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and the rate the disease spreads [24]- [26]. As in Table I, an 
outbreak is defined depending on the type and the carrier of 
the disease. The overall definition is a widely accepted  

 

definition of the CDC, the occurrence of more than one case 
of normal conditions in certain locations within a range of 
time. 

TABLE I 
 OUTBREAK CONCEPT DEFINITION 

Definition The outbreak key word
Data anomaly Data type Event 

Spatial Temporal 
Center Disease Control (CDC) 
www.cdc.gov 

X X X - 

Dictionary.com (online) 
http://dictionary.reference.com/br
owse/outbreak 

X X - - 

Columbia Electronic 
Encyclopedia (online) 
www.questia.com/library/encycl
opedia 

X X X X 

ESR – Manual public 
health New Zealand 
www.surv.esr.cri.nz 

X - - X 

Minnesota Dept of Health 
www.health.state.mn.us 

X X X X 

Island Country Dept of Health 
www.islandcountry.net/health/ou
tbreak.htm 

X - - X 

 
 

The objective of surveillance system is to reduce the impact 
of the epidemic outbreak effects by allowing the authorities to 
detect cases earlier and thus, enabling the authorities to plan 
and act accordingly. The surveillance systems act to facilitate 
outbreak identified detection by allowing the use of a 
combination of various sources of data. [27]–[30] In addition 
to the outbreak detection, the surveillance systems are also 
used in identifying network intrusion, stock market fraud, 
abuse of power and fraud in the system call in which outlier 
detection in applied.  

There are many studies related to the detection of outlier 
detection in over 30 decades, beginning with the study of 
Hawkins (1980). The discussion on the comprehensive study 
reviewed by [31]-[35] and [36],[37] will be further discussed 
in the next session. 

II.  RELATED STUDY 
The simplest definition to describe the outlier is “data that is 

isolated from data”. There are a few definitions used to 
describe an outlier in a variety of outlier detection. Despite the 
different definitions used, it has the same goal, which is to find 
something strange or isolated when compared with the 
comparison group. [33] and [34],[35] classify outlier detection 
techniques through four main methods: distribution, distance, 
clustering and density based.  

The detection of outlier detection covers various techniques 
with a broad spectrum of technology. According to [31], the 
various techniques used in the detection of outlier data is 
similar, but the introduction used by the authors is diverse. 
[31] and [38] quoted from Bennett & Lewis (1994) define an 
outlier as “…that an outlying observation, or outlier, is one 
that appears to deviate markedly from other members of the 
sample in which it occur..”. [31], [34], [35] An Outlier, also 

known as anomaly detection is the phenomenon of viewing 
patterns within a dataset which does not follow the normal 
behavior. The situation is referred to as anomalies, isolated 
data, conflicting observations, and aberration, strange or 
corrupted in the various domains. The outlier detection has 
been applied in different domains with various naming such as 
novel detection; anomaly detection; noise data detection and 
deviation detection. 

The development of the outlier detection techniques are 
based on statistics and also on data mining. The study 
conducted by [39] and [40], [41] utilizes a technique known as 
pattern anomaly detection (APD). The APD technique uses 
likelihood ratios based on the probability of an odd list of data. 
Bayesian networks are used to generate probability density 
model, as well as optimization techniques for studying the 
structure and estimating the network parameters. The pattern 
frequency technique (FOFP) [42] is an Apriori-based 
technique to find common patterns in the data set. FOFP 
analyzed data point contains at least the pattern and is referred 
to as outlier data. Reference [42] report, the results achieved 
by FOFP performs well when compared to clusters-based 
(CLBOF) and RNN. Based on the distribution method, the 
AVF technique identified the outlier by analyzing each 
attribute including the smallest value within the dataset. The 
overall detection of AVF is equivalent to the FOFP which is 
fast in detection rate. 

