International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

Towards model-driven communications

Antonio Natali, Ambra Molesini

Abstract—In modern distributed software systems, the issue of
communication among composing parts represents a critical point,
but the idea of extending conventional programming languages with
general purpose communication constructs seems difficult to realize.
As a consequence, there is a (growing) gap between the abstraction
level required by distributed applications and the concepts provided
by platforms that enable communication.

This work intends to discuss how the Model Driven Software
Development approach can be considered as a mature technology
to generate in automatic way the schematic part of applications
related to communication, by providing at the same time high
level specialized languages useful in all the phases of software
production. To achieve the goal, a stack of languages (meta-meta-
models) has been introduced in order to describe — at different levels
of abstraction — the collaborative behavior of generic entities in terms
of communication actions related to a taxonomy of messages. Finally,
the generation of platforms for communication is viewed as a form of
specification of language semantics, that provides executable models
of applications together with model-checking supports and effective
runtime environments.

Keywords—Interactions, specific languages, meta-models, Model
Driven Development.

[. INTRODUCTION

Today, many people might agree that in the production of
software:

« applications should be the result of a mature software
engineering (SE) process, to assure reproducibility and
to allow the traceability from the code to design and
requirements. The process itself should be represented
with the purpose to make explicit knowledge — about the
application (domain), design choices, etc. — that is often
implicitly embedded in the code;

« after reading the code of a well structured software
application one should recognize three macro-parts: a
general part that can be shared among all the applications,
a specific part that is peculiar to the application and a
schematic part which is not general, but still reusable for
different applications in the domain because it possesses
the same systematics. This part should also be well
recognizable, since based on specific design patterns [1]
or pattern languages [2];

o the architecture is a key point for the software quality
under at least three different point of views: structure,
behavior and interaction.

Historically, a lot of attention has been focussed on the
structural dimension, but in modern software systems the issue
of interaction is going to become a critical point, even with
reference to communication, that is the first, basic form of
interaction. Many functional and non functional requirements

Alma Mater Studiorum - Universita di Bologna, Italy. e-mail:
{antonio.natali, ambra.molesini}@unibo.it

are directly related to communication; to capture relevant con-
cepts. Service Oriented Architecture (SOA) [3], [4] and Web
Services (WS) [4], [5] are proposing different approaches, e.g.
by distinguishing between orchestration and choreography [6].
In fact, the communication style has important consequences
on the overall architecture and on the single components of
a software system: according to the communication patterns
in which they are involved, application components can be
modeled in very different ways, e.g. like processes, agents,
actors, subjects, services, etc. The ubiquitous object oriented
paradigm (oop) seems now more adequate to organize the
schematic part rather that to express the conceptual space
required by a modern software application.

In the concrete practise of SE, people tend to build dis-
tributed applications by exploiting advanced communication
platforms such as Axis [7], Java Message Service (JMS) [8],
Jade [9], etc. But an approach of this kind does not allow to
overcome the growing gap that exists between the abstraction
level required by the business logic and the concepts provided
by platforms. Worst, the analyst and the designer have no
reference language to reason about communication: even in
the (improper) case in which the usage of a specific commu-
nication platform is assumed as a working hypothesis, it is
quite uncommon that a platform exposes some formal model
of the mechanisms it provides; therefore the analyst and the
designer should resort to some sort of reverse engineering in
order to find it. But it is quite improbable that people spend
time for creating a workable model of a platform; therefore, the
semantic gap is usually filled up by using cop to design and
build subsystems and components that conceptually belong to
the infrastructure rather than to the business level. In absence
of a mature software development process, this job is repeated
several times, each time in a different way.

In this scenario, the idea of extending conventional pro-
gramming languages with general purpose communication
constructs seems unwise and difficult to realize. But the Model
Driven Software Development (MDSD) approach [10] could
become a reference technology in this field, since model-to-
model (M2M) mappers and model-to-code (M2C) transformers
can continue to be part of the user-defined design, but with
different scope and different life-time than business application
code. In particular, the transformers could embed best design
practices to build in automatic way the intrinsic systematic of
the schematic part of an application.

Because a meta-model is a way to describe the abstract
syntax of a language, a meta-model for communications
becomes a way to introduce a language that can help in
all the phases of the software development process: in the
analysis phase, to express the interaction logic implied by the
problem; in the design phase to define the overall architecture
of a software system; in the implementation phase to improve

616

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

code readability and system modularity. This happens because
each term used to specify a communication pattern can be
associated with a precise semantics, that can help in finding
incoherent or inconsistent system designs.

This work intends to follow a sort of language oriented
programming [11] style, by introducing a meta-model as the
abstract syntax of a language — called contact (Subsec-
tion III-A) — to describe the communication between generic
entities called subjects in terms of actions related to the
elements of a raxonomy of message types.

The discussion will be limited to very basic forms of
communication, since contact intends to constitute just a
starting point for a possible application of MDSD in this field.
It can be viewed as a sort of domain-specific language whose
semantics is in some sense programmable in order to meet
specific application needs. The semantics of the language is
given by a chain of M2M/M2C transformers whose end point is
Maude [12] code, that allows us to promote model checking
and model execution.

The main goal is to specify the semantics of communication
actions in such a way that this specification can be used also
as an effective operational support. To achieve this goal, a
software factory has been defined around a stack of meta-
languages actually composed by an intermediate language —
called medc1l (Subsection III-B) — and a low-level language—
called corecl (Subsection III-C). Thus, the formal definition
of the meaning of the contact language is performed in two
steps: the first step consists in mapping a contact action
into one medcl action; the second step maps each medcl
action into a message structure and a sequence of corecl
actions. The M2M mappers are used also as the first step of a
production line that ends with a M2C transformer that builds
a real implementation for a OSGi [13] Java environment.

