
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

610

Abstract—An empirical study of web applications that use

software frameworks is presented here. The analysis is based on two
approaches. In the first, developers using such frameworks are
required, based on their experience, to assign weights to parameters
such as database connection. In the second approach, a performance
testing tool, OpenSTA, is used to compute start time and other such
measures. From such an analysis, it is concluded that open source
software is superior to proprietary software. The motivation behind
this research is to examine ways in which a quantitative assessment
can be made of software in general and frameworks in particular.
Concepts such as metrics and architectural styles are discussed along
with previously published research.

Keywords—Metrics, Frameworks, Performance Testing, Web
Applications, Open Source.

I. INTRODUCTION

EASUREMENT is fundamental to any branch of
engineering. Software engineering does provide

techniques for this. However, standards have been slow to
emerge. The main reason for this is the rapid evolution that is
taking place in producing software, in terms of both
technology and methodology. The building paradigm of
yesteryear is based on creating customized code for each
application. It has been replaced by the assembly paradigm.
Existing components are reused in this approach where they
are available, and new ones created if necessary. Measurement
takes place at various stages in the software development life
cycle. Terms such as harvesting time are used to denote this
aspect of measurement. Reuse of architectural styles, such as
data flow, call & return, repository, and layered approach, has
always prevailed. In the new assembly paradigm, partial
applications called frameworks are popular on account of
reduced development effort and increased software quality.
Open Source software has the same two advantages. The
subsequent sections describe metrics, architectural styles &
frameworks, performance testing, OpenSTA, MOODLE
Framework, empirical study, and conclude.

Thirumalai Selvi is a PhD student in the Department of Computer Science,

Mother Teresa University for Women, Kodaikkanal, Tamil Nadu, India.
N. V. Balasubramanian is Professor of Computer Science & Engineering,

RMK Engineering College, Kavaraipettai, Tamil Nadu, India 601026 (phone:
91-44-28113956, 91-9841046961; email: laksbala@dataone.in).

P. Sheik Abdul Khader is Professor & Head of Computer Applications, B.
S. Abdur Rehman University, Vandalur, Chennai, India.

II. METRICS

A. Problem and Solution Oriented Metrics

Requirements engineering precedes design, coding, and
testing. If measurements can be done at this early stage of
development, planning is greatly enhanced. Albrecht proposed
Function Point in 1979[1], and there is an International
Function Point User Group (IFPUG) to regulate metrics based
on this approach. IFPUG holds conferences, workshops, and
certifies professionals to carry out the measurement task. This
approach uses the requirements document for computation.
Inputs, outputs, inquiries, interfaces and files are weighted
based on their complexity. An adjustment factor is then
applied based on reuse, distribution, etc. to the raw values to
arrive at the final numerical figure for the software. Use Cases
are today’s de-facto descriptions of customer’ requirements.
So, Use Cases too can be used to compute metrics at early
stages of software development. As we harvest metrics at the
time of describing the problem, they are called problem
oriented metrics. Lines of Code (LOC) have, from the
inception of software metrics, played an important role in
measurement, particularly in the days when procedural
programming languages dominated the software scenario.
Halstead proposed Computer Science Metrics in 1972[2]
based on operands and operators in programs. The
disadvantage with such metrics is the harvesting time;
numerical figures can not be derived till after the coding is
complete. Nevertheless, software companies use them to
reflect on the past in order to project into the future in a more
professional manner.

B. Object Oriented Metrics

Most software these days follow the Object Oriented (OO)
paradigm. Chidamber and Kemerer (CK) proposed metrics for
OO in 1994[3], and they are still widely followed. For
calculating complexity, they used Cyclomatic Complexity
proposed by McCabe in 1976[4]. CK came out with a suite of
six metrics:

• Weighted Methods per Class (WMC)
• Response for a Class (RFC)
• Lack of Cohesion (LCOM)
• Coupling Between Object Classes (CBO)
• Depth of Inheritance Tree (DIT)
• Number of Children (NOC)

Quantitative Evaluation of Frameworks for Web
Applications

Thirumalai Selvi, N. V. Balasubramanian, and P. Sheik Abdul Khader

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

611

For weighting, cyclomatic complexity is used.