Referring to [35] and [31], the terms outlier and anomaly 
are often used in mutual exchange. The main purpose of this 
study is to use the outlier technique for outbreak detection. To 
facilitate the use of the term deviation, the isolated data 
anomalies and outbreaks in subsequent discussions will refer 
to the same terms. 

References [35], [32], [33] and [31] mainly focused their 
research on the detection of domain aspects, design 
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information retrieval techniques to represent the p-
dimensional column vector (Afred 2008). The documents and 
queries are represented in vector form. 
 

dj = (w1,j,w2,j,...,wt,j)                                      (1) 

 
q = (w1,q,w2,q,...,wt,q)                                      (2) 

 
Each wt, j is the weight of the word j in document t or 

known as representation of the word bag. Weights are often 
used in information retrieval and text mining is tf-idf 
weighting. These weights are used in statistical analysis to 
explore the frequency of words found in the document and 
also the frequency of words in all documents. 

The calculation of the words found in the documents refers 
to ti and was found in the document dj. The frequency of 
words can be represented as below: 
 

ݐ ௜݂,௝ = 
௡೔,ೕ

∑ ௡ೖ,ೕೖ
                                      (3) 

 
The variables ni,j is the number of words (ti) in document dj 

The devisor is the sum of all words found in the document dj. 
The idea is that more frequently found words are more 
important than the less frequently found words within the 
document. This leads to the deriving measurement called the 
inverse document frequency idfi in the thesis of Alfred (2008), 
it is proven that tf-idf is a good weighting scheme in document 
clustering.  

The development of (idf) attempts to develop the frequent 
mining technique using Multiple Attribute Value (MAV) [43]. 
The concept of inverse document frequency (tf) was inspired 
to develop of Frequent-Outlier (DTK) techniques. The 
combination of frequent and outlier mining techniques led to 
the development of the outbreak detection. 

B. Frequent Mining 
Apriori technical developments are fundamental to the 

development of MAV techniques. Literature review found that 
modification of Apriori algorithm is necessary to meet the 
research domain. The modifications of the Apriori algorithm 
basis were used to meet the need of frequent mining using 
MAV. 

Frequent mining is part of the association mining in 
generating the frequent item sets and in identifying 
relationships between the frequent generated items.  

The relationship between the items and set items provide 
useful information in various domains such as marketing 
analysis, web, networking to detect patterns from the dataset. 

The study found that the frequencies of attribute values are 
unique and different from other attributes in the same 
transaction. This technique is known as a frequent technique 
with multiple attribute values (MAV). 

C. Outlier Mining 
Reference [42] suggested FOFP technique based on the 

density approach. The FOFP detects an outlier data by 

viewing the pattern in a set of items. The FOFP identifies the 
outlier data based on the concept of ‘outlier-ness’. While in 
[44], the AVF uses a method based on identifying the 
distribution of the outlier. AVF score is generated according to 
the number of rare values in the attribute in identifying the 
outlier data. 

Reference [42] (FOFP) and [44] (AVF) refer to the 
calculation of the scores in determining the outlier data. The 
score used by the researchers are as follows: 

 
FOFP Score (x) = ∑ ௌ௨௣௣௢௥௧ ሺிሻಷ ೣؿ,   ಷ אಷ಺ೄ

צிூௌצ
                        (4) 

 
AVF Score (xi) = ଵ

௠
∑ ݂ሺݔ௜௟

௠
௜ୀଵ ሻ       (5) 

 
The FOFP score refers to each frequency subset that exists 

in record x and is divided with the sum of all frequencies in 
the whole dataset D in which the data with the lowest score is 
considered as outlier data. While AVF score refers to the 
number of I-th attribute value that exists in the dataset. Xi. 
Low score value indicates the data point as an outlier data. 

D. Frequent-Outlier (DTK) 
DTK has inspired score based on FOFP score and also AVF 

score. The approach in developing DTK is derived from the 
calculation of the frequency of words used in information 
retrieval and is adopted in obtaining frequent dataset. This 
refers to the situation where the number of word within the 
document (ti) is found. The concept used in the DTK score 
describes using suitable examples as below. 