So, the paper is structured as follows. Section II presents an
overview of the communication issues, while Section III intro-
duces the stack of meta-languages that have been defined and
developed. Section IV presents the meaning of the contact
language defined in terms of a chain of M2M mappings that
transform a contact sentence into a sequence of low-
level communication primitives for a shared space. Section V
discusses how these mappings and M2C transformations can
be used not only to specify the language semantics, but also
to provide an effective implementation according to a layered
architecture which can exploit different platforms and different
supports for communications e.g. network protocols like TCP,
UDP, HTTP etc. Conclusions follows in Section VI.

II. OVERVIEW

From the end-user point of view, the attention is focused
on the high level, logical aspects of communication. As an
example, let us consider, a very simple system made by two
subjects — named s1 and s2 — in which:

e sl produces a document and asks subject s2 to make
comments on that document. Subject s1 continues its
local work (if any) without blocking; however it expects
to receive some indication that its request has been
accepted by s2;

e s2 accepts the request of s1 and performs the requested
job. When this job is terminated, it sends a message
to inform any interested observer on the result of the
operation;

« after that s1 becomes aware that s2 has acquired its
request, it is ready to receive the message emitted by s2,
in order to perform some specific operation related to the
result of the evaluation of the document.

Since this kind of specification is rather ambiguous, it
should be rephrased in a more formal language. Using the
contact language it could be possible to say that:

e sl asks to s2 the invitation named evalReport.

e 52 accepts the invitation evalReport; when the
related job is terminated, it emits the signal named
evalReportDone.

o after that s2 has acquired the acknowledgment (ack)
to the invitation evalReport, it can sense the signal
named evalReportDone.

Verbs like “ask”, “accept”, “emit”, “sense”, are used to
denote high level communication actions semantically related
to entities such as “invitation” and “signal” that are special-
ized versions of the Message general concept. Thus, a basic
vocabulary for message-based interaction is related to a set of
message types as shown in TABLE 1.

TABLE I
MESSAGES AND RELATIVE ACTION
Message Type Sender Receiver

Dispatch forward serve
Event raise perceive

Signal emit sense

Invitation ask accept
acquireAck replyAck

Request demand grant

acquireResponse | replyResponse

The contact specification could be expressed in the
following concrete syntactic form:

ApplicationSystem name=sys0 ;
// ——-— Messages

Invitation evalReport;

Signal evalReportDone;

// ——-— Subjects
Subject writer;
Subject expert;

// ——-— Actions
writer ask evalReport to expert;
writer sense evalReportDone;

expert accept evalReport;
expert emit evalReportDone;

The system named sysO is made by two concrete subjects
named writer and expert, that communicate using an
invitation and a signal. This specification can be viewed as
a constraint on the collective behavior of the subjects, i.e.
a specification of what they expect from each other, without

617

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

saying how their internal behavior is organized; in particular,
the order of execution of the communication actions is not
described here.

In the reminder of this section, the semantics issues related
to different communication patterns are highlighted in Subsec-
tion II-A, while Subsection II-B introduces the idea of using
MDSD techniques and tools to face semantic-related problems.

A. The issue of semantics

Each term used to specify a communication pattern must be
associated with a precise semantics, that can help not only in
finding incoherent system designs, but also in automating (rel-
evant part of) the implementation of the underlying interaction
support system.

Let us consider, as an example, the case of invitation (see
TABLE I). An invitation is defined as a message that can be
asked from a inviting-subject to ND>1 receivers, with the ex-
pectation to receive back 0 <NA<ND acknowledgment (ack)
messages. An invitation can be accepted by NR>1 subjects,
each replying with an ack to the requestor. Thus an ack is a
message that can be sent (replied to) an inviting-subject with
reference to a specific invitation, while acquireAck is the name
given to the action of receiving the ack.

Again, this is a rather informal specification, that lives open
several questions:

 if ND>1, how many ack does the sender expect?

o after an ask action, does a subject wait until some ack

is acquired? or when exactly NA ack has been acquired?

« if a subject decides to wait for an ack, does it wait

forever?

« a subject that accepts an invitation replies:

— as soon as possible, i.e. when the invitation is ac-
quired at the receiver site?

— after that the invitation has been elaborated?

— under explicit control of the application?

« what happens if the invitation cannot reach any receiver?

If an answer is given to all of these (and perhaps some
other) questions, then the semantics of the idea of invitation
is fixed. The problem is that two different applications can
consider conceptually and pragmatically adequate two differ-
ent answer sets. Thus, it is unwise to design and implement a
communication support by freezing just one semantics; on the
other hand, a support offering a set of API that implement all
the possible semantics may be difficult to build and perhaps
confusing to use. These considerations can justify the choice of
many programming languages (and UML [16] too) to provide
low-level communication mechanisms only, by leaving to the
software designer the job to define a suited “communication
protocol” for each specific situation posed by the application.

B. Model driven supports

An approach based on meta-models and MDSD can help
to overcome the problems related to the definition of the
semantics of high-level communication actions . In fact, the
meta-model that defines the contact language provides the
abstract syntax of a high level communication language, while

model-to-model (M2M) mappings and/or model-to-code (M2C)
transformations can be used to define the semantics and the
implementation of the language on different platforms.

Using M2M mappings or M2C transformations to obtain low-
level code means to make the semantics “programmable”,
since this approach promotes fast (and controlled) refactor-
ing of the schematic part of a software system. But it is
also possible to maintain the semantics stable and to in-
troduce new, more specialized, concepts. For example, In-
vitation could be conceived as another abstract class do to
derive from it sub-classes like InvitationOneToOne and
InvitationOneToMany.

In any case, the point is to find a way to specify the
semantics of communication actions in such a way that this
specification can be also be used as an effective operational
support. To achieve this goal, a software factory has been
defined around a stack of meta-languages.

III. THE STACK OF THE META-LANGUAGES

In order to define the meta-languages, the Xtext [14] —
which is part of openArchitectureWare / Eclipse Modeling
Framework (EMF [15]) — notation has been used.

Xtext can be used to describe both the concrete and the
abstract syntax of a language. The Xtext framework supports
the automatic generation of a parser, an Ecore [15] meta-
model and a specific text editor for Eclipse IDE. Ecore
is the EMF implementation of the Object Management Group
(OMG) Meta Object Facility specification (MOF) [15].