C. Component Based Metrics

Since components are basically a set of collaborating classes
and a set of interfaces (those being classes themselves), it is
justifiable to extend CK metrics for Component Based
Software. A proposal to grade relationship between classes
such as dependency, association, aggregation, composition,
and generalization/specialization has been made. (This is akin
to weightings given to inputs, outputs, inquiries, interfaces,
and files in the Function Point Method.) However, some
authors feel that additional metrics such as reuse, packing
density, and criticality are needed to supplement the above.

Dolado[5] analyzed 46 projects and used Neural Networks
for computing metrics. But the technology for software
development at that time was fourth generation languages such
as Application Language Liberators. Dolado used Mark II
version of Function Point. Today’s Component Based
Software Development (CBSD) is far more sophisticated for
using Dolado’s approach. Often, Frameworks are used in
conjunction with components. Cho and Kim[6] use a banking
case study to illustrate how static and dynamic complexities of
components can be computed. The values they use for
dependency, association, generalization/specialization,
aggregation, and composition are 2, 4, 6, 8, and 10
respectively. No explanation is given in their paper for arriving
at these values. They also propose new measures for
customizability and reusability. The Common Software
Measurement International Consortium (COSMIC) has come
out with a measurement method for functional size, with some
assumptions. Firstly, a layered architectural style is the basis
for component assembly; no component can straddle two
layers. The metric is based on data movement, and ignores
data manipulation. In addition to Entries and Exits of data to
and from components, there are also Reads and Writes from
and to persistent storage. We simply sum up the Entries, Exits,
Reads, and Writes to arrive at the size. Event-driven paradigm
is assumed for programming. An event triggering a functional
process is considered an Entry, and may have only one data
attribute (not a group). If input to a functional process
comprises more than one data group, identify each data group
as one Entry. Do likewise for Exits, Reads, and Writes. Any
message from a functional process to the user retrieving data
shall not be counted as an Exit. A requirement to delete a data
group from persistent storage shall be measured as a single
Write.

D. Web Metrics

Pioneering work, using empirical methods, has been done
by Emilia Mendes, et al. [7][8][9] after analyzing several web
hypermedia projects. They use three techniques, namely,
Expert Judgment, Algorithmic Models, and Machine Learning.
Essentially, the first technique has been used here for assigning
weights to pages, links, database connections, multimedia
contents, and so on. That is, experts make a subjective
assignment of numeric values to these various factors in much

the same manner as is done in the Function Point method.
These were presented at the Second Functional Sizing Summit
2007[10] by the authors. This work was further developed, to
include frameworks, and published in IJWSP[11]. However,
performance issues were not included in this paper. While the
above mentioned research work of all authors has focused on
technological aspects, some authors [12] have taken a
management oriented approach using essentially a
questionnaire based survey for user satisfaction and such
feedback. This will not be pursued in this paper.

III. ARCHITECTURAL STYLES AND FRAMEWORKS

A baseline architecture is an essential starting point for
software development, once the requirements have been
established. The Call & Return architecture was appropriate in
the days when mainframe computers and procedural
programming dominated the computing scene. With Unix, a
new style came to be used, namely, the Data Flow
architecture. Filters are smaller programs written in ‘C’, and
they are put together using Pipes which are essentially Shell
programs; this is how larger programs were built from a set of
smaller programs. Even today, many image processing
softwares use this architectural style. Certain applications are
dominated by a Repository, and clients either retrieve or
manipulate data in the Repository. OSI came out with a seven-
Layer architecture, and soon such an approach became
widespread, particularly in web applications. Typically, there
is a back-end Database Layer that interfaces with the
Application Layer. The customer uses a web browser (called a
Thin Client Layer), and accesses the application via a Web
Server Layer. The essential thing about all these architectural
styles is that they are abstractions. Hence, it is tricky to
incorporate measurements in them. Frameworks, on the other
hand, are concrete; they do follow some architectural style and
incorporate some design patterns. Frameworks are customized
by a combination of parameters and hook methods.
Frameworks allow components to be added as well as
replaced. Thus the new software development paradigm is just
like automobile assembly. Some consider even operating
systems and database management systems to be frameworks.
Microsoft’s Framework uses Active-X components using the
Distributed Component Object Model (DCOM). The
fundamental component of CORBA, another Framework, is
the Object Request Broker (ORB) whose task is to facilitate
communication between objects. Given an Inter-operable
Object Reference (IOR), the ORB is able to locate target
objects and transmit data to and from remote method
invocations. The interface to a CORBA object is specified
using CORBA’s Interface Definition Language (IDL). An
IDL compiler translates the IDL definition into an application
programming language (C++, Java, Tcl/Tk) generating IDL
stubs and skeletons that respectively provide client-side and
server-side proxies. Microsoft also provides the Active Server
Pages (ASP) Framework for web applications. PHP is a
popular Open Source server-side scripting language for web