Equation 3 was developed to illustrate the calculation in 
obtaining the DTK score for detecting outlier in the frequent 
set. 

 

DTK Score (ti) = 
∑

ವ಼೔ೕ
ೣ

௬
 , where  ∑ti = x , ∑Pj = y                (6) 

 
As for example in Table I, T1 {b}{a}{b}{b}{d}. The total 

Tn = 10 with Pi = 5. Using T1 as example, the score for T1 
isT1 = 3/10, 3/10, 6/10, 2/10 and 4/10. The summation of T1 
divided by the number of attributes in the dataset (∑Pi) = (5). 
A weighted value generated from equation 3 known as DTK 
Score. The DTK score generated is referred to in identifying 
the outlier data. The sample calculation for the DTK scores 
can be seen in Table III. 
 

TABLE III 
 DTK SCORE IN NEWTRANSTAB 

T P1 P2 P3 P4 P5 DTK Score
T1 b a b b d 0.36 
T2 a b b d d 0.36 
T3 b a b d d 0.36 
T4 a b b b b 0.32 
T7 a a b a d 0.36 
T10 b b b a b 0.32 

 
Based on equation 3, the T4 and T10 has produced the 

lowest score value. According to [44], the lowest score refers 
to the outlier data. 
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TABLE IV 
SCORE VALUE FOR DTK, FOFP AND AVF 

Trans Attribute Skor data terpencil 
Tn P1 P2 P3 P4 P5 DTK FOFP AVF  
T1 b a b b d 0.36 0.20 0.5 
T2 a b b d d 0.36 0.20 0.5 
T3 b a b d d 0.36 0.22 0.5 
T4 a b b b b 0.32 0.20 0.5 
T7 a a b a d 0.36 0.25 0.54 
T10 b b b a b 0.32 0.14 0.42 

 
P1 to P5 are attributes and Tn is the records with elements 

{P1j , P2j, … Pij}. FOFP score and AVF score referred to as 
in Table II. The comparison in Table II without taking into 
account the attributes that is infrequent. The DTK technique is 
used to identify the frequency of the attribute by applying 
MAV techniques [45], [43]. The record less than 20% 
min_supp was not considered during the calculation. The 
comparison was made based on only frequent dataset 
identified by the DTK using the MAV technique.  

The purpose of this was to review the outlier in the frequent 
dataset, taking into account only the generations of frequent 
dataset which are based on the records that meet specified 
constraints (current min_supp). DTK, FOFP and AVF score 
managed to trace the T10 as an outlier record. DTK technique 
is able to detect T4 as outlier record, and show that DTK is 
able to detect more outlier records in frequent dataset 

Based on the example above, the algorithm was developed 
as shown in Fig. 3 below: 
 
For every frequent set (D’)/*NewTransTab 

Count attribute (y) 

For each attribute (y) 

Count attribute element (x) for each (y) 

Store as xy 

End for 

End for 

For each record (T) 

Count attributes value (z) 

Skor (z) = 
ಲ೟೟ೝ೔್ೠ೟೐ ೐೗೐೘೐೙೟ ሺೣ೤ሻ

೟೚೟ೌ೗ ೝ೐೎೚ೝ೏ ሺ೅ሻ

௔௧௧௥௜௕௨௧௘ ௖௢௨௡௧ሺ௒ሻ
 

End for 

Sort ascending order score (z)  

END 

Fig. 3 DTK algorithm 
 

According to Fig. 3, the algorithm was developed using 
Java. The dataset was analyzed and the preprocessing was 
conducted as shown on the following table. 
 