At the top of the stack there is the high-level language
contact while at the bottom of the stack there is a low-
level language called corecl. The basic idea captured by
corecl is that, in order to communicate, two entities must
share a medium that provides support to transmit or acquire
information, e.g. some shared memory space, a communica-
tion network, etc. Between the two there is an intermediate
language called medcl that defines a set of abstract types of
communication operations.

The overall situation is summarized in TABLE II.

TABLE II
(META)-META-LANGUAGES

Entity Instance of | Meaning

User defined program | contact Language used to specify
communication at applica-
tion level.

MedCl medcl Abstract high-level com-
munication language.

Message msgcl Language wused to de-
fine messages and logical
channels.

LindaLikeCl corecl Abstract low level com-
munication language.

The language called msgcl defines the structure of the
message exchanged at intermediate level, while MedCl —
instance of medcl — and LindaLikeCl - instance of
corecl — are abstract languages whose meaning will be
discussed in Section IV; since these two languages are meta-
models, medcl and corecl can be classified as meta-
meta-models. The next sub-sections introduce respectively the

618

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

contact language (Subsection III-A), the medcl language
(Subsection III-B), the corecl language (Subsection III-C)
and the msgcl language (Subsection III-D).

A. The high-level language contact

The aim of the contact language is to express two main
aspects of the architecture of a software system: the structural
dimension, i.e. the set of parts (subjects) that compose the
system and the communication dimension, i.e. the way used
by subject to exchange information. This subsection presents
the communication-related sub-language that, as said in the
overview, is based on an ontology of messages, as shown in
Fig. 1.

£ contact 1= Subpect
< niami - EString e e | Ear g

imEsdd e

Fig. 1. Message ontology.

Messages are classified in two main categories: the (ab-
stract) class of out-only messages which represent messages
that a subject sends without any expectation to receive infor-
mation directly related to these messages and the (abstract)
class of out-in messages which represents messages that a
subject sends with the expectation to receive some information
directly related to the message sent. As concrete forms of mes-
sages it is possible to distinguish between out-only messages
such as events, signals or dispatches, and out-in messages
such as invitations and requests—token will be discussed in
Section VL

The abstract syntax of communication actions is shown in
Fig. 2 and Fig. 3; the informal description of their meaning
is reported in TABLE III, while the formal definition of the
meaning will be discussed in Section IV.

B. The intermediate language medcl

This language is a meta-meta-model (depicted in Fig. 4) that
defines a set of abstract types of communication operations.

1) OpToPereceivelInfo: this is the class of the in-
put (OpIn) operations that allows a subject (attribute
worker) to acquire information emitted by any subject.

2) OpToAcquireInfo: this is the class of the OpIn
operations that allows a subject (worker) to acquire
information that subjects emit with reference to one or
more specific receiver subjects.

Fig. 2. Contact input operations.

= name ESrmg
[T

e _

El nOperaion
= aeternal | EBnokian

E MMEI E ulmulllm1
| Il 11 |
hanaad | b omk

it
|

| El Digpats) ! th_LE. L Intation |

Fig. 3. Contact output operations.

3) OpToAcquireManyInfo: this is the class of the
OpIn operations that allows a subject (worker) to
acquire - as an atomic action - information from several
subjects.

4) OpToEmitInfo: this is the class of the output
(OpOut) operations that allow a subject to transmit
information without any notion of receiver and without
any expectation to receive any reply information from
the perceiver subject (if any).

5) OpToSendToAReceiver: this is the class of the
OpOut operations that allows a subject (sender) to
transmit information to a specific receiver (dest).

6) OpToSendToMany: this is the class of the OpOut
operations that allows a subject to transmit information
to a set of receivers.

The abstract class IntermediateOperation includes
properties common to all the operation types:

« name: this attribute represents the name of the operation;

619

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

TABLE III
INFORMAL DEFINITIONS

Message Meaning

Type

Event a message that a subject can raise to change the
(OutOn- state of the environment (world); an event can be
lyMessage) perceived by N>0 - time uncoupled - subjects each

acting in a way independent from the others
Signal a message that a subject can emit with the expecta-

(OutOnly- tion that it can be broadcasted by some transmission

Message) medium; a signal can be sensed by N>0- interested,
time uncoupled - subjects each acting in a way
independent from the others.

Dispatch a message that a subject can forward to a specific

(OutOnly- receiver-subject, with the expectation that it will

Message) serve it.

Invitation a message that a subject can ask to ND>1 receivers,

(OutInMes- with the expectation to acquire NR>0 acknowledg-

sage) ments (ack); a receiver will accept an invitation and
will reply with an ack to the sender.
Request a message that a subject can demand to ND>1
(OutInMes- receivers, with the expectation to acquire NR>0
sage) responses; a receiver will grant a request and will
answer to the sender with a response.

iy - reg
g+ Fliriey
rarm B iwp
g ine : Cioriey
et
i ol v
- T =z T Dtk |
- V- .
el [[-¥-N
- .
Iy]
| Opta et | T OiaTaipinli | Cpfebradoin | SpTmlendTadwe
{ (TS —— 1 R T
spafinbly : Kowduss | L)
| L2 Mg T ey s oty | | OpeflewTalaay |
AR DReaw Lo DRy

L] sieviliel |l
1 ik lamrs il b
gl e : Tlcaisdy |

Fig. 4. The medcl meta-model

« msgType: this attribute represents the category of mes-
sage handled by the operation;

« msgld: this attribute represents the identifier denoting a
specific message.

The meaning of the other attributes is the following. If the
attribute consume of an OpIn operation is t rue information
is removed from the transmission medium; otherwise, informa-
tion is only logically consumed, i.e. the worker reads it, just
once. If the attribute sender of an OpIn operation is not
null, then the receiver will handle messages sent from that
specific source only. If the withAnswer attribute of an OpIn
operation is true, then the worker must send back some
information to the transmitter. If the withAnswer attribute of
an OpOut operation is t rue, then the worker must acquire
some information from the receiver. If the applvisible
attribute is true, the operation implies that the received
answer must be explicitly handled by the application, i.e. by
user-defined code.