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

612

applications, competing with Perl. Using PHP, several Open
Source Frameworks (JOOMLA , TYPO3, MOODLE) have
been developed and continually upgraded for web based
applications. These cover Content Management, Course
Management, and the like. A very useful software is XAMPP
which bundles Apache, MySQL, PHP, and Perl. Measurement
is facilitated by using existing features (such as DBCheck in
TYPO3) and writing additional PHP code to gather static data
(number of pages) and dynamic data (response time). For a
variety of reasons, Open Source has penetrated every aspect of
computing, and the trend is expected to continue. Since source
code is available for Open Source software, Glass Box
Components are available for extension and substitution.
Additional code can be incorporated for measurement
purposes in these Glass Box Components.

IV. PERFORMANCE TESTING

Web applications depend on quick response to visitor’s
requests. Often times, the software has to be loaded in the
server, before a service can begin. Since there are repeat
requests for the same service, cache and other techniques
(such as proxy) are used to speed up the process. Rarely, we
find that measurements, such as response times, are provided
by available Frameworks. We therefore need to use
measurement tools to intercept service requests, and obtain the
relevant information. An Open Source tool for performance
measurement is OpenSTA. After web applications were
developed, they were run along with OpenSTA. It was thus
feasible to compare various projects on performance factors.
OpenSTA creates virtual users to load the system, and thus
simulate a live environment. This tool has the following
features:

• Test Commander – The central control application
for testing using OpenSTA,

• Name Server – CORBA background process to let
OpenSTA components find each other and
communicate,

• Script Modeler – Applications where scripts are
recorded and developed,

• HTTP Gateway – Proxy like background process
that performs recording,

• Test Executer – Background process that actually
executes the test,

• Web Relay Demon – Uses XML RPC to get over
CORBA limitations on the Internet,

• Repository – Where all test scripts, configurations,
and results are maintained,

• Test Manager – Background process that manages
Test Executer,

• Task Group Executer – Process that runs other tasks.

Whilst testing web applications, the starting time for Open
Source was found to be smaller as compared to Proprietary
software. These results are compared in a later section in the
paper. (See Appendix for GUI Interfaces.)

V. MOODLE FRAMEWORK

A. PHP (Personal Hypertext Processor)

As MOODLE is developed in PHP, an introduction is
presented here. PHP is competing with Perl for building high
performance dynamic web sites. It is a server side scripting
language, and uses a Parser for dynamically interpreting
scripts containing both HTML and PHP as shown in the Fig.1
below. The Zend engine enhances the performance of PHP
based web sites. Software can be developed using Object
Oriented (OO) paradigm, including SOAP. Exceptions
handling is also available in PHP for managing error
conditions during operation. Excellent support is provided for
MySQL database management system, as well as SQLite.
Increasingly, a template based approach is being used to create
web sites quickly with PHP. Since the source code is
available, one can customize a specific web application with
relative ease. Interactive Development Environments (IDE)
are the norm for coding and scripting these days. Builders of
TYPO3 have created one such called FLOW3 . This adds an
extra layer to the Framework for customization purposes.
FLOW3 supports Aspect Oriented Programming as well as
Agile Software Process.

Web server

Pure
HTML

HTML
+

PHP

PHP
Parser

Data
Base

Fig. 1 Interaction between Web Server and PHP Parser

B. MOODLE

MOODLE stands for Modular Object Oriented Dynamic
Learning Environment. It is an Open Source Framework for
course management. It has an excellent database organization,
supported by ADODB library. The components of MOODLE
are called activity modules, and are useful in the expansion of
the ELF (which is currently not activity based). Since the
source code is at our disposal, new functionality can be added
to MOODLE .