TABLE V 
 UCI DATASET  

RS = Rough Set Faizah 2008, FOFP = (Hawkins et al 2002; Williams 
et al 2002; He et al 2003; He et al 2004a; He et al 2005), AVF = 
Koufakou et al. 2007 

IV. RESULTS AND DISCUSSION 
The Frequent-Outlier (DTK) was designed to detect an 

outlier record within a frequent record set. The DTK algorithm 
is able to evaluate the outlier based on the smallest score 
generated. Fig. 4, Fig. 5 and Fig. 6 illustrate the performance 
of DTK. 

 

 
Fig. 4 Outlier records within frequent set records 

 
0.8% to 47.2% was identified as outlier records based on 

frequent record sets. According to Fig. 4, COL`, HYR` and 
DMT` no outlier record were identified. This is due to the 
computation of the score which indicated that there were no 
smallest values being generated from the given set. Dataset 
MONK` and BSWD` showed higher percentage in identifying 
outlier records as in 35% and 47% from frequent records. The 

Set data Outlier 
technique 

Structure 
Actual Remove Total 

Iris Plant (IRP) RS 150 47 58 
Zoo (ZOO) RS 101 Nil 101 
Australia 

Credit Card 
(ACC) 

RS 690 362 328 

Glass (GLA) RS 214 Nil 214 
Coil2000 

(COL) 
FOFP 160 Nil 160 

Lymphography 
(LYM) 

FOFP/AVF 148 Nil 148 

Cleaveland 
(CLV) 

FOFP 302 Nil 302 

Echoli (ECO) FOFP 336 Nil 336 
Horse Colic 
(HORSE) 

NEW 300 Nil 300 

Dermatology 
(DMT) 

NEW 366 Nil 366 

Contraceptive 
Prevalence 
(CONTRA) 

NEW 1472 200 1272 

Hayes Roth 
(HYR) 

NEW 132 30 102 

Monk 
(MONK) 

NEW 432 Nil 432 

Balance 
(BSWD) 

NEW 625 Nil 625 
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initial structure for MONK` is 432 before and after executed 
with frequent mining. This can be formulated that MONK` 
dataset has a uniform distribution of data elements. While in 
BSWD`, a reduction up to 66% during the process identifying 
frequent records  led to difficulties in identifying outlier 
records in BSWD` dataset. 1% to 3% outlier records were 
identified in the dataset IRP`, ACC`, GLS`, LYM`, CLV`, 
HDE`, HPT`, HORSE` and CONTRA` based on original 
dataset. 

A total of eight datasets were chosen based on the 
percentage range for the outlier detected in the datasets.  Fig. 5 
and Fig. 6 shows the DTK techniques perform better than 
FOFP and AVF. 

 
 

Fig. 5 DTK vs FOFP 
 

The FOFP was developed based on the density method in 
securing the outlier data. The score generated by FOFP were 
used in the detection of the outlier data. DTK viewed the 
density method based on the frequency of the combination of 
the attribute value as element of attribute value (Multiple 
Attribute Value). The experiment aimed to explore the 
possibilities of DTK to detect outlier records based on the 
density method in terms of frequency as in FOFP.  

Based on Fig. 5, DTK is able to track down outlier records 
more than FOFP in the dataset IRP`, ECO`, HYR`, and 
MONK`. Unfortunately, DTK was not successful in tracking 
outlier records in BSWD`.  This is due to BSWD` having a 
complex data structure with a variety of elements in a single 
attribute. As in dataset ACC`, HORSE`, and CONTRA` the 
experiment indicated the performance of DTK produced the 
same result as in FOFP. 

 
Fig. 6 DTK vs AVF 

 
Based on ideas of every single attribute contain an outlier, 

AVF was developed according to the distribution method. 
DTK is improves AVF by viewing the attribute value and 
identifying common elements and attributes. Fig. 6 shows the 
DTK doing well in detecting outlier records on dataset IRP`, 
HYR`, MONK`, and CONTRA`. While in the dataset 
HORSE` and ECO` the performance recorded an equal results. 
When comparing results obtain by DTK with AVF or FOFP, 
the DTK recorded lower results in the dataset BSWD`. 

