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Abstract—In this paper a neural adaptive control method has 

been developed and applied to robot control. Simulation results are 
presented to verify the effectiveness of the controller. These results 
show that the performance by using this controller is better than 
those which just use either direct inverse control or predictive 
control. In addition, they show that the resulting is a useful method 
which combines the advantages of both direct inverse control and 
predictive control.  
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I. INTRODUCTION 
LASSICAL control systems have long been found to be 
inadequate for robotic systems whose mathematical 

models are not fully available. The widespread robot control 
technique has been the model based computed torque control 
which is subjected to performance degradation due to model 
uncertainties. Driven by the desire for a high degree of 
automation, fast speed operation, and high performance 
requirement from industry, there has been considerable 
research interest in neural network control of robots and 
satisfactory results have been obtained in solving some of the 
special issues associated with the problems of uncertainty. 
Increasingly sophisticated neural network applications have 
been developed for better industrial performance. [1,2]. 
Concurrent advances in microprocessor technology have made 
the implementation of them practically realizable.  

It is known that when they are used as controllers neural 
networks must be able to realize the dynamics. However, 
while it is true that neural networks have learning capability 
and can be used to approximate any dynamic function to any 
desired accuracy as long as the size of the network is large 
enough, one should not abuse their capabilities and let them 
learn all the characteristics of the system without any 
discrimination.  
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Otherwise the sizes of the required networks are known to 
grow to uncontrollable magnitudes. This is, obviously, very 
undesirable for an actual implementation which requires less 
computational power and accordingly less power and cost. 

The concept of switching between direct inverse control 
and predictive control applications is put forward in this paper 
in order to eliminate those problems which are associated with 
the approximation nature of neural networks. These two 
employed control approaches are conceptually different.  In 
direct inverse control applications, artificial neural networks 
are used as the controller, on the other hand, in predictive 
control applications artificial neural networks are used for 
identification of the process. It is shown in this paper how 
these two well known but different methods can be unified 
and generalized in a straightforward way. 

The neural adaptive switching technique between direct 
inverse control and predictive control combines the 
advantages of predictive control, neural networks and inverse 
direct control. By attenuating the effects of both parametric 
uncertainties and uncertain non-linearities this approach can 
achieve asymptotic tracking. Simulation results are presented 
to verify the effectiveness of the controller. 

II. NEURAL ADAPTIVE SWITCHING CONTROL 
Neural networks can be used in control directly or 

indirectly. While in direct applications neural networks are 
used in the controller, in indirect applications they are used in 
modeling the system. Both of these uses will be implemented 
in this paper. 

A.  Indirect Use of Neural Networks 
The robot model plays a decisive role in the controller; the 

model must be able to capture the robot dynamics in order to 
enable the precise prediction of the control action. Benefits are 
affected by the discrepancies existing between the real process 
and the model used. The controller performance degrades 
quickly as discrepancies rise due to increase in speed or 
variation in load. The learning capability of neural networks 
and especially their ability to approximate to nonlinear 
functions makes them useful for modeling purpose. Neural 
networks are implemented here for constructing the model of 
the robotic system by observing the input and the output 
variables online and offline. Let’s consider the system 
governed by the following nonlinear discrete-time difference 
equation: 
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As shown in this equation the output of the system at time t+1 
depends on the past n output values (y) and the past m input 
values (u) in the sense defined by the nonlinear function f.  
The output of the neural network model is denoted by ym then; 
 

)]1(),...,();1(),...,([)1( +−+−=+ mtutuntytyfty mm    (2) 

fm is the nonlinear function of the neural network i.e. 
approximation to function f. In this equation the inputs of the 
neural network depend on the past outputs of the system. 
After the required training process we can assume ym ≈ y then, 
the model becomes independent from the real plant, and the 
equation becomes; 
 

)]1(),...,();1(),...,([)1( +−+−=+ mtutuntytyfty mmmm   (3) 

Subsequent to off-line training of the neural networks to 
obtain sufficiently accurate approximations of the input-output 
relationships of the robot they can be utilized to construct 
controllers. 
 

