Fig. 3 AUC of classifiers in variation of percentages of 
discriminators (features=1000, γ=2). 

In addition, the evaluation of classifiers in variation of 
effect size of discriminators (γ) was performed. In this case, 
the results of the two synthetic datasets with the proportion of 
discriminators fixed at 2 percent are shown in Fig. 4-5. 
 

 
Fig. 4 AUC of classifiers in variation of effect size (features=100, 
number of discriminators=2%). 
 

 
Fig. 5 AUC of classifiers in variation of effect size (features=1000, 
number of discriminators=2%). 
 

Moreover, we also calculated the average AUC for each 
classifier by varying the effect size of discriminators for each 
percent of discriminators from 1 to 5% (Table 2-3). For 
example, for the small dimensional dataset (Table 2), the 
average AUC by varying effect size (γ = 2, 4, 6, 8, and 10) 
when percent of discriminators is 1 % using Non-linear SVM 
is 0.96. The overall average AUC of all proportions of 
discriminators (1-5%) is 0.99 with standard deviation (SD) of 
0.02 as shown in the right most column of table. The results of 
higher percentages of discriminators (> 5%) are not shown 
since the different classifiers reach similar AUCs of 
approximately 1. 

 
TABLE II 

AVERAGE AUC OF CLASSIFIERS (FEATURE=100) 
Avg. AUC Algorithm/ 

Percent of discriminators 1 2 3 4 5 Avg± SD 
Naive Bayes 0.84 0.95 0.99 1.00 1.00 0.96±0.07 
Decision Tree (C4.5) 0.96 0.97 0.98 0.98 0.99 0.98±0.01 
Random Forest 0.34 0.75 0.91 0.97 0.99 0.79±0.27 
Logistic Regression 0.64 0.93 0.98 0.99 1.00 0.91±0.15 
Linear SVM 0.95 0.98 0.99 0.99 1.00 0.98±0.02 
Non-linear SVM 0.96 0.99 0.99 0.99 1.00 0.99±0.02 
k-NN (k=5) 0.74 0.88 0.94 0.97 0.99 0.90±0.10 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:10, 2009

271

 

 

TABLE III 
AVERAGE AUC OF CLASSIFIERS (FEATURE=1000). 

Avg. AUC Algorithm/ 
Percent of discriminators 1 2 3 4 5 Avg± SD 

Naive Bayes 0.84 1.00 1.00 1.00 1.00 0.97±0.07 
Decision Tree (C4.5) 0.98 0.97 0.98 0.96 0.98 0.97±0.01 
Random Forest 0.43 0.89 0.97 0.99 1.00 0.86±0.24 
Logistic Regression 0.12 0.96 1.00 1.00 1.00 0.82±0.39 
Linear SVM 1.00 1.00 1.00 1.00 1.00 1.00±0.00 
Non-linear SVM 1.00 1.00 1.00 1.00 1.00 1.00±0.00 
k-NN (k=5) 0.96 1.00 1.00 1.00 1.00 0.99±0.02 

 
 As indicated in both Table 2-3, SVM gives the highest 
overall average AUC with low SD. Random Forest 
performance shows the lowest AUC and highest SD.  

V. DISCUSSION AND CONCLUSION 
In this work we compared the discriminatory ability of the 

classifiers SVM, Logistic Regression, k-NN, Naive Bayes, 
Decision Tree, and Random Forest based on simulated data 
representing various proportions and effect sizes of 
discriminators. The results show that SVM performs quite 
stable and reaches a high AUC compared to other methods. 
This may be explained by SVMs ability to minimize the 
structural risk when finding a unique hyper-plane with 
maximum margin to separate data from two classes. Yang et 
al. [8] described that this characteristic allows SVM the best 
generalization ability on unseen data compared with the other 
classifiers.  

However, for diagnosis and prognosis of diseases, model-
based classifiers such as Logistic Regression or classification 
trees are rather used than instance or kernel based methods 
[12], since the use of explicitly described equations and 
transparent rules is more practical and accepted for the daily 
clinical  routine. For example, Decision Tree visualizes used 
features allowing the interpretation in biological context. 

Nevertheless, Logistic Regression analysis did not perform 
well in our experimental setting when compared to other 
classifiers like SVM, which may be explained by the need of 
feature selection to extract only relevant features for building 
a model.  

Decision Tree turned out to be very stable to different 
percentages of discriminators as well as diverse effect sizes. 
This can be explained due to the fact that Decision Tree relies 
on only features that lead to a low entropy and; furthermore, 
the entropy does not depend on the effect size since it does not 
affect purity. 

Random Forest, however, strongly depends on the 
proportions of discriminators and performs better with a 
higher number of discriminators. This could be explained by 
the fact that the algorithm of Random Forest creates different 
subsets of features for training the tree. The higher the number 
of discriminators is, the higher the probability is that the tree 
is trained on discriminatory features.  

The results of k-NN, Random Forest and Logistic 
Regression also show that feature selection approaches would 
be needed before classification since they demonstrate an 

inferior performance with a low number of discriminators. 
Moreover, in our experimental setup we could not find a 

big difference in the performance of the classifiers between 
the small and the high dimensional dataset indicating no 
dependence on number of features.  

The results also show that most differences of classifiers 
arise in the range of one to five percent of discriminators. 
Consequently, in biological application, there might be 
significant performance differences of classifiers on datasets 
with low number of biomarkers. The examination of this 
finding using biological data is part of our ongoing work. 
Furthermore, we plan to investigate the effect of feature 
selection approaches on classifier performances. Connections 
of feature selection approaches and classifiers will also be 
investigated.  
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