C. The basic language corecl

The corecl language is a meta-meta-model that intro-
duces a set of low-level concepts as represented in Fig. 5:

1) The medium used to transmit or acquire information is
a shared space.

2) Information transmission is obtained by writing data
(messages) in the shared space (operation class
CoreWrite) while information acquisition is obtained
by removing data from the shared space, either log-
ically (CoreRead) or physically (CoreConsume,
CoreConsumeMany). When a data is logically con-
sumed, it is no more available for the subject that
acquires it, but remains available for the other subjects.

3) Communication primitives based on shared memory
usually provide a support to store unsatisfied requests to
acquire/perceive data and to inform a subject when some
required data becomes available; without this support,
subjects are obliged to perform busy form of waiting in
order to acquire information. The availability of such
a support is expressed through the boolean attribute
resumeSupport.

The choice to make reference to a shared space as the
basic medium for communication is motivated by the idea that
communication between two or more subjects is logically pos-
sible because the subjects share a common world. Moreover a
shared space basically provides many-to-many communication
for free, but does not exclude to support also point-to-point
forms of interaction. In any case, the shared space is our
reference point for expressing the operational semantics of
communication actions; other kinds of medium can be used
for real implementation, as it will discussed in Section V.

| CereOperation

= resumefupport ; Dlociean
i ¢ ESting
= megitnect ; Bikrin

1 Corn | Commland
L1 | = tramMasry : EBeh * freeslany : EBoolean

Fig. 5. The corecl meta-model

D. The message language msgcl

The data to be transmitted and acquired (messages) must
own a proper structure in order to allow a wide range of
communication patterns. The definition of the msgcl meta-
model reported in Fig. 6 states that, besides the message
content, a message should also contain data useful:

620

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

1) to specify a logical point-to-point connection between
subjects, since a shared-space basically provides a many-
to-many communication model. This kind of data is rep-
resented by the channelId attribute (see Section IV).

2) to determine the subject that wants to transmit or to
acquire information. This kind of data is represented by
the workerName attribute.

3) to determine the kind of message to be transmitted or
acquired. This kind of data is represented by the msgId
attribute.

4) to distinguish between two messages in which the values
of the attributes defined so far are identical. This kind
of data is represented by the msgNum attribute.

Ll Corrly | g
. —— T T L N H!ﬂnl
-nlmrlih'-'\-g_ :wd.i?;.\.
* migSbruet © ESifang ; ‘Fﬂ"-—m.’h-i_ 3
| paficy | Eitring
mucsType = ESiring
thu:'dl.l.d
msgld ! E-'hlﬂ;g

1

| shannedl I IToler|| = cannefTafource
dusid 1 EString soune ! ESkring

= dert ; Pitrin

Fig. 6. The msgcl meta-model

IV. SEMANTICS VIA M2M AND M2C GENERATION

The formal definition of the meaning of the contact
language is performed in two steps, as shown in Fig. 7.

The first step consists in mapping a contact action
into one medcl action; the second step maps each medcl
action into a msgcl structure and a sequence of corecl
actions. The M2MContactToMed transformer is a model-
to-model mapper that translates a specification written in
contact into an instance of the medcl meta-language. The
M2MMedToCore transformer is a model-to-model mapper
that translates a specification written in medcl into an in-
stance of the corecl meta-language. The ultimate output of
the transformation chain is a model that specifies the behav-
ior of each contact operation as a sequence of corecl
operations. This model can be finally translated by a M2C
generator in the implementation code with reference to some
target platform, e.g. Java (see Subsection V-A).

The model transformation performed by each M2M mapper
implicity defines an abstract language — as already summarized
in TABLE II — which can be taken as a reference for an imple-
mentation based on layers, as it will discuss in Section V. Once
defined, the M2M transformers on the meta-meta-models can be
used to obtain the semantics of the high-level communication
operations written in contact, as shown in Fig. 8.

To give an example, let us consider the contact
specification given in the Section II. The output of the
M2M-ContactToMed mapping is an Ecore model whose
standard representation is an XMI [17] file; to make such a
model more readable, a M2C transformer can be defined so to
produce some pseudo-code like:

(OpToSendToOne)

writer ask msgld=evalReport
msgType=Invitation

to expert withAnswer=true

(OpToPerceivelnfo)
writer sense
msgld=evalReportDone
msgType=Signal
consume=false

(OpToAcquireInfo)

expert accept msgld=evalReport
msgType=Invitation
consume=true withAnswer=true

The M2M-ContactToMed transformer has mapped each
contact operation into one medcl action with the same
name. Thus each user program (a in Fig. 8), which is an
instance of the contact meta-language, becomes (is trans-
formed into) a model (b in Fig. 8) instance of the medcl
meta-language. This model implicitly defines the abstract
syntax of a language, whose explicit definition is given by
the language MedC1 of TABLE Il If this model (b) is given
in input to the M2M-MedToCore transformer, then a new
model (c in Fig. 8) instance of the corecl meta-language is
obtained; it can be described by the following pseudo-code:

//Invitation
writer ask Invitation evalReport to expert
out (expert_evalReport (

writer, evalReport, "content", 1))
IMsg obtainedMsg =
in(writer_expert_evalReport (

expert, evalReport, "ack" ,1))

IMsg replyMsg = in(expert_evalReport (
ANY, evalReport,M,N))

out (replyMsg.msgEmitter ()_expert_evalReport (
expert,evalReport, ack, replyMsg.msgNumStzr ())

//Signal

writer sense Signal evalReportDone

IMsg sensedMsg = rd(evalReportDone (
ANY, evalReportDone,M, _))

)

621

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

M2
ContactToMed
e ¥

Fig. 7. Mapping between the languages

instanca of

e |
1 1 I
E]_ Fpul — mm:';.’;"“ I r.lutpu'.—h—-npul: — Mm':‘rznhcllw — output —p@
—_

Fig. 8. Code generation through M2M mapping

TABLE IV
INFORMAL MEANING

corecl
primitive
out (String The worker subject informs the shared space
M) IS that it intends to execute a CoreWrite of
(CoreWrite) a message M. IS stores the message into the
message-sequence and looks into its local
request-queue (see primitive in). If there
is some subject ws waiting for a message that
can be unified with M, then IS informs ws that
it can retry to acquire the message.