B. Direct Use in Direct Inverse Control 
In direct use neural networks are employed in the controller 

of the system. Direct inverse control utilizes an inverse system 
model. The inverse model is simply cascaded with the 
controlled system in order that the composed system results in 
an identity mapping between desired response (i.e. network 
inputs) and the control system output. [3] 
Let the system to be controlled is expressed as; 
 

[ ])(),...,(,1(),...,()1( mtutuntytygty −+−=+          (4) 
 

Control signal produced by the neural network;  
 

[ ])(),...,(),1(),...,(),1(ˆ)(ˆ 1 mtutuntytytygtu −+−+= −     (5) 
 

Network can be used to control the system by substituting 
the output at time t+1 by the desired output, the reference, 
r(t+1). If the network represents the exact inverse, the control 
input produced by it will thus drive the system output at time 
t+1 to r(t+1). [10] 

In the case of nonadaptive neural control, since the quality 
of their performance relies heavily on the fidelity of the model 
used for the design of the controller, they can only be used if 
the model is very accurate and the effect of disturbances is 
small. [11]    
 

C. Indirect Use in Predictive Control 
The success of the predictive control approach is attributed 

first and foremost to the existence of a reliable model. .It 
requires an explicit system model to predict the future 
response of the robot. In the formulation of the controller the 
predicted output, output and the reference signal are used.  
The objective of the predictive control strategy using neural 
networks is twofold: (i) to estimate the future output of the 
plant and (ii) to minimize a cost function based on the error 

between the predicted output of the processes and the 
reference trajectory. [12, 13] 
Predictive control minimizes the cost function J. Consider the 

system with the cost function given: 
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and  
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0)1( =−+Δ iku  1≤ Nu < i ≤ N2           (9) 

In these equations: 

N1: minimum prediction 

N2: prediction horizon 

Nu: control horizon.  

ρ: weighting factor penalizing changes in controls 

provided that the system to be controlled is deterministic, the 
one-step ahead prediction is given by;  
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g is the function realized by the neural network, d is the time 
delay. K-step ahead output can be calculated by shifting the 
equation in time while substituting the predictions for actual 
measurements as they do not exist;  
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Prediction signal ŷ  enters to equation as output signal after 

time t-1 does not exist. [10] 

D. Adaptive Switching Algorithm 
We have proposed a switching between the direct inverse 

control and the predictive control algorithms. The criterion 
used for the switching is  

))1()(())1()((( −−−−= tYtRtYtRRY T   (12) 
Predictive control is used where the RY criterion is less 

than the defined value and direct inverse control is when 
greater than the defined value. 
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We have also introduced another term RYe to overcome the 
disturbance effects seen on direct inverse control.  
 

))()(())()(( tYtRtYtRRY M
T

Me −−=    (13) 
 

Where YM is the expected output calculated by the model 
according to the torque values calculated by neural network of 
the direct inverse control controller. 

If RYe value is greater than the previous RY value then 
predictive control is used.  

Suitable RY value is found with trials. If the RY value is 
too small or big switching could not be done at the right time. 

III. IMPLEMENTATION PLATFORM 
The simulations were carried out on a two joint direct drive 

SCARA type robot (shown in Fig. 1) which was chosen as 
implementation platform on earlier work, the parameters and 
the equations of the process can be found in detail in Denker 
[14], Efe [9], and Cılız [15]. Robot is modeled by:  
 

cfQQVQQM −=+ τ),()( &&&      (14) 
where 
M(Q): inertia matrix 
V(Q, Q ): Coriolis terms 
τ: torque 
fc: friction force 
 

The behavior of the system can be express with four 
differential equations  
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p parameters can be expressed as:  
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IV. SIMULATION RESULTS  
In this section, we compare the neural adaptive switching 

method with the direct inverse control and predictive control 
methos. Figs. 2, 3, and 4 depict the position and velocity 
ouputs of base and elbow joints. In direct inverse control 
neural networks are used as controller directly and in 
predictive control they are used as the model of the process. 

In direct inverse control input of the controller is the error 
signal; the output of the controller is the torque values. At the 
same time past torque values and the systems past outputs 
were used to adapt the neural network. The simulation results 
are given in Fig. 2.  

In predictive control, the inputs of the model are the 
previous state and the applied torque. The output of the model 
is the position and the velocity values of the base and elbow 
joints. The neural network is adapted with the past values. 