It supports several operating systems like Linux, Windows,
and Mac OS-X. Several MOODLE sites can be interlinked to
each other. MySQL provides database backup and recovery
facilities. A software house, Tenth Planet Technologies
Limited, Chennai, India, has specialized in using this
Framework to support school administration, and willingly
supplied us data for our empirical study. Software architecture
of MOODLE and database architecture follows in Fig. 2, 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

613

Fig. 2 Architecture Diagram for MOODLE

Fig. 3 MOODLE Core Database

VI. EMPIRICAL STUDY

A. Scope of Empirical Study

In addition to data provided by Tenth Planet Technologies
Limited on substantial projects using MOODLE , additional
projects for the empirical study were carried out by our
graduate students, many of whom had good familiarity with
Microsoft ASP Framework. They were given training in PHP
so that they can carry out the same project in both ASP and
PHP. The analysis is based on two approaches. In the first,
developers were required to assign weights to parameters such
as database connection based on their experience. In the
second approach, OpenSTA was used to compute start time
and other such measures.

B. Web Metrics

For each project, the developers were asked to give weights
to the following factors:

• Platform Neutral
• Creating Record Set
• Database Connection
• Email Objects
• Cascading Style Sheet
• Content (Multimedia)
• Scripting Language
• Audio and Video Files

ASP developers could not assign weights to certain factors
like Platform Neutral. For each project, its size was computed
by multiplying, for each item, the number of occurrences and
the weight assigned for the item, and summating individual
item values. The weights assigned by the experts are given in
Fig. 4 below for ASP, PHP, MOODLE .

Fig. 4 Metrics Chart for ASP, PHP, MOODLE

C. Measuring Size Metrics

The complexity and length metrics, except reuse, were
measured for the various projects using the COSMIC method.
The counting rules corresponding to each Entry, Exit, Read,
and Write are as follows: each HREF tag counted as one Entry
plus one Read plus one Exit. By pressing a link, the user sends
an Entry to an application that Reads the data from the web
server, and shows the contents to the user (i.e., Exit). The
following measurements were taken:

• Length – Page counts, program counts, total page
allocation, total embedded code length,

• Complexity – Connectivity (internal links), density
of connectivity (connectivity / pages), total page
complexity, number of different types of media,
media density (media / pages).

A simple figure for comparison is the ratio of Lines Of Code
(LOC) divided by Function Points (FP). Here is a ratio that
uses a solution oriented metric (LOC) and normalizes it using
a problem oriented metric (FP). PHP programs have a
consistently smaller ratio as compared to ASP (Proprietary

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

614

Framework) for the same project, although the margin is too
small to be tabulated.

D. Performance Metrics

Two screen shots of the tool OpenSTA are given in the
appendix (Fig. 6, 7). These give a flavor for the tool. Using
OpenSTA software, starter times were measured for the same
project using different implementation methods, and are
tabulated below in Fig. 5.

 Chart showing Starting timer
values for all applications

0
2
4
6
8

10
12
14
16
18

JS
P

ASP

Ja
va

Sc
rip

t
Per

l

PHP

Applications

T
im

er
 v

al
u
es

 i
n
 s

ec

Fig. 5 Comparison of Starter Time Performance

It is seen that proprietary software takes longer to start as

compared with Open Source software.

VII. CONCLUSION

This paper has presented the studies of researchers in
arriving at a quantitative method of evaluating software in
general and web engineering in particular. While COSMIC
method is expected to replace the FP method for problem
oriented metrics in web engineering, it is the Use Case based
method that will form the basis for general software. For
solution oriented metrics, a Framework based analysis is
advocated by the authors. In fact, the proposal is to build
measurement instrumentation into such Frameworks. A Rich
Internet Application (RIA) Framework is being designed with
this in mind, using PHP. For implementation, this new
Framework will use FLOW3 and event-driven programming
paradigm. This new Framework will also interface with
OpenSTA. The objective is to integrate measurement as part of
software development, and not as an after thought.