IMsg The worker subject informs the shared
in(String space IS that it intends to execute a
Q) CoreConsume of a message. IS looks
(CoreConsume)| into the message-sequence: if it finds a
message M that can unify with Q, IS removes
M from the set and gives M to the worker
subject. Otherwise, IS stores the request into
the request—-queue.

The worker subject informs the shared space IS
that it intends to execute a CoreRead of a mes-
sage. IS looks into the message-sequence:
if it finds a message M whose sequence number
is higher than n that can unify with Q, IS gives
M to the worker subject. Otherwise, IS stores
the request into the request-queue.

Description

IMsg rd(int
n,String Q)
(CoreRead)

expert emit Signal evalReportDone
out (evalReportDone (
expert, evalReportDone, "content",_))

This model implicitly defines the abstract syntax of a
language, whose explicit definition is given by the language
LindaLikeCl of TABLE Il In fact, the operations out,
in, rd represent low-level actions similar to those of Linda
[18]; their informal meaning is summarized in TABLE IV.

The formal semantics of LindaLikeC1 primitives is given
by a M2C transformer from corecl to Maude, while a
M2C transformer from corecl to Java provides a workable
implementation of the primitives. Section V will return on
this point. The reminder of this section is dedicated to discuss

mstarce al

instanca of

the concept of channel (Subsection IV-A), by starting from
the pseudo-code above. In particular Subsection IV-B and
Subsection IV-C discuss in some detail the case of invitations
and signals, while Subsection IV-D give details related to
the other operations. Finally Subsection IV-E explains how to
obtain supports for checking and executing application models.

A. Channels and low-level messages

The messages exchanged through the shared space are
strings built either in a static way by a M2M/M2C transformer
or in a dynamic way by some operator. The string is written by
using the syntax of Prolog and includes the attributes defined
by the language msgcl:

channelId (workerName,msgId, content, msgNum)

Messages are expressed in Prolog syntax not only for the sake
of simplicity and clarity: also our real, Java-based implemen-
tation of the shared space is based on a Prolog engine in
order to exploit unification for accessing message content (see
Section V). From a logical point of view, information related
to point-to-point messages (dispatches, invitations, requests)
flow along specific channels related to a particular type
of application message (medcl::msgType) and to some
particular subject (the receiver, the sender or both). If two
subjects declare to send a message with medcl: :msgId=m
to a same subject of name medcl: :worker=r, concep-
tually they make reference to the same logical channel with
msgcl::channelId=r_m. Other channel identifiers can
be introduced as required. The channels represent the possible
communication opportunities that exist between the subjects.
Since the content of a message includes the name of the sender,
a receiving subject can dynamically acquire the opportunity
to communicate with a subject of which it has no static
knowledge.

B. Invitations

In the case of one-to-one invitation, it is necessary to capture
also the idea of a reply channel from the receiver to the sender.

622

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

The approach is to define the msgcl: :channelId of the
reply channel by combining the (unique) name of the sender
with the (unique) name of the receiver and with the invitation
identifier medcl: :msgId. These rules are reflected in the
structure of the ask and accept operations of the example
above. The ask operation is translated into a sequence of
two primitives: an out of the invitation evalReport on the
channel of name expert_evalReport, and then an in on
the channel of name writer_expert_evalReport;

Also the accept operation is translated into
a sequence of two primitives: an in from ANY
sender of invitation evalReport on the channel
of name expert_evalReport and then an out
operation of the ack reply on the channel of name
writer_expert_evalReport. The prefix writer of
the reply channel is the name of the sender which is included
in the message sent by the ask. This information is given
by the msgEmitter () operation executed on the result
(replyMsg) given by the in at the receiver site.

An important element in the semantics of invitation is the
fourth argument of the message (msgNum) that represents
a message (unique) identifier at subject level. In fact, the
msgNum associated to the message by the out performed
by an ask is used by the sender to complete the specification
of the structure of the reply message to be obtained. At the
receiver site, the msgNum included in the received message,
given by the msgNumStr () operator, is used to mark the
reply message itself.

This semantics does not fix the local behavior of the sender:
if the sender performs the in immediately after the out,
then it blocks until the reply is obtained. But the sender
could also continue its work by executing other operations in
between, including another invitation to the same subject: the
message number will specify the reply that the sender wants
to obtain at a given point of its computation.

C. Signals

Signals are classified as OutOnlyMessages. Interaction
based on a signal does not require that the sender has knowl-
edge of the receivers nor it implies any feedback that the signal
has been sensed by some subject. Since there is no need of
point-to-point channels, as msgcl: :channelId the name
of the signal is used. The emit operation is mapped into an
out while the sense operation is mapped into a rd.

The operation of sensing a signal is a
medcl::OpToPereceiveInfo operation. Thus, it
has the following meaning: when a subject receives from the
interaction space the information that a signal is available, the
signal is only logically removed form the interaction space
but it physically remains available for other subjects.

D. Other operations

Events are similar to signals. Requests can be handled in a
very similar way to one-to-one invitations: however, differently
from an ack, which can be sent by the infrastructure, a
response must be sent by the application code, while the sender

is now interested to handle at application level the content of
the response.