The controller applies algorithm which optimizes the cost 
function given by; 
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N1=1xTs 
N2=4 xTs 
Nu=2 xTs 
 
Ts: Sampling Period 
ρ= 0,008 
On the other hand the weighting factors of the all of the state 
variables are same in the cost function. By changing these 
weights we can increase the effect of variable or variables on 
the cost function. Simulation results are given in the Fig. 3. 

In the switching control scheme, the speedy characteristics 
of the direct inverse control are utilized when a sudden change 
in the reference occurs. After this sudden change is 
negotiated, we switch to the predictive control algorithm in 
order to decrease the overshoot. We have also introduced 
another switching condition to overcome the disturbance 
effects seen on direct inverse control, whenever output 
performance starts to detoriates in direct inverse control then 
transition is made to predictive control. If the RY value is too 
small or big switching could not be done at the right time. In 
this application the suitable RY value was found as 0.05. The 
simulation results for the adaptive switching method are given 
in Fig. 4. 

In direct inverse control it is observed that the response 
time is smaller but the overshoot value is higher.  On the 
contrary, in predictive control, the response time is higher but 
the overshoot value is smaller. The main difference can be 
observed in Fig. 3 that shows the effect of switching between 
two methods. For this case, the output signals display sudden 
jumps due to discontinues translation from one to other.  It is 
clear that for the specific example we considered here the 
neural adaptive switching method is the obvious choice. 
Compared to the other two this approach presents better 
performance in following the reference. 
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Fig. 1 Two Joint SCARA Type Robot 

 
 

 
Fig. 2 Direct Inverse Control Application 

 

 
Fig. 3 Predictive Control Application 

 
Fig. 4 Switching Application 

 

V. CONCLUSION 
In this paper a neural adaptive controller has been 

developed and applied to robot control. The results of the 
simulation experiment show that the performance of the robot 
system by using the proposed control has more advantages 
than that by using either pure direct inverse control or 
predictive control. The control accuracy is much improved 
over that of using either of the other two methods.  

REFERENCES   
[1] Cembrano, G. and Wells, G. 1992. Neural Networks for Control, 

Boulberg, L. Krıjgsman, A. and Vingehoods, R. A. Application of 
Artificial Intelligence in Process Control. Pergoman Pres, 388 – 402.  

[2] Chen, L. and Narendra K. S. 2001. Nonlinear Adaptive Control Using 
Neural Netwoks and Multiple Models. Automatica, 1245-1255. 

[3] Hunt, K. J. Sbarbaro, D. Zbikowski , R. and Gawthrop, P. J. 1992. 
Neural Networks for Control Systems – A Survey.  Automatica, 28(6)  
1083-1112 

[4] Cichocki, A. Unbehauen, R. 1993. Neural Networks for Optimization 
and Signal Processing. WILEY. Chichester .  

[5] Freeman, L. A. Skapura, D. M. 1991.Neural Networks Algorithms 
Applications and Programing Techniques Addison-Wesley. 

[6] Noriega, J. R. and Wang, H. 1998. A Direct Adaptive Neural-Network  
[7] Efe, M. Ö. ve Kaynak O. 2004. Yapay Sinir Ağları ve Uygulamaları. 

Boğaziçi Üniversitesi, 148s., İstanbul. 
[8] Rivals, I. Personnaz, L. 2000. Nonlinear Internal Model Control sing 

Neural Networks: Application to Process with Delay and Design Issues, 
IEEE Transactions on Neural Networks, 11(1) pp 80-90. 

[9] Wang, L. Wan, F. 2001. Structured Neural Networks for Constrained 
Model Predictive Control. Automatica, 1235-1243. 

[10] Lazar, M. and Pastavanu, O. 2002. A neural predictive controller for 
non-linear systems, Mathematics and Computers in Simulation, 60 315-
324. 

[11] Denker, A. and Ohnishi, K. 1996. Robust Tracking Control of 
Mechatronic Arms. IEEE/Asme Transactıons on Mechatronıcs. 1(2), 
181-188. 

[12] Cılız, M. K. 2005. Adaptive Control of Robot Manipulators with Neural 
Network Based Compensation of Frictional Uncertainties. Robotica, 23, 
159-167.  

[13] Hagan, M. T. Demuth, H. B. and Beale, M. H. 1996.  Neural Network 
Design, University of Colorado, Colorado. 

 
 