The DTK technique developed a score in identifying outlier 
records by referring to the lowest score value. In this 
experiment, the DTK technique successfully identified the 
outlying records by taking into account various data structures. 
The comparison involved the ability of techniques to identify 
outlier records in term of volume detected as in Table VI. 
Significance tests were also performed and reported in Table 
VII. The overall performance shows that the DTK technique is 
able to detect more outlier records in certain dataset. This 
could be due to the fact that complex data structures resulted 
in the DTK performing lesser in dataset BSWD`. 

 
TABLE VI 

COMPARISON DTK OVER AVF AND FOFP 
Comparison Techniques AVF FOFP 

DATASET 

IRP' √ √ 

ACC' X = 

ECO' = √ 

HYR' √ √ 

MONK' √ √ 

BSWD' X X 

HORSE' = = 

CONTRA' √ = 

Note:  √ referring to DTK able to detect higher volume of outlier record; = 
referring to an equal numbers of outlier records detected; x indicated DTK 
less performance than comparison techniques. 

 
The propose technique was implemented and the results 

were recorded and performance significance tests based on 
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volume outlier records were detected. The results shown that 
the DTK is more significant based on the sig. value when the 
value is lesser than AVF and FOFP as in Table VII. 
 

TABLE VII  
T-TEST FOR DTK, AVF AND FOFP 

 Test Value = 0 
t Df Sig. Mean 

diff. 
Asymptotic 95% 

confidence interval 
Lower 
bound 

Upper 
bound 

DTK 2.326 7 0.53 34.5 -.58 69.58 
AVF 2.200 7 0.64 33.5 -2.51 69.51 
FOF

P 
2.126 7 0.71 33.1 -3.72 69.97 

 
The main purpose of the development of the DTK 

technique is to detect outbreak cases in public health. Based 
on studies, outlier detection is often used in networking, 
banks, industry, image processing and even in text processing 
to detect unusual or anomaly activities for the purpose of 
analyzing and controlling the current situation. 

The exploration of outlier detection concept were not 
implemented directly into outbreak detection, thereby the 
AVF and FOFP are not tested for the outbreak detection. The 
DTK concept is based on the definition for outbreak in public 
health which focuses on the increasing cases in health which is 
related to the generation of regular data (frequent). In this 
case, outbreak means is an isolated case or rare event happen 
in health data. This situation is regarded as outlier detection 
based on frequent set (frequent-outlier). So, DTK techniques 
are the combination of frequent and outlier techniques in 
outbreak detection. 

V. CONCLUSION 
Frequent-Outlier (DTK) was developed based on density of 

elements in the attributes that meet the constraints set 
(min_supp) in generating the frequent dataset. The 
development of DTK involved the calculation of DTK score in 
determining the most outlier records based on the smallest 
score obtain. A FOFP technique was developed based on 
density concepts. One of the limitations of the density based is 
the updating of the outlier-ness. DTK was inherent to the 
capabilities of AVF in identifying an outlier by observing the 
concept of each attribute which had a strange element. Thus, 
in DTK, updating the outlier-ness is not required. DTK 
explored the capacity density of the attribute and the attribute 
elements for identifying outlier record rather than view the 
attributes that are peculiar only as in AVF. 

Techniques developed are generally intended for the use in 
detecting the outbreak in public health. Research shows that 
DTK technique can be applied to general data such as tested 
with data from UCI with different purposes. Table VIII 
displays the comparison of detection features for the purposes 
of outbreak detection. 

 
 
 

TABLE VIII 
 DETECTION FEATURES FOR OUBREAK 

Detection features Outlier Detection Techniques 
FOFP AVF DTK 

Frequent detection   √ 
 

Outlier detection √ √ √ 
 

Outbreak detection   √ 
 

Outlier method density distribution Density & 
distribution 
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