One-to-many invitations (or requests) present a more com-
plex semantics. When the same invitation (or request) is sent
to many (N>1) subjects, the sender can acquire NA>0 ack;
one possible semantics is that the ask operation is considered
terminated when one of the ack has been obtained. Let us
suppose that a subject s1 asks invitation evalReport to
two subjects s2 and s3:

sl ask evalReport to s2,s3;
s2 accept evalReport;
s3 accept evalReport;

The result of the M2M-ContactToMed mapping is:

sl askInvitation
evalReport to [s2,s3] withAnswer=true

Now the result of the M2M-MedToCore mapping could
be:

out (s2_evalReport (
sl,evalReport, "content", 2)

out (s3_evalReport (
s2,evalReport, "content", 2)

IMsg replyMsg = in(sl_ack_evalReport (
ANY,evalReport,ack(l),2))

The sender subject s1 now expects to obtain an ack (1)
message from some not well identified subject (ANY): this
message means that all the expected ack (just one, in this
case) has been received.

This pattern is necessary since the resumeSupport at-
tribute of the shared space has been set to true. If we
generate as many in as the receivers, and the number of
expected ack is less then the number of the receivers, then
the sender could wait forever for an ack that will never be
sent. In a real working system, the subject that generates the
ack (1) message can be another subject that observes the
message traffic on the shared space or the shared space itself.

E. Executable models

The model produced by M2M-MedToCore (see Fig. 7) can
be given in input to a M2C-CoreToTarget transformer to
obtain code for a specific run-time platform. For the specifi-
cation of language semantics, our target platform is Maude, a
reflective language and system supporting both equational and
rewriting logic specification and programming.

Rewriting logic is a logic of concurrent change that can
naturally deal with state and with concurrent computations.
Distributed systems can be modeled in Maude as multisets
of entities, loosely coupled by some suitable communication
mechanism. An important case is object-based distributed
systems in which the entities are Maude objects, each with a
unique identity, and the communication mechanism is based on
messages that, in our terminology, have the dispatch semantics.

The usage of Maude as target language allows us to achieve
three main goals:

623

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

HighLevelop

il B wes | Bloahess
= megld ; BString

nista | EStzing
= meghum ; BSking
= el Type - ESineg
= megType : Biteing
- pelicy ; EString
= isConsume - [lioolean
o semdar - ESrag
= chowiLind ; Ritving

masylnpul - EBoslean
= ielnput - Elsoiean
= apppiis i ble - EBsalean
= wurker | Eftring
adet | ESlring

Fig. 9. corecl extension

« to give a precise semantics to each low-level construct;

« to provide a support for model checking;

« to provide a support for model execution.

These are very important aspects that it is not possible to
further discuss here. The interested reader can see [12].

V. FROM SEMANTICS TO ARCHITECTURE

The M2C generator at the end of the transformation chain
of Fig. 8 is designed so to avoid the “macro-expansion” of
a high-level operation into a sequence of target instructions,
since this approach would lead to code difficult to read and
understand. Rather, the generator builds code with reference
to a run-time support which is a Maude implementation of the
basic communication medium. This support is in its turn built
by a M2C transformer that takes in input the LindaLikeCl
introduced in TABLE II, which is defined (in XText) as
follows:

CoreMachine LindalLike
coreConsumeOp in IMsg withResume;
coreReadOp rd answerRd IMsg; //no resume
coreReadOp rdw answerRd IMsg withResume;
coreWriteOp out withResume;
coreConsumeManyOp inMany

answerInMany "Vector<IMsg>" withResume;
coreReadOp selectOneFromMany

answerRd IMsg fromMany withResume;

To achieve the goal, the corecl model has been ex-
tended — as showed in Fig. 9 - to include links to
the high level operation implemented by a sequence of
corecl::CoreOperation.

The M2C transformer can then “compile” each contact
operation into a sequence of calls to the primitives of a
low-level machine layer exposing a conventional API. The
M2C transformer is designed so to produce modular code, by
following design criteria that are in a large extent independent
of the target language. Since our goal is to keep concrete
implementation aligned with the specification of semantics,
these criteria are applied not only to the generation of Maude
code, but also to the generation of implementation code for
specific operative platforms like JVM, CLR, .NET, J2EE, etc.
Currently, our reference platform for real implementation is

the 0SG1i platform Equinox [19] over a JVM; thus the system
provides also a M2C-CoreToJava generator that invokes the
primitives of a basic communication medium that implements
the APTI defined by the ILindaLike interface below, using
our Java interpreter of Prolog, called tuProlog [20].

public interface ILindalLike {
IMsg in(String Q) throws Exception;
IMsg rd(int n,String Q) throws Exception;
IMsg rdw(int n,String Q) throws Exception;
void out (String M) throws Exception;
Vector<IMsg> inMany (

Vector<String> tokens) throws Exception;
IMsg selectOneFromMany (

int n,Vector<IMsg> Q) throws Exception;

}

The same strategy is adopted to define a high-level support
layer for contact, as described in Subsection V-A. In the
reminder of this section, Subsection V-B faces the problem
of the interaction between a subject and the underlying com-
munication support, while Subsection V-C tackles the problem
of managing user-defined answers; finally, Subsection V-D ex-
plains how to move from shared space to other communication
supports, with particular reference to network protocols.

A. Layered systems

Translating each contact operation into a sequence of
low-level primitives like out, in, rd is not enough to produce
readable code: our goal is to generate application code by
making explicit reference to the available set of high-level
communication operations. To achieve this goal, the MedC1
language of TABLE II has been given as input to a M2C
generator (called Medc1lPlat form) that builds the run-time
support for contact. The architecture of the software system
is now naturally structured according to the layers pattern [2],
in which it is possible to distinguish as many layers as the
meta-languages. The application code can assume the form
that follows.