ACKNOWLEDGMENT

We thank the company Tenth Planet Technologies Limited,
Chennai, and its staff for providing us with the data on
software projects, including those that were not readily
available but were prescribed by us.

REFERENCES

[1] A. J. Albrecht and J. E. Gaffney Jr., “Software Function, Source Lines
of Code, and Development Effort Prediction,” IEEE Transactions on
Software Engineering, vol. 9, no. 6, November 1983.

[2] M. H. Halstead, “Elements of Software Science,” Elsevier, New York,
1977.

[3] S. Chidamber and C. Kemerer, “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
June 1994.

[4] T. McCabe, “A Software Complexity Measure,” IEEE Transactions on
Software Engineering, vol.2, no.12, December 1976.

[5] J. J. Dolado, “A Validation of the Component Based Method for
Software Size Estimation,” IEEE Transactions on Software
Engineering, vol. 26, no. 10, October 2000.

[6] E. S. Cho, M. S. Kim, and S. D. Kim, “Component Metrics to Measure
Component Quality,” The 8th Asia-Pacific Software Engineering
Conference (Macau), 2001.

[7] E. Mendes, N. Mosley, and S. Counsell, “Web Metrics – Estimating
Design and Authoring Effort,” IEEE Multimedia’s Special Issue on
Web Engineering, 2001.

[8] E. Mendes, N. Mosley, and I. Watson, “A Comparison of Case-based
Reasoning Approach to Web Hypermedia Project Cost Estimation,”
Proceedings of the 11th International World Wide Web Conference
(Hawaii), 2002.

[9] E. Mendes, N. Mosley, and S. Counsell, “Investigating Early Web Size
Measures for Web Costimation,” Proceedings of EASE Conference
(Keele University), 2003.

[10] R. Thirumalai Selvi, “Metrics in Component Based Software
Engineering,” Second International Functional Sizing Summit
(IFPUG), Vancouver, Canada, April 2007.

[11] R. Thirumalai Selvi, N. V. Balasubramanian, and P. Sheik Abdul
Khader, “Framework and Architectural Style Metrics for Component
Based Software Engineering,” International Journal of Web Services
Practices, vol. 3, no. 1-2, 2008.

[12] Aaron Don M. Africa, “Quantitative Evaluation of Open Source Content
Management Systems,” IEEE Multidisciplinary Engineering Education
Magazine, vol. 3, no. 2, June 2008.

[13] meetinguniverse.com
[14] nambco.com
[15] showcase.rhytha.org/vyabr
[16] cdmainteractive.com
[17] thejo-engg.com
[18] denvik.in
[19] chipkidz.com
[20] typo3.org
[21] flow3.typo3.org

Thirumalai Selvi completed her MS from Madurai Kamaraj University and
did her MPhil from M. S. University. She has more than 13 years of teaching
experience, and is currently Head of the Department of Computer Science at
Government Arts and Science College, Tiruttani, India. She has several
publications in the area of Software Engineering.
N. V. Balasubramanian completed his doctorate at Liverpool University,
U.K., and has 14 years of industrial and 30 years of academic experience,
including 14 years as the Founding Head of the Department of Computer
Science at City University of Hong Kong. He was active in Hong Kong in
professional bodies such as IEEE, Hong Kong Institution of Engineers, Hong
Kong Association of Computer Education. Between 1987 and 1989, he
served as Region 10 Director, IEEE Computer Society, covering Australia,
China, India and Japan. He has published several papers in the area of
Software Engineering and has been invited speaker at conferences.
P. Sheik Abdul Khader completed his doctorate at Anna University,
Chennai, India, and has been working in several institutions as an academic
before joining B. S. Abdur Rehman University, Vandalur, Chennai, India, as
Professor and Head of Department of Computer Applications. He has more
than 25 years of academic experience. His areas of interest include Computer
Networks, Software Engineering, and Image Processing. He is an approved
PhD supervisor at several universities, including Sathyabama University and
Mother Teresa Women’s University. He has published several papers in
international journals and conference proceedings.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

615

APPENDIX

Fig. 6 Test Commander Interface of OpenSTA

Fig. 7 Single Stepping Interface of OpenSTA