// —-—-— Subject writer --—-—
IAcquireOneReply answer = support.ask(
"writer", "evalReport", M, "expert")

if(answer.replyAvailable()){
IMsg reply=answer.acquireReply();

IMsg sensedMsg = support.sense (
"writer", "evalReportDone")

// ——— Subject expert --—-
IMsg m = support.accept (
"expert", "evalReport")

support.emit (
"expert", "evalReportDone", "content")

624

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

B. Subject behavior

Besides generating calls to low-level communication primi-
tives, the MedclPlatform generator must take important
decisions about the nature of the subjects (that could be
conceived as objects, processes, agents, etc.) and on the way
adopted by a subject to interact with the communication
primitives themselves. If the target environment is a platform
like Java, then the shared space can be structured as a con-
ventional object and the interaction between a subject and the
medium can be based on conventional procedure calls. When
the target environment is Maude, the communication medium
can be represented by a Maude object, but the interaction with
the medium must be based on Maude messages (dispaches in
our terminology); thus the medium is conceptually a process.

Another important aspect regards the issue of blocking or
non-blocking operations. High-level operations related to out-
in messages are translated into a sequence of LindaLike
primitives that usually ends with an in related to some
reply/answer from the receiver. In imperative run-time envi-
ronments, this usually means that the sender subject could
be blocked by a primitive that represents the transmission
of a message. But the decision to wait or not for a reply/
answer should be explicitly taken by the subject and not by the
platform; thus, the MedclPlat form generator implements
the operations of class medcl: :OpOut having the attribute
withAnswer set to true, so they return an object that can
be used by a sender to acquire the reply when it needs it. One
interface for this kind of objects is:

public interface IAcquireManyReply {
boolean numOfReplyExpected();

boolean numOfReplyReceived() ;

IMsg acquireReply (int n) throws Exception;

}

The operation numOfReplyExpected returns the num-
ber of the reply expected by an operation withAnswer, while
the numOfReplyReceived operation gives the number of
the reply received so far. The operation acquireReply
blocks the caller until the n—th reply-message is available,

C. Application level answers

Input medcl::0pIn operations having attributes
withAnswer and applVisible both set to true, must
delegate to user-defined code the production of an answer to
be sent to the caller. To achieve this goal, these operations
return an object that implements the following interface:

public interface IMessageAndContext
void replyToCaller (String m)
throws Exception;
IMsg getReceivedMessage () ;

The operation getReceivedMessage returns the input
message, while the replyToCaller operation embeds all
the implementation details related to the communication from
the current (server) subject and the specific subject that sent
that particular input message.

D. From shared space to protocols

The idea of using a shared space as basic logical reference
for communications has been adopted having in mind minimal
conditions to make communication possible: the presence of
a (stateful) shared world surrounding a set of subjects.

With reference to the real world, the concept of shared space
recalls the idea of (basic) wireless communication, where
the transfer of information occurs “in the space” without the
use of electrical conductors or “wire”. However, when “real
code” is written, subject communication is usually realized
on top of network protocols like UDP, TCP, HTTP and many
software designers could believe more convenient to structure
a software system around the libraries implementing these
protocols.

But many software designers could also recognize the
advantage of making the application code independent of a
specific communication technology. In this case the layered
architecture allows us to exploit network protocols with-
out changing the high-level description discussed so far. To
achieve this goal the contact language has been extended,
so that each contact::0pToAcquireInfo can option-
ally define some concrete communication support. For exam-
ple, our expert could declare to accept invitations by using
TCP:

expert accept evalReport support=TCP
[host="localhost" port=1860] ;

Moreover, the system configuration part is divided into a set of
execution contexts. The subjects associated to each context can
be loaded and run on different physical nodes of a network.

The functionalities of the generated schematics are extended
by putting more “intelligence” in it. In particular each context
always owns a local shared space, that is used to hide the
usage of protocol-specific supports when a message must be
exchanged on the network among different contexts.

If some subject within a context C1 presents a
contact: :InOperation specification including the dec-
laration of a network protocol, a receiver subject is created
in C1 to acquire information according to that protocol. In
the case of connection-based protocol like TCP, the receiver
waits for a connection and creates a RequestHandler subject
for each connection accepted. The RequestHandler is the TCP-
equivalent of the channel that defines the logic connection
between the source and the destination. This internal subject
interacts with the destination subject defined by the application
by substituting itself to real caller; this goal is achieved by
simply modifying the emitter name attribute of the received
msgcl message and forwarding the new message into the
local shared space. In this way the behavior (and the code) of
a receiver subject is made independent of any protocol used
to acquire information from the external world.

If some subject within a context Cl presents a
contact::OutOperation to a receiver that does not
belong to context C1, a ClientRequest subject is created. The
task of this subject is to transmit information according to the
protocol specified by the pair receiver-message.

The architecture of the platform takes the typical form
described by a Broker [2] pattern, with the advantage that the

625

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

design choices are now reified into the structure of a generator
that allows us to automate the creation of the (non trivial)
schematic part of our distributed application.

VI. CONCLUSIONS

The growing semantic gap between the abstraction level
required by modern distributed applications and the concepts
provided by general purpose supports for communication is
actually filled up by software developers, which are often
called to design and build (again and again) components that
belong to an infrastructure rather than to the business level.

The MDSD approach could become a reference technology
in this field, since M2M and M2C transformers can continue
to be part of the user-defined design, but with different
scope and different life-time than business-related application
code. In particular, the transformers could embed best design
practices, including pattern languages, to build in automatic
way cumbersome and repetitive parts of the application.

The meta-model introduced in this work defines a language
(contact) that allows the description of very basic forms
of communication. This is intended to be just a starting point
for a possible application of a language oriented program-
ming style, so to handle high-level communication actions
as a sort of domain-specific language whose semantics is in
some sense “programmable” according to specific application
requirements. This language is put at the top of a stack
that is currently composed of other two languages; as a
consequence, it is possible to generate the schematic part of
an application according to a layered logical architecture: the
layer related to the intermediate language (medcl) allows
keeps the application code independent of the medium, while
the layer related to the low level language (corecl) keeps the
communication medium independent of the implementation
platform, by facilitating the mapping of contact on media
of different type, e.g. a communication network rather than a
shared space.

Although its simplicity, contact can be used to express
in an explicit, systematic and open-ended way concepts that
are actually hidden into evolute communication supports like
Jade [9] or JMS. Together with msgcl and corecl, it
can be extended to capture more evolute forms of com-
munication, like for example those proposed by FIPA [21]
or to help in abstracting service-oriented features provided
by configurable communication networks currently described
using Network Description Languages (NDL) based on RDF
[22]. The slogan coined by James Hendler for the Semantic
Web can be adopted also here: a little semantics goes a long
way. For example the message ontology discussed in this
work has been easily extended so to introduce the concept
of Token (see Fig. 1, Fig. 2 and Fig. 3): a Token is new
contact::0utOnlyMessage related to very basic com-
munication actions called insertToken, removeToken checkTo-
ken and removeAllTokens. The peculiarity of removeAllTokens
is that a set of tokens can be consumed — within a specific ex-
ecution context — as an atomic action expressed as an instance
of medcl: :OpToAcquireManyInfo and implemented by
using a corecl::CoreConusmeMany operation. In this

way it is possible to exploit Petri-Nets [23] not only as a
formalism to model a software system, but also as a means to
concretely build it.

The approach adopted in this work puts in the foreground
the subjects, and leaves in the background the concept of
communication channel. In fact, communication channels
are deduced from a contact specification, and used as a
logical device to drive the generation of the infrastructure
with reference to different target communication supports.
This approach seems adequate to describe systems in which
subjects observe interactions that are visible and use the
observations to determine their state with respect to the
others. More complex forms of choreography, e.g. situations
in which subjects have shared knowledge and explicit notion
of a shared state, will probably require extensions similar to
those proposed in WS—CDL [24] to ensure that state is known
globally, or at least between subject roles, when needed.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[2] F. Buschmann and D. C. Henney, Kevlin Schmidt, Pattern-Oriented
Software Architecture: A Pattern Language for Distributed Computing.
John Wiley & Sons, 2007, vol. 4.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, 2005.

[4] D. K. Barry, Web Services and Service-Oriented Architectures: The
Savvy Manager’s Guide. Morgan Kaufmann Publishers, 2003.

[5] W3C, “Web services architecture home page,”

http://www.w3.org/TR/ws-arch/.

[6] C. Peltz, “Web services orchestration and choreography,” Computer,

vol. 36, no. 10, pp. 46-52, Oct. 2003.

[7]1 Axis, “Axis home page,”

http://ws.apache.org/axis/.

Sun, “JMS home page,”

http://java.sun.com/products/jms/.

[9] JADE, “Home page,”
http://sharon.cselt.it/projects/jade/, 2000.

[10] T. Stahl and M. Volter, Model-Driven Software Development. Jhon
Wiley & Sons, Ltd, 2005.

[11] M. P. Ward, “Language oriented programming,”
http://www.cse.dmu.ac.uk/ mward/martin/papers/middle-out-t.pdf.

[12] Maude, “Maude home page,”
http://maude.cs.uiuc.edu/.

[13] OSGi, “OSGi home page,”
http://www.osgi.org/Main/HomePage.

[14] Xtext, “Xtext home page,”
http://www.eclipse.org/Xtext/.

[15] EMEF, “EMF home page,”
http://www.eclipse.org/modeling/emf/.

[16] UML, “Home page,” http://www.uml.org/.

[17] XMI, “XMI home page,”
http://www.omg.org/technology/documents/formal/xmi.htm.

[18] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programming Languages and Systems, vol. 7, no. 1, pp. 80-112, Jan.
1985.

[19] Equinox, “Equinox home page,”
http://www.eclipse.org/equinox/.

[20] “tuProlog at SourceForge,”
http://tuprolog.sourceforge.net.

[21] FIPA ACL, “Fipa aclhome page,’
http://www.fipa.org/repository/aclspecs.html.

[22] RDF, “RDF home page.”
http://www.w3.org/RDF/.

[23] J. Peterson, Petri Net Theory and the Modeling of Systems.
Hall, 1981.

[24] WS-CDL, “WS-CDL home page,”
http://www.w3.0org/TR/2004/WD-ws-cdl-10-20041217/.

[8

Prentice

626

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

Antonio Natali Antonio Natali is — since 1990 — full Professor in the
Department of Electronic, Informatic and Systems (DEIS) of the Alma
Mater-University of Bologna. He is active in the filed of computer en-
gineering since October 1974, teaching courses on Programming Lan-
guages, Foundations of Informatics and Software Engineering. He is co-
author of more than one hundred articles, papers and three books and
has participated to several European, national and regional projects. In
August 2008 Antonio Natali received the IBM Faculty Award (https://www-
304.ibm.com/jct09002¢/university/scholars/facultyawards/) a worldwide com-
petitive program, to foster collaboration and promote courseware and cur-
riculum innovation. The research activity of Antonio Natali is centered
on software systems and software engineering, with particular reference to
software architectures, programming paradigms and tools.

Ambra Molesini Ambra Molesini received her laurea magistrale degree in
computer science engineering in October 2004 and her PhD in computer sci-
ence engineering in 2008, both from the Alma Mater Studiorum - University
of Bologna. During the final examination, the committee also proposed the
award of “Doctor Europaeus”. Currently, she has a research grant at the DEIS
in the context of the project “Methodologies and Processes for the engineering
of complex software systems”.

She is currently researching on several topics in the Software Engineering
and Agent-Oriented Software Engineering (AOSE) fields and particularly on:
design methodologies, multi-agent systems (MAS) infrastructures, methodolo-
gies’ and infrastuctures’ metamodels, flexible approaches for the composition
of software development processes, software architectures and architectural
styles for MAS, interaction engineering, Model Driven Software Development.

She has written over 15 articles on agent-oriented systems, software
engineering, software architectures and architectural styles published in inter-
national conferences and workshops. She has organised a special track at 24th
Annual ACM Symposium on Applied Computing (AOMS@SAC 2009) and at
25th Annual ACM Symposium on Applied Computing (AOMIP@SAC 2010);
she has been and currently is also a member of the Program Committees of
different conferences and workshops and Co-chairs of the IEEE FIPA DPDF
Working group.

627

